// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/snapshot/code-serializer.h" #include "src/code-stubs.h" #include "src/log.h" #include "src/macro-assembler.h" #include "src/profiler/cpu-profiler.h" #include "src/snapshot/deserializer.h" #include "src/version.h" namespace v8 { namespace internal { ScriptData* CodeSerializer::Serialize(Isolate* isolate, Handle info, Handle source) { base::ElapsedTimer timer; if (FLAG_profile_deserialization) timer.Start(); if (FLAG_trace_serializer) { PrintF("[Serializing from"); Object* script = info->script(); if (script->IsScript()) Script::cast(script)->name()->ShortPrint(); PrintF("]\n"); } // Serialize code object. SnapshotByteSink sink(info->code()->CodeSize() * 2); CodeSerializer cs(isolate, &sink, *source); DisallowHeapAllocation no_gc; Object** location = Handle::cast(info).location(); cs.VisitPointer(location); cs.SerializeDeferredObjects(); cs.Pad(); SerializedCodeData data(sink.data(), cs); ScriptData* script_data = data.GetScriptData(); if (FLAG_profile_deserialization) { double ms = timer.Elapsed().InMillisecondsF(); int length = script_data->length(); PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms); } return script_data; } void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, WhereToPoint where_to_point, int skip) { int root_index = root_index_map_.Lookup(obj); if (root_index != RootIndexMap::kInvalidRootIndex) { PutRoot(root_index, obj, how_to_code, where_to_point, skip); return; } if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; FlushSkip(skip); if (obj->IsCode()) { Code* code_object = Code::cast(obj); switch (code_object->kind()) { case Code::OPTIMIZED_FUNCTION: // No optimized code compiled yet. case Code::HANDLER: // No handlers patched in yet. case Code::REGEXP: // No regexp literals initialized yet. case Code::NUMBER_OF_KINDS: // Pseudo enum value. case Code::BYTECODE_HANDLER: // No direct references to handlers. CHECK(false); case Code::BUILTIN: SerializeBuiltin(code_object->builtin_index(), how_to_code, where_to_point); return; case Code::STUB: SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point); return; #define IC_KIND_CASE(KIND) case Code::KIND: IC_KIND_LIST(IC_KIND_CASE) #undef IC_KIND_CASE SerializeIC(code_object, how_to_code, where_to_point); return; case Code::FUNCTION: DCHECK(code_object->has_reloc_info_for_serialization()); SerializeGeneric(code_object, how_to_code, where_to_point); return; case Code::WASM_FUNCTION: case Code::WASM_TO_JS_FUNCTION: case Code::JS_TO_WASM_FUNCTION: UNREACHABLE(); } UNREACHABLE(); } // Past this point we should not see any (context-specific) maps anymore. CHECK(!obj->IsMap()); // There should be no references to the global object embedded. CHECK(!obj->IsJSGlobalProxy() && !obj->IsJSGlobalObject()); // There should be no hash table embedded. They would require rehashing. CHECK(!obj->IsHashTable()); // We expect no instantiated function objects or contexts. CHECK(!obj->IsJSFunction() && !obj->IsContext()); SerializeGeneric(obj, how_to_code, where_to_point); } void CodeSerializer::SerializeGeneric(HeapObject* heap_object, HowToCode how_to_code, WhereToPoint where_to_point) { // Object has not yet been serialized. Serialize it here. ObjectSerializer serializer(this, heap_object, sink_, how_to_code, where_to_point); serializer.Serialize(); } void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code, WhereToPoint where_to_point) { DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) || (how_to_code == kPlain && where_to_point == kInnerPointer) || (how_to_code == kFromCode && where_to_point == kInnerPointer)); DCHECK_LT(builtin_index, Builtins::builtin_count); DCHECK_LE(0, builtin_index); if (FLAG_trace_serializer) { PrintF(" Encoding builtin: %s\n", isolate()->builtins()->name(builtin_index)); } sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin"); sink_->PutInt(builtin_index, "builtin_index"); } void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code, WhereToPoint where_to_point) { DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) || (how_to_code == kPlain && where_to_point == kInnerPointer) || (how_to_code == kFromCode && where_to_point == kInnerPointer)); DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache); DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null()); int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex; if (FLAG_trace_serializer) { PrintF(" Encoding code stub %s as %d\n", CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key)), index); } sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub"); sink_->PutInt(index, "CodeStub key"); } void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code, WhereToPoint where_to_point) { // The IC may be implemented as a stub. uint32_t stub_key = ic->stub_key(); if (stub_key != CodeStub::NoCacheKey()) { if (FLAG_trace_serializer) { PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind())); } SerializeCodeStub(stub_key, how_to_code, where_to_point); return; } // The IC may be implemented as builtin. Only real builtins have an // actual builtin_index value attached (otherwise it's just garbage). // Compare to make sure we are really dealing with a builtin. int builtin_index = ic->builtin_index(); if (builtin_index < Builtins::builtin_count) { Builtins::Name name = static_cast(builtin_index); Code* builtin = isolate()->builtins()->builtin(name); if (builtin == ic) { if (FLAG_trace_serializer) { PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind())); } DCHECK(ic->kind() == Code::KEYED_LOAD_IC || ic->kind() == Code::KEYED_STORE_IC); SerializeBuiltin(builtin_index, how_to_code, where_to_point); return; } } // The IC may also just be a piece of code kept in the non_monomorphic_cache. // In that case, just serialize as a normal code object. if (FLAG_trace_serializer) { PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind())); } DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC); SerializeGeneric(ic, how_to_code, where_to_point); } int CodeSerializer::AddCodeStubKey(uint32_t stub_key) { // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2). int index = 0; while (index < stub_keys_.length()) { if (stub_keys_[index] == stub_key) return index; index++; } stub_keys_.Add(stub_key); return index; } MaybeHandle CodeSerializer::Deserialize( Isolate* isolate, ScriptData* cached_data, Handle source) { base::ElapsedTimer timer; if (FLAG_profile_deserialization) timer.Start(); HandleScope scope(isolate); base::SmartPointer scd( SerializedCodeData::FromCachedData(isolate, cached_data, *source)); if (scd.is_empty()) { if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n"); DCHECK(cached_data->rejected()); return MaybeHandle(); } // Prepare and register list of attached objects. Vector code_stub_keys = scd->CodeStubKeys(); Vector > attached_objects = Vector >::New( code_stub_keys.length() + kCodeStubsBaseIndex); attached_objects[kSourceObjectIndex] = source; for (int i = 0; i < code_stub_keys.length(); i++) { attached_objects[i + kCodeStubsBaseIndex] = CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked(); } Deserializer deserializer(scd.get()); deserializer.SetAttachedObjects(attached_objects); // Deserialize. Handle result; if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) { // Deserializing may fail if the reservations cannot be fulfilled. if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n"); return MaybeHandle(); } if (FLAG_profile_deserialization) { double ms = timer.Elapsed().InMillisecondsF(); int length = cached_data->length(); PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms); } result->set_deserialized(true); if (isolate->logger()->is_logging_code_events() || isolate->cpu_profiler()->is_profiling()) { String* name = isolate->heap()->empty_string(); if (result->script()->IsScript()) { Script* script = Script::cast(result->script()); if (script->name()->IsString()) name = String::cast(script->name()); } isolate->logger()->CodeCreateEvent( Logger::SCRIPT_TAG, result->abstract_code(), *result, NULL, name); } return scope.CloseAndEscape(result); } class Checksum { public: explicit Checksum(Vector payload) { #ifdef MEMORY_SANITIZER // Computing the checksum includes padding bytes for objects like strings. // Mark every object as initialized in the code serializer. MSAN_MEMORY_IS_INITIALIZED(payload.start(), payload.length()); #endif // MEMORY_SANITIZER // Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit. uintptr_t a = 1; uintptr_t b = 0; const uintptr_t* cur = reinterpret_cast(payload.start()); DCHECK(IsAligned(payload.length(), kIntptrSize)); const uintptr_t* end = cur + payload.length() / kIntptrSize; while (cur < end) { // Unsigned overflow expected and intended. a += *cur++; b += a; } #if V8_HOST_ARCH_64_BIT a ^= a >> 32; b ^= b >> 32; #endif // V8_HOST_ARCH_64_BIT a_ = static_cast(a); b_ = static_cast(b); } bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; } uint32_t a() const { return a_; } uint32_t b() const { return b_; } private: uint32_t a_; uint32_t b_; DISALLOW_COPY_AND_ASSIGN(Checksum); }; SerializedCodeData::SerializedCodeData(const List& payload, const CodeSerializer& cs) { DisallowHeapAllocation no_gc; const List* stub_keys = cs.stub_keys(); List reservations; cs.EncodeReservations(&reservations); // Calculate sizes. int reservation_size = reservations.length() * kInt32Size; int num_stub_keys = stub_keys->length(); int stub_keys_size = stub_keys->length() * kInt32Size; int payload_offset = kHeaderSize + reservation_size + stub_keys_size; int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset); int size = padded_payload_offset + payload.length(); // Allocate backing store and create result data. AllocateData(size); // Set header values. SetMagicNumber(cs.isolate()); SetHeaderValue(kVersionHashOffset, Version::Hash()); SetHeaderValue(kSourceHashOffset, SourceHash(cs.source())); SetHeaderValue(kCpuFeaturesOffset, static_cast(CpuFeatures::SupportedFeatures())); SetHeaderValue(kFlagHashOffset, FlagList::Hash()); SetHeaderValue(kNumReservationsOffset, reservations.length()); SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys); SetHeaderValue(kPayloadLengthOffset, payload.length()); Checksum checksum(payload.ToConstVector()); SetHeaderValue(kChecksum1Offset, checksum.a()); SetHeaderValue(kChecksum2Offset, checksum.b()); // Copy reservation chunk sizes. CopyBytes(data_ + kHeaderSize, reinterpret_cast(reservations.begin()), reservation_size); // Copy code stub keys. CopyBytes(data_ + kHeaderSize + reservation_size, reinterpret_cast(stub_keys->begin()), stub_keys_size); memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset); // Copy serialized data. CopyBytes(data_ + padded_payload_offset, payload.begin(), static_cast(payload.length())); } SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck( Isolate* isolate, String* source) const { uint32_t magic_number = GetMagicNumber(); if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH; uint32_t version_hash = GetHeaderValue(kVersionHashOffset); uint32_t source_hash = GetHeaderValue(kSourceHashOffset); uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset); uint32_t flags_hash = GetHeaderValue(kFlagHashOffset); uint32_t c1 = GetHeaderValue(kChecksum1Offset); uint32_t c2 = GetHeaderValue(kChecksum2Offset); if (version_hash != Version::Hash()) return VERSION_MISMATCH; if (source_hash != SourceHash(source)) return SOURCE_MISMATCH; if (cpu_features != static_cast(CpuFeatures::SupportedFeatures())) { return CPU_FEATURES_MISMATCH; } if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH; if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH; return CHECK_SUCCESS; } uint32_t SerializedCodeData::SourceHash(String* source) const { return source->length(); } // Return ScriptData object and relinquish ownership over it to the caller. ScriptData* SerializedCodeData::GetScriptData() { DCHECK(owns_data_); ScriptData* result = new ScriptData(data_, size_); result->AcquireDataOwnership(); owns_data_ = false; data_ = NULL; return result; } Vector SerializedCodeData::Reservations() const { return Vector( reinterpret_cast(data_ + kHeaderSize), GetHeaderValue(kNumReservationsOffset)); } Vector SerializedCodeData::Payload() const { int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size; int payload_offset = kHeaderSize + reservations_size + code_stubs_size; int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset); const byte* payload = data_ + padded_payload_offset; DCHECK(IsAligned(reinterpret_cast(payload), kPointerAlignment)); int length = GetHeaderValue(kPayloadLengthOffset); DCHECK_EQ(data_ + size_, payload + length); return Vector(payload, length); } Vector SerializedCodeData::CodeStubKeys() const { int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; const byte* start = data_ + kHeaderSize + reservations_size; return Vector(reinterpret_cast(start), GetHeaderValue(kNumCodeStubKeysOffset)); } SerializedCodeData::SerializedCodeData(ScriptData* data) : SerializedData(const_cast(data->data()), data->length()) {} SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate, ScriptData* cached_data, String* source) { DisallowHeapAllocation no_gc; SerializedCodeData* scd = new SerializedCodeData(cached_data); SanityCheckResult r = scd->SanityCheck(isolate, source); if (r == CHECK_SUCCESS) return scd; cached_data->Reject(); source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r); delete scd; return NULL; } } // namespace internal } // namespace v8