// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_S390 #include "src/api-arguments.h" #include "src/assembler-inl.h" #include "src/base/bits.h" #include "src/bootstrapper.h" #include "src/code-stubs.h" #include "src/frame-constants.h" #include "src/frames.h" #include "src/ic/ic.h" #include "src/ic/stub-cache.h" #include "src/isolate.h" #include "src/regexp/jsregexp.h" #include "src/regexp/regexp-macro-assembler.h" #include "src/runtime/runtime.h" #include "src/s390/code-stubs-s390.h" // Cannot be the first include. namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) { __ ShiftLeftP(r1, r2, Operand(kPointerSizeLog2)); __ StoreP(r3, MemOperand(sp, r1)); __ push(r3); __ push(r4); __ AddP(r2, r2, Operand(3)); __ TailCallRuntime(Runtime::kNewArray); } void DoubleToIStub::Generate(MacroAssembler* masm) { Label out_of_range, only_low, negate, done, fastpath_done; Register result_reg = destination(); // Immediate values for this stub fit in instructions, so it's safe to use ip. Register scratch = GetRegisterThatIsNotOneOf(result_reg); Register scratch_low = GetRegisterThatIsNotOneOf(result_reg, scratch); Register scratch_high = GetRegisterThatIsNotOneOf(result_reg, scratch, scratch_low); DoubleRegister double_scratch = kScratchDoubleReg; __ push(scratch); // Account for saved regs. int argument_offset = 1 * kPointerSize; // Load double input. __ LoadDouble(double_scratch, MemOperand(sp, argument_offset)); // Do fast-path convert from double to int. __ ConvertDoubleToInt64(result_reg, double_scratch); // Test for overflow __ TestIfInt32(result_reg); __ beq(&fastpath_done, Label::kNear); __ Push(scratch_high, scratch_low); // Account for saved regs. argument_offset += 2 * kPointerSize; __ LoadlW(scratch_high, MemOperand(sp, argument_offset + Register::kExponentOffset)); __ LoadlW(scratch_low, MemOperand(sp, argument_offset + Register::kMantissaOffset)); __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask); // Load scratch with exponent - 1. This is faster than loading // with exponent because Bias + 1 = 1024 which is a *S390* immediate value. STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024); __ SubP(scratch, Operand(HeapNumber::kExponentBias + 1)); // If exponent is greater than or equal to 84, the 32 less significant // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), // the result is 0. // Compare exponent with 84 (compare exponent - 1 with 83). __ CmpP(scratch, Operand(83)); __ bge(&out_of_range, Label::kNear); // If we reach this code, 31 <= exponent <= 83. // So, we don't have to handle cases where 0 <= exponent <= 20 for // which we would need to shift right the high part of the mantissa. // Scratch contains exponent - 1. // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). __ Load(r0, Operand(51)); __ SubP(scratch, r0, scratch); __ CmpP(scratch, Operand::Zero()); __ ble(&only_low, Label::kNear); // 21 <= exponent <= 51, shift scratch_low and scratch_high // to generate the result. __ ShiftRight(scratch_low, scratch_low, scratch); // Scratch contains: 52 - exponent. // We needs: exponent - 20. // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. __ Load(r0, Operand(32)); __ SubP(scratch, r0, scratch); __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask); // Set the implicit 1 before the mantissa part in scratch_high. STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16); __ Load(r0, Operand(1 << ((HeapNumber::kMantissaBitsInTopWord)-16))); __ ShiftLeftP(r0, r0, Operand(16)); __ OrP(result_reg, result_reg, r0); __ ShiftLeft(r0, result_reg, scratch); __ OrP(result_reg, scratch_low, r0); __ b(&negate, Label::kNear); __ bind(&out_of_range); __ mov(result_reg, Operand::Zero()); __ b(&done, Label::kNear); __ bind(&only_low); // 52 <= exponent <= 83, shift only scratch_low. // On entry, scratch contains: 52 - exponent. __ LoadComplementRR(scratch, scratch); __ ShiftLeft(result_reg, scratch_low, scratch); __ bind(&negate); // If input was positive, scratch_high ASR 31 equals 0 and // scratch_high LSR 31 equals zero. // New result = (result eor 0) + 0 = result. // If the input was negative, we have to negate the result. // Input_high ASR 31 equals 0xFFFFFFFF and scratch_high LSR 31 equals 1. // New result = (result eor 0xFFFFFFFF) + 1 = 0 - result. __ ShiftRightArith(r0, scratch_high, Operand(31)); #if V8_TARGET_ARCH_S390X __ lgfr(r0, r0); __ ShiftRightP(r0, r0, Operand(32)); #endif __ XorP(result_reg, r0); __ ShiftRight(r0, scratch_high, Operand(31)); __ AddP(result_reg, r0); __ bind(&done); __ Pop(scratch_high, scratch_low); __ bind(&fastpath_done); __ pop(scratch); __ Ret(); } void MathPowStub::Generate(MacroAssembler* masm) { const Register exponent = MathPowTaggedDescriptor::exponent(); DCHECK(exponent == r4); const DoubleRegister double_base = d1; const DoubleRegister double_exponent = d2; const DoubleRegister double_result = d3; const DoubleRegister double_scratch = d0; const Register scratch = r1; const Register scratch2 = r9; Label call_runtime, done, int_exponent; // Detect integer exponents stored as double. __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2, double_scratch); __ beq(&int_exponent, Label::kNear); __ push(r14); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction(ExternalReference::power_double_double_function(isolate()), 0, 2); } __ pop(r14); __ MovFromFloatResult(double_result); __ b(&done); // Calculate power with integer exponent. __ bind(&int_exponent); // Get two copies of exponent in the registers scratch and exponent. // Exponent has previously been stored into scratch as untagged integer. __ LoadRR(exponent, scratch); __ ldr(double_scratch, double_base); // Back up base. __ LoadImmP(scratch2, Operand(1)); __ ConvertIntToDouble(double_result, scratch2); // Get absolute value of exponent. Label positive_exponent; __ CmpP(scratch, Operand::Zero()); __ bge(&positive_exponent, Label::kNear); __ LoadComplementRR(scratch, scratch); __ bind(&positive_exponent); Label while_true, no_carry, loop_end; __ bind(&while_true); __ mov(scratch2, Operand(1)); __ AndP(scratch2, scratch); __ beq(&no_carry, Label::kNear); __ mdbr(double_result, double_scratch); __ bind(&no_carry); __ ShiftRightP(scratch, scratch, Operand(1)); __ LoadAndTestP(scratch, scratch); __ beq(&loop_end, Label::kNear); __ mdbr(double_scratch, double_scratch); __ b(&while_true); __ bind(&loop_end); __ CmpP(exponent, Operand::Zero()); __ bge(&done); // get 1/double_result: __ ldr(double_scratch, double_result); __ LoadImmP(scratch2, Operand(1)); __ ConvertIntToDouble(double_result, scratch2); __ ddbr(double_result, double_scratch); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ lzdr(kDoubleRegZero); __ cdbr(double_result, kDoubleRegZero); __ bne(&done, Label::kNear); // double_exponent may not containe the exponent value if the input was a // smi. We set it with exponent value before bailing out. __ ConvertIntToDouble(double_exponent, exponent); // Returning or bailing out. __ push(r14); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction( ExternalReference::power_double_double_function(isolate()), 0, 2); } __ pop(r14); __ MovFromFloatResult(double_result); __ bind(&done); __ Ret(); } Movability CEntryStub::NeedsImmovableCode() { return kImmovable; } void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { CEntryStub::GenerateAheadOfTime(isolate); CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate); StoreFastElementStub::GenerateAheadOfTime(isolate); } void CodeStub::GenerateFPStubs(Isolate* isolate) { SaveFPRegsMode mode = kSaveFPRegs; CEntryStub(isolate, 1, mode).GetCode(); } void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { CEntryStub stub(isolate, 1, kDontSaveFPRegs); stub.GetCode(); CEntryStub save_doubles(isolate, 1, kSaveFPRegs); save_doubles.GetCode(); } void CEntryStub::Generate(MacroAssembler* masm) { // Called from JavaScript; parameters are on stack as if calling JS function. // r2: number of arguments including receiver // r3: pointer to builtin function // fp: frame pointer (restored after C call) // sp: stack pointer (restored as callee's sp after C call) // cp: current context (C callee-saved) // // If argv_in_register(): // r4: pointer to the first argument ProfileEntryHookStub::MaybeCallEntryHook(masm); __ LoadRR(r7, r3); if (argv_in_register()) { // Move argv into the correct register. __ LoadRR(r3, r4); } else { // Compute the argv pointer. __ ShiftLeftP(r3, r2, Operand(kPointerSizeLog2)); __ lay(r3, MemOperand(r3, sp, -kPointerSize)); } // Enter the exit frame that transitions from JavaScript to C++. FrameScope scope(masm, StackFrame::MANUAL); // Need at least one extra slot for return address location. int arg_stack_space = 1; // Pass buffer for return value on stack if necessary bool needs_return_buffer = result_size() == 2 && !ABI_RETURNS_OBJECTPAIR_IN_REGS; if (needs_return_buffer) { arg_stack_space += result_size(); } #if V8_TARGET_ARCH_S390X // 64-bit linux pass Argument object by reference not value arg_stack_space += 2; #endif __ EnterExitFrame(save_doubles(), arg_stack_space, is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); // Store a copy of argc, argv in callee-saved registers for later. __ LoadRR(r6, r2); __ LoadRR(r8, r3); // r2, r6: number of arguments including receiver (C callee-saved) // r3, r8: pointer to the first argument // r7: pointer to builtin function (C callee-saved) // Result returned in registers or stack, depending on result size and ABI. Register isolate_reg = r4; if (needs_return_buffer) { // The return value is 16-byte non-scalar value. // Use frame storage reserved by calling function to pass return // buffer as implicit first argument in R2. Shfit original parameters // by one register each. __ LoadRR(r4, r3); __ LoadRR(r3, r2); __ la(r2, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize)); isolate_reg = r5; } // Call C built-in. __ mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate()))); Register target = r7; // To let the GC traverse the return address of the exit frames, we need to // know where the return address is. The CEntryStub is unmovable, so // we can store the address on the stack to be able to find it again and // we never have to restore it, because it will not change. { Label return_label; __ larl(r14, &return_label); // Generate the return addr of call later. __ StoreP(r14, MemOperand(sp, kStackFrameRASlot * kPointerSize)); // zLinux ABI requires caller's frame to have sufficient space for callee // preserved regsiter save area. // __ lay(sp, MemOperand(sp, -kCalleeRegisterSaveAreaSize)); __ b(target); __ bind(&return_label); // __ la(sp, MemOperand(sp, +kCalleeRegisterSaveAreaSize)); } // If return value is on the stack, pop it to registers. if (needs_return_buffer) { __ LoadP(r3, MemOperand(r2, kPointerSize)); __ LoadP(r2, MemOperand(r2)); } // Check result for exception sentinel. Label exception_returned; __ CompareRoot(r2, Heap::kExceptionRootIndex); __ beq(&exception_returned, Label::kNear); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { Label okay; ExternalReference pending_exception_address( IsolateAddressId::kPendingExceptionAddress, isolate()); __ mov(r1, Operand(pending_exception_address)); __ LoadP(r1, MemOperand(r1)); __ CompareRoot(r1, Heap::kTheHoleValueRootIndex); // Cannot use check here as it attempts to generate call into runtime. __ beq(&okay, Label::kNear); __ stop("Unexpected pending exception"); __ bind(&okay); } // Exit C frame and return. // r2:r3: result // sp: stack pointer // fp: frame pointer Register argc = argv_in_register() // We don't want to pop arguments so set argc to no_reg. ? no_reg // r6: still holds argc (callee-saved). : r6; __ LeaveExitFrame(save_doubles(), argc); __ b(r14); // Handling of exception. __ bind(&exception_returned); ExternalReference pending_handler_context_address( IsolateAddressId::kPendingHandlerContextAddress, isolate()); ExternalReference pending_handler_entrypoint_address( IsolateAddressId::kPendingHandlerEntrypointAddress, isolate()); ExternalReference pending_handler_fp_address( IsolateAddressId::kPendingHandlerFPAddress, isolate()); ExternalReference pending_handler_sp_address( IsolateAddressId::kPendingHandlerSPAddress, isolate()); // Ask the runtime for help to determine the handler. This will set r3 to // contain the current pending exception, don't clobber it. ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler, isolate()); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(3, 0, r2); __ LoadImmP(r2, Operand::Zero()); __ LoadImmP(r3, Operand::Zero()); __ mov(r4, Operand(ExternalReference::isolate_address(isolate()))); __ CallCFunction(find_handler, 3); } // Retrieve the handler context, SP and FP. __ mov(cp, Operand(pending_handler_context_address)); __ LoadP(cp, MemOperand(cp)); __ mov(sp, Operand(pending_handler_sp_address)); __ LoadP(sp, MemOperand(sp)); __ mov(fp, Operand(pending_handler_fp_address)); __ LoadP(fp, MemOperand(fp)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (cp == 0) for non-JS frames. Label skip; __ CmpP(cp, Operand::Zero()); __ beq(&skip, Label::kNear); __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ bind(&skip); // Reset the masking register. if (FLAG_branch_load_poisoning) { __ ResetSpeculationPoisonRegister(); } // Compute the handler entry address and jump to it. __ mov(r3, Operand(pending_handler_entrypoint_address)); __ LoadP(r3, MemOperand(r3)); __ Jump(r3); } void JSEntryStub::Generate(MacroAssembler* masm) { // r2: code entry // r3: function // r4: receiver // r5: argc // r6: argv Label invoke, handler_entry, exit; ProfileEntryHookStub::MaybeCallEntryHook(masm); // saving floating point registers #if V8_TARGET_ARCH_S390X // 64bit ABI requires f8 to f15 be saved __ lay(sp, MemOperand(sp, -8 * kDoubleSize)); __ std(d8, MemOperand(sp)); __ std(d9, MemOperand(sp, 1 * kDoubleSize)); __ std(d10, MemOperand(sp, 2 * kDoubleSize)); __ std(d11, MemOperand(sp, 3 * kDoubleSize)); __ std(d12, MemOperand(sp, 4 * kDoubleSize)); __ std(d13, MemOperand(sp, 5 * kDoubleSize)); __ std(d14, MemOperand(sp, 6 * kDoubleSize)); __ std(d15, MemOperand(sp, 7 * kDoubleSize)); #else // 31bit ABI requires you to store f4 and f6: // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN417 __ lay(sp, MemOperand(sp, -2 * kDoubleSize)); __ std(d4, MemOperand(sp)); __ std(d6, MemOperand(sp, kDoubleSize)); #endif // zLinux ABI // Incoming parameters: // r2: code entry // r3: function // r4: receiver // r5: argc // r6: argv // Requires us to save the callee-preserved registers r6-r13 // General convention is to also save r14 (return addr) and // sp/r15 as well in a single STM/STMG __ lay(sp, MemOperand(sp, -10 * kPointerSize)); __ StoreMultipleP(r6, sp, MemOperand(sp, 0)); // Set up the reserved register for 0.0. // __ LoadDoubleLiteral(kDoubleRegZero, 0.0, r0); // Push a frame with special values setup to mark it as an entry frame. // Bad FP (-1) // SMI Marker // SMI Marker // kCEntryFPAddress // Frame type __ lay(sp, MemOperand(sp, -5 * kPointerSize)); // Push a bad frame pointer to fail if it is used. __ LoadImmP(r10, Operand(-1)); StackFrame::Type marker = type(); __ Load(r9, Operand(StackFrame::TypeToMarker(marker))); __ Load(r8, Operand(StackFrame::TypeToMarker(marker))); // Save copies of the top frame descriptor on the stack. __ mov(r7, Operand(ExternalReference(IsolateAddressId::kCEntryFPAddress, isolate()))); __ LoadP(r7, MemOperand(r7)); __ StoreMultipleP(r7, r10, MemOperand(sp, kPointerSize)); // Set up frame pointer for the frame to be pushed. // Need to add kPointerSize, because sp has one extra // frame already for the frame type being pushed later. __ lay(fp, MemOperand(sp, -EntryFrameConstants::kCallerFPOffset + kPointerSize)); __ InitializeRootRegister(); // If this is the outermost JS call, set js_entry_sp value. Label non_outermost_js; ExternalReference js_entry_sp(IsolateAddressId::kJSEntrySPAddress, isolate()); __ mov(r7, Operand(ExternalReference(js_entry_sp))); __ LoadAndTestP(r8, MemOperand(r7)); __ bne(&non_outermost_js, Label::kNear); __ StoreP(fp, MemOperand(r7)); __ Load(ip, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); Label cont; __ b(&cont, Label::kNear); __ bind(&non_outermost_js); __ Load(ip, Operand(StackFrame::INNER_JSENTRY_FRAME)); __ bind(&cont); __ StoreP(ip, MemOperand(sp)); // frame-type // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ b(&invoke, Label::kNear); __ bind(&handler_entry); handler_offset_ = handler_entry.pos(); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. Coming in here the // fp will be invalid because the PushStackHandler below sets it to 0 to // signal the existence of the JSEntry frame. __ mov(ip, Operand(ExternalReference( IsolateAddressId::kPendingExceptionAddress, isolate()))); __ StoreP(r2, MemOperand(ip)); __ LoadRoot(r2, Heap::kExceptionRootIndex); __ b(&exit, Label::kNear); // Invoke: Link this frame into the handler chain. __ bind(&invoke); // Must preserve r2-r6. __ PushStackHandler(); // If an exception not caught by another handler occurs, this handler // returns control to the code after the b(&invoke) above, which // restores all kCalleeSaved registers (including cp and fp) to their // saved values before returning a failure to C. // Invoke the function by calling through JS entry trampoline builtin. // Notice that we cannot store a reference to the trampoline code directly in // this stub, because runtime stubs are not traversed when doing GC. // Expected registers by Builtins::JSEntryTrampoline // r2: code entry // r3: function // r4: receiver // r5: argc // r6: argv __ Call(EntryTrampoline(), RelocInfo::CODE_TARGET); // Unlink this frame from the handler chain. __ PopStackHandler(); __ bind(&exit); // r2 holds result // Check if the current stack frame is marked as the outermost JS frame. Label non_outermost_js_2; __ pop(r7); __ CmpP(r7, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); __ bne(&non_outermost_js_2, Label::kNear); __ mov(r8, Operand::Zero()); __ mov(r7, Operand(ExternalReference(js_entry_sp))); __ StoreP(r8, MemOperand(r7)); __ bind(&non_outermost_js_2); // Restore the top frame descriptors from the stack. __ pop(r5); __ mov(ip, Operand(ExternalReference(IsolateAddressId::kCEntryFPAddress, isolate()))); __ StoreP(r5, MemOperand(ip)); // Reset the stack to the callee saved registers. __ lay(sp, MemOperand(sp, -EntryFrameConstants::kCallerFPOffset)); // Reload callee-saved preserved regs, return address reg (r14) and sp __ LoadMultipleP(r6, sp, MemOperand(sp, 0)); __ la(sp, MemOperand(sp, 10 * kPointerSize)); // saving floating point registers #if V8_TARGET_ARCH_S390X // 64bit ABI requires f8 to f15 be saved __ ld(d8, MemOperand(sp)); __ ld(d9, MemOperand(sp, 1 * kDoubleSize)); __ ld(d10, MemOperand(sp, 2 * kDoubleSize)); __ ld(d11, MemOperand(sp, 3 * kDoubleSize)); __ ld(d12, MemOperand(sp, 4 * kDoubleSize)); __ ld(d13, MemOperand(sp, 5 * kDoubleSize)); __ ld(d14, MemOperand(sp, 6 * kDoubleSize)); __ ld(d15, MemOperand(sp, 7 * kDoubleSize)); __ la(sp, MemOperand(sp, 8 * kDoubleSize)); #else // 31bit ABI requires you to store f4 and f6: // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN417 __ ld(d4, MemOperand(sp)); __ ld(d6, MemOperand(sp, kDoubleSize)); __ la(sp, MemOperand(sp, 2 * kDoubleSize)); #endif __ b(r14); } // This stub is paired with DirectCEntryStub::GenerateCall void DirectCEntryStub::Generate(MacroAssembler* masm) { __ CleanseP(r14); __ b(ip); // Callee will return to R14 directly } void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) { #if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR) // Native AIX/S390X Linux use a function descriptor. __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize)); __ LoadP(target, MemOperand(target, 0)); // Instruction address #else // ip needs to be set for DirectCEentryStub::Generate, and also // for ABI_CALL_VIA_IP. __ Move(ip, target); #endif __ call(GetCode(), RelocInfo::CODE_TARGET); // Call the stub. } void ProfileEntryHookStub::MaybeCallEntryHookDelayed(TurboAssembler* tasm, Zone* zone) { if (tasm->isolate()->function_entry_hook() != nullptr) { PredictableCodeSizeScope predictable(tasm, #if V8_TARGET_ARCH_S390X 40); #elif V8_HOST_ARCH_S390 36); #else 32); #endif tasm->CleanseP(r14); tasm->Push(r14, ip); tasm->CallStubDelayed(new (zone) ProfileEntryHookStub(nullptr)); tasm->Pop(r14, ip); } } void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { if (masm->isolate()->function_entry_hook() != nullptr) { PredictableCodeSizeScope predictable(masm, #if V8_TARGET_ARCH_S390X 40); #elif V8_HOST_ARCH_S390 36); #else 32); #endif ProfileEntryHookStub stub(masm->isolate()); __ CleanseP(r14); __ Push(r14, ip); __ CallStub(&stub); // BRASL __ Pop(r14, ip); } } void ProfileEntryHookStub::Generate(MacroAssembler* masm) { // The entry hook is a "push lr" instruction (LAY+ST/STG), followed by a call. #if V8_TARGET_ARCH_S390X const int32_t kReturnAddressDistanceFromFunctionStart = Assembler::kCallTargetAddressOffset + 18; // LAY + STG * 2 #elif V8_HOST_ARCH_S390 const int32_t kReturnAddressDistanceFromFunctionStart = Assembler::kCallTargetAddressOffset + 18; // NILH + LAY + ST * 2 #else const int32_t kReturnAddressDistanceFromFunctionStart = Assembler::kCallTargetAddressOffset + 14; // LAY + ST * 2 #endif // This should contain all kJSCallerSaved registers. const RegList kSavedRegs = kJSCallerSaved | // Caller saved registers. r7.bit(); // Saved stack pointer. // We also save r14+ip, so count here is one higher than the mask indicates. const int32_t kNumSavedRegs = kNumJSCallerSaved + 3; // Save all caller-save registers as this may be called from anywhere. __ CleanseP(r14); __ LoadRR(ip, r14); __ MultiPush(kSavedRegs | ip.bit()); // Compute the function's address for the first argument. __ SubP(r2, ip, Operand(kReturnAddressDistanceFromFunctionStart)); // The caller's return address is two slots above the saved temporaries. // Grab that for the second argument to the hook. __ lay(r3, MemOperand(sp, kNumSavedRegs * kPointerSize)); // Align the stack if necessary. int frame_alignment = masm->ActivationFrameAlignment(); if (frame_alignment > kPointerSize) { __ LoadRR(r7, sp); DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment))); } #if !defined(USE_SIMULATOR) uintptr_t entry_hook = reinterpret_cast(isolate()->function_entry_hook()); __ mov(ip, Operand(entry_hook)); #if ABI_USES_FUNCTION_DESCRIPTORS // Function descriptor __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize)); __ LoadP(ip, MemOperand(ip, 0)); // ip already set. #endif #endif // zLinux ABI requires caller's frame to have sufficient space for callee // preserved regsiter save area. __ LoadImmP(r0, Operand::Zero()); __ lay(sp, MemOperand(sp, -kCalleeRegisterSaveAreaSize - kNumRequiredStackFrameSlots * kPointerSize)); __ StoreP(r0, MemOperand(sp)); #if defined(USE_SIMULATOR) // Under the simulator we need to indirect the entry hook through a // trampoline function at a known address. // It additionally takes an isolate as a third parameter __ mov(r4, Operand(ExternalReference::isolate_address(isolate()))); ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); __ mov(ip, Operand(ExternalReference( &dispatcher, ExternalReference::BUILTIN_CALL, isolate()))); #endif __ Call(ip); // zLinux ABI requires caller's frame to have sufficient space for callee // preserved regsiter save area. __ la(sp, MemOperand(sp, kCalleeRegisterSaveAreaSize + kNumRequiredStackFrameSlots * kPointerSize)); // Restore the stack pointer if needed. if (frame_alignment > kPointerSize) { __ LoadRR(sp, r7); } // Also pop lr to get Ret(0). __ MultiPop(kSavedRegs | ip.bit()); __ LoadRR(r14, ip); __ Ret(); } template static void CreateArrayDispatch(MacroAssembler* masm, AllocationSiteOverrideMode mode) { if (mode == DISABLE_ALLOCATION_SITES) { T stub(masm->isolate(), GetInitialFastElementsKind(), mode); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { int last_index = GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); __ CmpP(r5, Operand(kind)); T stub(masm->isolate(), kind); __ TailCallStub(&stub, eq); } // If we reached this point there is a problem. __ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } static void CreateArrayDispatchOneArgument(MacroAssembler* masm, AllocationSiteOverrideMode mode) { // r4 - allocation site (if mode != DISABLE_ALLOCATION_SITES) // r5 - kind (if mode != DISABLE_ALLOCATION_SITES) // r2 - number of arguments // r3 - constructor? // sp[0] - last argument STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0); STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(PACKED_ELEMENTS == 2); STATIC_ASSERT(HOLEY_ELEMENTS == 3); STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS == 4); STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == 5); if (mode == DISABLE_ALLOCATION_SITES) { ElementsKind initial = GetInitialFastElementsKind(); ElementsKind holey_initial = GetHoleyElementsKind(initial); ArraySingleArgumentConstructorStub stub_holey( masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub_holey); } else if (mode == DONT_OVERRIDE) { Label normal_sequence; // is the low bit set? If so, we are holey and that is good. __ AndP(r0, r5, Operand(1)); __ bne(&normal_sequence); // We are going to create a holey array, but our kind is non-holey. // Fix kind and retry (only if we have an allocation site in the slot). __ AddP(r5, r5, Operand(1)); if (FLAG_debug_code) { __ LoadP(r7, FieldMemOperand(r4, 0)); __ CompareRoot(r7, Heap::kAllocationSiteMapRootIndex); __ Assert(eq, AbortReason::kExpectedAllocationSite); } // Save the resulting elements kind in type info. We can't just store r5 // in the AllocationSite::transition_info field because elements kind is // restricted to a portion of the field...upper bits need to be left alone. STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ LoadP(r6, FieldMemOperand( r4, AllocationSite::kTransitionInfoOrBoilerplateOffset)); __ AddSmiLiteral(r6, r6, Smi::FromInt(kFastElementsKindPackedToHoley), r0); __ StoreP(r6, FieldMemOperand( r4, AllocationSite::kTransitionInfoOrBoilerplateOffset)); __ bind(&normal_sequence); int last_index = GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); __ CmpP(r5, Operand(kind)); ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); __ TailCallStub(&stub, eq); } // If we reached this point there is a problem. __ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } template static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { int to_index = GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= to_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); T stub(isolate, kind); stub.GetCode(); if (AllocationSite::ShouldTrack(kind)) { T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); stub1.GetCode(); } } } void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) { ArrayConstructorStubAheadOfTimeHelper( isolate); ArrayNArgumentsConstructorStub stub(isolate); stub.GetCode(); ElementsKind kinds[2] = {PACKED_ELEMENTS, HOLEY_ELEMENTS}; for (int i = 0; i < 2; i++) { // For internal arrays we only need a few things InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); stubh1.GetCode(); InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); stubh2.GetCode(); } } void ArrayConstructorStub::GenerateDispatchToArrayStub( MacroAssembler* masm, AllocationSiteOverrideMode mode) { Label not_zero_case, not_one_case; __ CmpP(r2, Operand::Zero()); __ bne(¬_zero_case); CreateArrayDispatch(masm, mode); __ bind(¬_zero_case); __ CmpP(r2, Operand(1)); __ bgt(¬_one_case); CreateArrayDispatchOneArgument(masm, mode); __ bind(¬_one_case); ArrayNArgumentsConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void ArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : argc (only if argument_count() == ANY) // -- r3 : constructor // -- r4 : AllocationSite or undefined // -- r5 : new target // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ LoadP(r6, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a nullptr and a Smi. __ TestIfSmi(r6); __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, cr0); __ CompareObjectType(r6, r6, r7, MAP_TYPE); __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction); // We should either have undefined in r4 or a valid AllocationSite __ AssertUndefinedOrAllocationSite(r4, r6); } // Enter the context of the Array function. __ LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset)); Label subclassing; __ CmpP(r5, r3); __ bne(&subclassing, Label::kNear); Label no_info; // Get the elements kind and case on that. __ CompareRoot(r4, Heap::kUndefinedValueRootIndex); __ beq(&no_info); __ LoadP(r5, FieldMemOperand( r4, AllocationSite::kTransitionInfoOrBoilerplateOffset)); __ SmiUntag(r5); STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ AndP(r5, Operand(AllocationSite::ElementsKindBits::kMask)); GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); __ bind(&no_info); GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); __ bind(&subclassing); __ ShiftLeftP(r1, r2, Operand(kPointerSizeLog2)); __ StoreP(r3, MemOperand(sp, r1)); __ AddP(r2, r2, Operand(3)); __ Push(r5, r4); __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate())); } void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm, ElementsKind kind) { __ CmpLogicalP(r2, Operand(1)); InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); __ TailCallStub(&stub0, lt); ArrayNArgumentsConstructorStub stubN(isolate()); __ TailCallStub(&stubN, gt); if (IsFastPackedElementsKind(kind)) { // We might need to create a holey array // look at the first argument __ LoadP(r5, MemOperand(sp, 0)); __ CmpP(r5, Operand::Zero()); InternalArraySingleArgumentConstructorStub stub1_holey( isolate(), GetHoleyElementsKind(kind)); __ TailCallStub(&stub1_holey, ne); } InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); __ TailCallStub(&stub1); } void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : argc // -- r3 : constructor // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a nullptr and a Smi. __ TestIfSmi(r5); __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, cr0); __ CompareObjectType(r5, r5, r6, MAP_TYPE); __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction); } // Figure out the right elements kind __ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into |result|. __ LoadlB(r5, FieldMemOperand(r5, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ DecodeField(r5); if (FLAG_debug_code) { Label done; __ CmpP(r5, Operand(PACKED_ELEMENTS)); __ beq(&done); __ CmpP(r5, Operand(HOLEY_ELEMENTS)); __ Assert( eq, AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray); __ bind(&done); } Label fast_elements_case; __ CmpP(r5, Operand(PACKED_ELEMENTS)); __ beq(&fast_elements_case); GenerateCase(masm, HOLEY_ELEMENTS); __ bind(&fast_elements_case); GenerateCase(masm, PACKED_ELEMENTS); } static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { return ref0.address() - ref1.address(); } // Calls an API function. Allocates HandleScope, extracts returned value // from handle and propagates exceptions. Restores context. stack_space // - space to be unwound on exit (includes the call JS arguments space and // the additional space allocated for the fast call). static void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address, ExternalReference thunk_ref, int stack_space, MemOperand* stack_space_operand, MemOperand return_value_operand) { Isolate* isolate = masm->isolate(); ExternalReference next_address = ExternalReference::handle_scope_next_address(isolate); const int kNextOffset = 0; const int kLimitOffset = AddressOffset( ExternalReference::handle_scope_limit_address(isolate), next_address); const int kLevelOffset = AddressOffset( ExternalReference::handle_scope_level_address(isolate), next_address); // Additional parameter is the address of the actual callback. DCHECK(function_address == r3 || function_address == r4); Register scratch = r5; __ mov(scratch, Operand(ExternalReference::is_profiling_address(isolate))); __ LoadlB(scratch, MemOperand(scratch, 0)); __ CmpP(scratch, Operand::Zero()); Label profiler_disabled; Label end_profiler_check; __ beq(&profiler_disabled, Label::kNear); __ mov(scratch, Operand(thunk_ref)); __ b(&end_profiler_check, Label::kNear); __ bind(&profiler_disabled); __ LoadRR(scratch, function_address); __ bind(&end_profiler_check); // Allocate HandleScope in callee-save registers. // r9 - next_address // r6 - next_address->kNextOffset // r7 - next_address->kLimitOffset // r8 - next_address->kLevelOffset __ mov(r9, Operand(next_address)); __ LoadP(r6, MemOperand(r9, kNextOffset)); __ LoadP(r7, MemOperand(r9, kLimitOffset)); __ LoadlW(r8, MemOperand(r9, kLevelOffset)); __ AddP(r8, Operand(1)); __ StoreW(r8, MemOperand(r9, kLevelOffset)); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ PrepareCallCFunction(1, r2); __ mov(r2, Operand(ExternalReference::isolate_address(isolate))); __ CallCFunction(ExternalReference::log_enter_external_function(isolate), 1); __ PopSafepointRegisters(); } // Native call returns to the DirectCEntry stub which redirects to the // return address pushed on stack (could have moved after GC). // DirectCEntry stub itself is generated early and never moves. DirectCEntryStub stub(isolate); stub.GenerateCall(masm, scratch); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ PrepareCallCFunction(1, r2); __ mov(r2, Operand(ExternalReference::isolate_address(isolate))); __ CallCFunction(ExternalReference::log_leave_external_function(isolate), 1); __ PopSafepointRegisters(); } Label promote_scheduled_exception; Label delete_allocated_handles; Label leave_exit_frame; Label return_value_loaded; // load value from ReturnValue __ LoadP(r2, return_value_operand); __ bind(&return_value_loaded); // No more valid handles (the result handle was the last one). Restore // previous handle scope. __ StoreP(r6, MemOperand(r9, kNextOffset)); if (__ emit_debug_code()) { __ LoadlW(r3, MemOperand(r9, kLevelOffset)); __ CmpP(r3, r8); __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall); } __ SubP(r8, Operand(1)); __ StoreW(r8, MemOperand(r9, kLevelOffset)); __ CmpP(r7, MemOperand(r9, kLimitOffset)); __ bne(&delete_allocated_handles, Label::kNear); // Leave the API exit frame. __ bind(&leave_exit_frame); // LeaveExitFrame expects unwind space to be in a register. if (stack_space_operand != nullptr) { __ l(r6, *stack_space_operand); } else { __ mov(r6, Operand(stack_space)); } __ LeaveExitFrame(false, r6, stack_space_operand != nullptr); // Check if the function scheduled an exception. __ mov(r7, Operand(ExternalReference::scheduled_exception_address(isolate))); __ LoadP(r7, MemOperand(r7)); __ CompareRoot(r7, Heap::kTheHoleValueRootIndex); __ bne(&promote_scheduled_exception, Label::kNear); __ b(r14); // Re-throw by promoting a scheduled exception. __ bind(&promote_scheduled_exception); __ TailCallRuntime(Runtime::kPromoteScheduledException); // HandleScope limit has changed. Delete allocated extensions. __ bind(&delete_allocated_handles); __ StoreP(r7, MemOperand(r9, kLimitOffset)); __ LoadRR(r6, r2); __ PrepareCallCFunction(1, r7); __ mov(r2, Operand(ExternalReference::isolate_address(isolate))); __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate), 1); __ LoadRR(r2, r6); __ b(&leave_exit_frame, Label::kNear); } void CallApiCallbackStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r6 : call_data // -- r4 : holder // -- r3 : api_function_address // -- cp : context // -- // -- sp[0] : last argument // -- ... // -- sp[(argc - 1) * 4] : first argument // -- sp[argc * 4] : receiver // ----------------------------------- Register call_data = r6; Register holder = r4; Register api_function_address = r3; typedef FunctionCallbackArguments FCA; STATIC_ASSERT(FCA::kArgsLength == 6); STATIC_ASSERT(FCA::kNewTargetIndex == 5); STATIC_ASSERT(FCA::kDataIndex == 4); STATIC_ASSERT(FCA::kReturnValueOffset == 3); STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(FCA::kIsolateIndex == 1); STATIC_ASSERT(FCA::kHolderIndex == 0); // new target __ PushRoot(Heap::kUndefinedValueRootIndex); // call data __ push(call_data); Register scratch = call_data; __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); // return value __ push(scratch); // return value default __ push(scratch); // isolate __ mov(scratch, Operand(ExternalReference::isolate_address(masm->isolate()))); __ push(scratch); // holder __ push(holder); // Prepare arguments. __ LoadRR(scratch, sp); // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. // S390 LINUX ABI: // // Create 4 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1-3] FunctionCallbackInfo const int kApiStackSpace = 4; const int kFunctionCallbackInfoOffset = (kStackFrameExtraParamSlot + 1) * kPointerSize; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); DCHECK(api_function_address != r2 && scratch != r2); // r2 = FunctionCallbackInfo& // Arguments is after the return address. __ AddP(r2, sp, Operand(kFunctionCallbackInfoOffset)); // FunctionCallbackInfo::implicit_args_ __ StoreP(scratch, MemOperand(r2, 0 * kPointerSize)); // FunctionCallbackInfo::values_ __ AddP(ip, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize)); __ StoreP(ip, MemOperand(r2, 1 * kPointerSize)); // FunctionCallbackInfo::length_ = argc __ LoadImmP(ip, Operand(argc())); __ StoreW(ip, MemOperand(r2, 2 * kPointerSize)); ExternalReference thunk_ref = ExternalReference::invoke_function_callback(masm->isolate()); AllowExternalCallThatCantCauseGC scope(masm); // Stores return the first js argument int return_value_offset = 2 + FCA::kReturnValueOffset; MemOperand return_value_operand(fp, return_value_offset * kPointerSize); const int stack_space = argc() + FCA::kArgsLength + 1; MemOperand* stack_space_operand = nullptr; CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space, stack_space_operand, return_value_operand); } void CallApiGetterStub::Generate(MacroAssembler* masm) { int arg0Slot = 0; int accessorInfoSlot = 0; int apiStackSpace = 0; // Build v8::PropertyCallbackInfo::args_ array on the stack and push property // name below the exit frame to make GC aware of them. STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); Register receiver = ApiGetterDescriptor::ReceiverRegister(); Register holder = ApiGetterDescriptor::HolderRegister(); Register callback = ApiGetterDescriptor::CallbackRegister(); Register scratch = r6; DCHECK(!AreAliased(receiver, holder, callback, scratch)); Register api_function_address = r4; __ push(receiver); // Push data from AccessorInfo. __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset)); __ push(scratch); __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); __ Push(scratch, scratch); __ mov(scratch, Operand(ExternalReference::isolate_address(isolate()))); __ Push(scratch, holder); __ Push(Smi::kZero); // should_throw_on_error -> false __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset)); __ push(scratch); // v8::PropertyCallbackInfo::args_ array and name handle. const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; // Load address of v8::PropertyAccessorInfo::args_ array and name handle. __ LoadRR(r2, sp); // r2 = Handle __ AddP(r3, r2, Operand(1 * kPointerSize)); // r3 = v8::PCI::args_ // If ABI passes Handles (pointer-sized struct) in a register: // // Create 2 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1] AccessorInfo& // // Otherwise: // // Create 3 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1] copy of Handle (first arg) // [2] AccessorInfo& if (ABI_PASSES_HANDLES_IN_REGS) { accessorInfoSlot = kStackFrameExtraParamSlot + 1; apiStackSpace = 2; } else { arg0Slot = kStackFrameExtraParamSlot + 1; accessorInfoSlot = arg0Slot + 1; apiStackSpace = 3; } FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, apiStackSpace); if (!ABI_PASSES_HANDLES_IN_REGS) { // pass 1st arg by reference __ StoreP(r2, MemOperand(sp, arg0Slot * kPointerSize)); __ AddP(r2, sp, Operand(arg0Slot * kPointerSize)); } // Create v8::PropertyCallbackInfo object on the stack and initialize // it's args_ field. __ StoreP(r3, MemOperand(sp, accessorInfoSlot * kPointerSize)); __ AddP(r3, sp, Operand(accessorInfoSlot * kPointerSize)); // r3 = v8::PropertyCallbackInfo& ExternalReference thunk_ref = ExternalReference::invoke_accessor_getter_callback(isolate()); __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset)); __ LoadP(api_function_address, FieldMemOperand(scratch, Foreign::kForeignAddressOffset)); // +3 is to skip prolog, return address and name handle. MemOperand return_value_operand( fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, kStackUnwindSpace, nullptr, return_value_operand); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_S390