// Copyright 2017 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_OBJECTS_JS_ARRAY_INL_H_ #define V8_OBJECTS_JS_ARRAY_INL_H_ #include "src/objects/js-array.h" #include "src/wasm/wasm-engine.h" // Has to be the last include (doesn't have include guards): #include "src/objects/object-macros.h" namespace v8 { namespace internal { TYPE_CHECKER(JSArray, JS_ARRAY_TYPE) TYPE_CHECKER(JSArrayBuffer, JS_ARRAY_BUFFER_TYPE) TYPE_CHECKER(JSTypedArray, JS_TYPED_ARRAY_TYPE) CAST_ACCESSOR(JSArray) CAST_ACCESSOR(JSArrayBuffer) CAST_ACCESSOR(JSArrayBufferView) CAST_ACCESSOR(JSArrayIterator) CAST_ACCESSOR(JSTypedArray) ACCESSORS(JSArray, length, Object, kLengthOffset) template <> inline bool Is(Object* obj) { return obj->IsJSArray(); } void JSArray::set_length(Smi* length) { // Don't need a write barrier for a Smi. set_length(static_cast(length), SKIP_WRITE_BARRIER); } bool JSArray::SetLengthWouldNormalize(Heap* heap, uint32_t new_length) { return new_length > kMaxFastArrayLength; } bool JSArray::AllowsSetLength() { bool result = elements()->IsFixedArray() || elements()->IsFixedDoubleArray(); DCHECK(result == !HasFixedTypedArrayElements()); return result; } void JSArray::SetContent(Handle array, Handle storage) { EnsureCanContainElements(array, storage, storage->length(), ALLOW_COPIED_DOUBLE_ELEMENTS); DCHECK((storage->map() == array->GetHeap()->fixed_double_array_map() && IsDoubleElementsKind(array->GetElementsKind())) || ((storage->map() != array->GetHeap()->fixed_double_array_map()) && (IsObjectElementsKind(array->GetElementsKind()) || (IsSmiElementsKind(array->GetElementsKind()) && Handle::cast(storage)->ContainsOnlySmisOrHoles())))); array->set_elements(*storage); array->set_length(Smi::FromInt(storage->length())); } bool JSArray::HasArrayPrototype(Isolate* isolate) { return map()->prototype() == *isolate->initial_array_prototype(); } void* JSArrayBuffer::backing_store() const { intptr_t ptr = READ_INTPTR_FIELD(this, kBackingStoreOffset); return reinterpret_cast(ptr); } void JSArrayBuffer::set_backing_store(void* value, WriteBarrierMode mode) { intptr_t ptr = reinterpret_cast(value); WRITE_INTPTR_FIELD(this, kBackingStoreOffset, ptr); } ACCESSORS(JSArrayBuffer, byte_length, Object, kByteLengthOffset) size_t JSArrayBuffer::allocation_length() const { if (backing_store() == nullptr) { return 0; } // If this buffer is managed by the WasmMemoryTracker if (is_wasm_memory()) { const auto* data = GetIsolate()->wasm_engine()->memory_tracker()->FindAllocationData( backing_store()); DCHECK_NOT_NULL(data); return data->allocation_length; } return byte_length()->Number(); } void* JSArrayBuffer::allocation_base() const { if (backing_store() == nullptr) { return nullptr; } // If this buffer is managed by the WasmMemoryTracker if (is_wasm_memory()) { const auto* data = GetIsolate()->wasm_engine()->memory_tracker()->FindAllocationData( backing_store()); DCHECK_NOT_NULL(data); return data->allocation_base; } return backing_store(); } ArrayBuffer::Allocator::AllocationMode JSArrayBuffer::allocation_mode() const { using AllocationMode = ArrayBuffer::Allocator::AllocationMode; return is_wasm_memory() ? AllocationMode::kReservation : AllocationMode::kNormal; } bool JSArrayBuffer::is_wasm_memory() const { bool const is_wasm_memory = IsWasmMemory::decode(bit_field()); DCHECK_EQ(is_wasm_memory, GetIsolate()->wasm_engine()->memory_tracker()->IsWasmMemory( backing_store())); return is_wasm_memory; } void JSArrayBuffer::set_bit_field(uint32_t bits) { if (kInt32Size != kPointerSize) { #if V8_TARGET_LITTLE_ENDIAN WRITE_UINT32_FIELD(this, kBitFieldSlot + kInt32Size, 0); #else WRITE_UINT32_FIELD(this, kBitFieldSlot, 0); #endif } WRITE_UINT32_FIELD(this, kBitFieldOffset, bits); } uint32_t JSArrayBuffer::bit_field() const { return READ_UINT32_FIELD(this, kBitFieldOffset); } bool JSArrayBuffer::is_external() { return IsExternal::decode(bit_field()); } void JSArrayBuffer::set_is_external(bool value) { set_bit_field(IsExternal::update(bit_field(), value)); } bool JSArrayBuffer::is_neuterable() { return IsNeuterable::decode(bit_field()); } void JSArrayBuffer::set_is_neuterable(bool value) { set_bit_field(IsNeuterable::update(bit_field(), value)); } bool JSArrayBuffer::was_neutered() { return WasNeutered::decode(bit_field()); } void JSArrayBuffer::set_was_neutered(bool value) { set_bit_field(WasNeutered::update(bit_field(), value)); } bool JSArrayBuffer::is_shared() { return IsShared::decode(bit_field()); } void JSArrayBuffer::set_is_shared(bool value) { set_bit_field(IsShared::update(bit_field(), value)); } bool JSArrayBuffer::is_growable() { return IsGrowable::decode(bit_field()); } void JSArrayBuffer::set_is_growable(bool value) { set_bit_field(IsGrowable::update(bit_field(), value)); } Object* JSArrayBufferView::byte_offset() const { if (WasNeutered()) return Smi::kZero; return Object::cast(READ_FIELD(this, kByteOffsetOffset)); } void JSArrayBufferView::set_byte_offset(Object* value, WriteBarrierMode mode) { WRITE_FIELD(this, kByteOffsetOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kByteOffsetOffset, value, mode); } Object* JSArrayBufferView::byte_length() const { if (WasNeutered()) return Smi::kZero; return Object::cast(READ_FIELD(this, kByteLengthOffset)); } void JSArrayBufferView::set_byte_length(Object* value, WriteBarrierMode mode) { WRITE_FIELD(this, kByteLengthOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kByteLengthOffset, value, mode); } ACCESSORS(JSArrayBufferView, buffer, Object, kBufferOffset) #ifdef VERIFY_HEAP ACCESSORS(JSArrayBufferView, raw_byte_offset, Object, kByteOffsetOffset) ACCESSORS(JSArrayBufferView, raw_byte_length, Object, kByteLengthOffset) #endif bool JSArrayBufferView::WasNeutered() const { return JSArrayBuffer::cast(buffer())->was_neutered(); } Object* JSTypedArray::length() const { if (WasNeutered()) return Smi::kZero; return Object::cast(READ_FIELD(this, kLengthOffset)); } uint32_t JSTypedArray::length_value() const { if (WasNeutered()) return 0; uint32_t index = 0; CHECK(Object::cast(READ_FIELD(this, kLengthOffset))->ToArrayLength(&index)); return index; } void JSTypedArray::set_length(Object* value, WriteBarrierMode mode) { WRITE_FIELD(this, kLengthOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kLengthOffset, value, mode); } bool JSTypedArray::is_on_heap() const { DisallowHeapAllocation no_gc; // Checking that buffer()->backing_store() is not nullptr is not sufficient; // it will be nullptr when byte_length is 0 as well. FixedTypedArrayBase* fta(FixedTypedArrayBase::cast(elements())); return fta->base_pointer() == fta; } // static MaybeHandle JSTypedArray::Validate(Isolate* isolate, Handle receiver, const char* method_name) { if (V8_UNLIKELY(!receiver->IsJSTypedArray())) { const MessageTemplate::Template message = MessageTemplate::kNotTypedArray; THROW_NEW_ERROR(isolate, NewTypeError(message), JSTypedArray); } Handle array = Handle::cast(receiver); if (V8_UNLIKELY(array->WasNeutered())) { const MessageTemplate::Template message = MessageTemplate::kDetachedOperation; Handle operation = isolate->factory()->NewStringFromAsciiChecked(method_name); THROW_NEW_ERROR(isolate, NewTypeError(message, operation), JSTypedArray); } // spec describes to return `buffer`, but it may disrupt current // implementations, and it's much useful to return array for now. return array; } #ifdef VERIFY_HEAP ACCESSORS(JSTypedArray, raw_length, Object, kLengthOffset) #endif ACCESSORS(JSArrayIterator, iterated_object, Object, kIteratedObjectOffset) ACCESSORS(JSArrayIterator, next_index, Object, kNextIndexOffset) IterationKind JSArrayIterator::kind() const { return static_cast( Smi::cast(READ_FIELD(this, kKindOffset))->value()); } void JSArrayIterator::set_kind(IterationKind kind) { WRITE_FIELD(this, kKindOffset, Smi::FromInt(static_cast(kind))); } } // namespace internal } // namespace v8 #include "src/objects/object-macros-undef.h" #endif // V8_OBJECTS_JS_ARRAY_INL_H_