// Copyright 2011 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #ifdef _WIN32 #include "getopt.h" #include #include #else #include #include #endif #include "browse.h" #include "build.h" #include "build_log.h" #include "deps_log.h" #include "clean.h" #include "debug_flags.h" #include "disk_interface.h" #include "graph.h" #include "graphviz.h" #include "manifest_parser.h" #include "metrics.h" #include "state.h" #include "util.h" #include "version.h" #ifdef _MSC_VER // Defined in msvc_helper_main-win32.cc. int MSVCHelperMain(int argc, char** argv); // Defined in minidump-win32.cc. void CreateWin32MiniDump(_EXCEPTION_POINTERS* pep); #endif namespace { struct Tool; /// Command-line options. struct Options { /// Build file to load. const char* input_file; /// Directory to change into before running. const char* working_dir; /// Tool to run rather than building. const Tool* tool; }; /// The Ninja main() loads up a series of data structures; various tools need /// to poke into these, so store them as fields on an object. struct NinjaMain : public BuildLogUser { NinjaMain(const char* ninja_command, const BuildConfig& config) : ninja_command_(ninja_command), config_(config) {} /// Command line used to run Ninja. const char* ninja_command_; /// Build configuration set from flags (e.g. parallelism). const BuildConfig& config_; /// Loaded state (rules, nodes). State state_; /// Functions for accesssing the disk. RealDiskInterface disk_interface_; /// The build directory, used for storing the build log etc. string build_dir_; BuildLog build_log_; DepsLog deps_log_; /// The type of functions that are the entry points to tools (subcommands). typedef int (NinjaMain::*ToolFunc)(int, char**); /// Get the Node for a given command-line path, handling features like /// spell correction. Node* CollectTarget(const char* cpath, string* err); /// CollectTarget for all command-line arguments, filling in \a targets. bool CollectTargetsFromArgs(int argc, char* argv[], vector* targets, string* err); // The various subcommands, run via "-t XXX". int ToolGraph(int argc, char* argv[]); int ToolQuery(int argc, char* argv[]); int ToolDeps(int argc, char* argv[]); int ToolBrowse(int argc, char* argv[]); int ToolMSVC(int argc, char* argv[]); int ToolTargets(int argc, char* argv[]); int ToolCommands(int argc, char* argv[]); int ToolClean(int argc, char* argv[]); int ToolCompilationDatabase(int argc, char* argv[]); int ToolRecompact(int argc, char* argv[]); int ToolUrtle(int argc, char** argv); /// Open the build log. /// @return false on error. bool OpenBuildLog(bool recompact_only = false); /// Open the deps log: load it, then open for writing. /// @return false on error. bool OpenDepsLog(bool recompact_only = false); /// Ensure the build directory exists, creating it if necessary. /// @return false on error. bool EnsureBuildDirExists(); /// Rebuild the manifest, if necessary. /// Fills in \a err on error. /// @return true if the manifest was rebuilt. bool RebuildManifest(const char* input_file, string* err); /// Build the targets listed on the command line. /// @return an exit code. int RunBuild(int argc, char** argv); /// Dump the output requested by '-d stats'. void DumpMetrics(); virtual bool IsPathDead(StringPiece s) const { Node* n = state_.LookupNode(s); // Just checking n isn't enough: If an old output is both in the build log // and in the deps log, it will have a Node object in state_. (It will also // have an in edge if one of its inputs is another output that's in the deps // log, but having a deps edge product an output thats input to another deps // edge is rare, and the first recompaction will delete all old outputs from // the deps log, and then a second recompaction will clear the build log, // which seems good enough for this corner case.) return !n || !n->in_edge(); } }; /// Subtools, accessible via "-t foo". struct Tool { /// Short name of the tool. const char* name; /// Description (shown in "-t list"). const char* desc; /// When to run the tool. enum { /// Run after parsing the command-line flags (as early as possible). RUN_AFTER_FLAGS, /// Run after loading build.ninja. RUN_AFTER_LOAD, /// Run after loading the build/deps logs. RUN_AFTER_LOGS, } when; /// Implementation of the tool. NinjaMain::ToolFunc func; }; /// Print usage information. void Usage(const BuildConfig& config) { fprintf(stderr, "usage: ninja [options] [targets...]\n" "\n" "if targets are unspecified, builds the 'default' target (see manual).\n" "\n" "options:\n" " --version print ninja version (\"%s\")\n" "\n" " -C DIR change to DIR before doing anything else\n" " -f FILE specify input build file [default=build.ninja]\n" "\n" " -j N run N jobs in parallel [default=%d, derived from CPUs available]\n" " -l N do not start new jobs if the load average is greater than N\n" #ifdef _WIN32 " (not yet implemented on Windows)\n" #endif " -k N keep going until N jobs fail [default=1]\n" " -n dry run (don't run commands but act like they succeeded)\n" " -v show all command lines while building\n" "\n" " -d MODE enable debugging (use -d list to list modes)\n" " -t TOOL run a subtool (use -t list to list subtools)\n" " terminates toplevel options; further flags are passed to the tool\n", kNinjaVersion, config.parallelism); } /// Choose a default value for the -j (parallelism) flag. int GuessParallelism() { switch (int processors = GetProcessorCount()) { case 0: case 1: return 2; case 2: return 3; default: return processors + 2; } } /// An implementation of ManifestParser::FileReader that actually reads /// the file. struct RealFileReader : public ManifestParser::FileReader { virtual bool ReadFile(const string& path, string* content, string* err) { return ::ReadFile(path, content, err) == 0; } }; /// Rebuild the build manifest, if necessary. /// Returns true if the manifest was rebuilt. bool NinjaMain::RebuildManifest(const char* input_file, string* err) { string path = input_file; if (!CanonicalizePath(&path, err)) return false; Node* node = state_.LookupNode(path); if (!node) return false; Builder builder(&state_, config_, &build_log_, &deps_log_, &disk_interface_); if (!builder.AddTarget(node, err)) return false; if (builder.AlreadyUpToDate()) return false; // Not an error, but we didn't rebuild. if (!builder.Build(err)) return false; // The manifest was only rebuilt if it is now dirty (it may have been cleaned // by a restat). return node->dirty(); } Node* NinjaMain::CollectTarget(const char* cpath, string* err) { string path = cpath; if (!CanonicalizePath(&path, err)) return NULL; // Special syntax: "foo.cc^" means "the first output of foo.cc". bool first_dependent = false; if (!path.empty() && path[path.size() - 1] == '^') { path.resize(path.size() - 1); first_dependent = true; } Node* node = state_.LookupNode(path); if (node) { if (first_dependent) { if (node->out_edges().empty()) { *err = "'" + path + "' has no out edge"; return NULL; } Edge* edge = node->out_edges()[0]; if (edge->outputs_.empty()) { edge->Dump(); Fatal("edge has no outputs"); } node = edge->outputs_[0]; } return node; } else { *err = "unknown target '" + path + "'"; if (path == "clean") { *err += ", did you mean 'ninja -t clean'?"; } else if (path == "help") { *err += ", did you mean 'ninja -h'?"; } else { Node* suggestion = state_.SpellcheckNode(path); if (suggestion) { *err += ", did you mean '" + suggestion->path() + "'?"; } } return NULL; } } bool NinjaMain::CollectTargetsFromArgs(int argc, char* argv[], vector* targets, string* err) { if (argc == 0) { *targets = state_.DefaultNodes(err); return err->empty(); } for (int i = 0; i < argc; ++i) { Node* node = CollectTarget(argv[i], err); if (node == NULL) return false; targets->push_back(node); } return true; } int NinjaMain::ToolGraph(int argc, char* argv[]) { vector nodes; string err; if (!CollectTargetsFromArgs(argc, argv, &nodes, &err)) { Error("%s", err.c_str()); return 1; } GraphViz graph; graph.Start(); for (vector::const_iterator n = nodes.begin(); n != nodes.end(); ++n) graph.AddTarget(*n); graph.Finish(); return 0; } int NinjaMain::ToolQuery(int argc, char* argv[]) { if (argc == 0) { Error("expected a target to query"); return 1; } for (int i = 0; i < argc; ++i) { string err; Node* node = CollectTarget(argv[i], &err); if (!node) { Error("%s", err.c_str()); return 1; } printf("%s:\n", node->path().c_str()); if (Edge* edge = node->in_edge()) { printf(" input: %s\n", edge->rule_->name().c_str()); for (int in = 0; in < (int)edge->inputs_.size(); in++) { const char* label = ""; if (edge->is_implicit(in)) label = "| "; else if (edge->is_order_only(in)) label = "|| "; printf(" %s%s\n", label, edge->inputs_[in]->path().c_str()); } } printf(" outputs:\n"); for (vector::const_iterator edge = node->out_edges().begin(); edge != node->out_edges().end(); ++edge) { for (vector::iterator out = (*edge)->outputs_.begin(); out != (*edge)->outputs_.end(); ++out) { printf(" %s\n", (*out)->path().c_str()); } } } return 0; } #if !defined(_WIN32) && !defined(NINJA_BOOTSTRAP) int NinjaMain::ToolBrowse(int argc, char* argv[]) { if (argc < 1) { Error("expected a target to browse"); return 1; } RunBrowsePython(&state_, ninja_command_, argv[0]); // If we get here, the browse failed. return 1; } #endif // _WIN32 #if defined(_MSC_VER) int NinjaMain::ToolMSVC(int argc, char* argv[]) { // Reset getopt: push one argument onto the front of argv, reset optind. argc++; argv--; optind = 0; return MSVCHelperMain(argc, argv); } #endif int ToolTargetsList(const vector& nodes, int depth, int indent) { for (vector::const_iterator n = nodes.begin(); n != nodes.end(); ++n) { for (int i = 0; i < indent; ++i) printf(" "); const char* target = (*n)->path().c_str(); if ((*n)->in_edge()) { printf("%s: %s\n", target, (*n)->in_edge()->rule_->name().c_str()); if (depth > 1 || depth <= 0) ToolTargetsList((*n)->in_edge()->inputs_, depth - 1, indent + 1); } else { printf("%s\n", target); } } return 0; } int ToolTargetsSourceList(State* state) { for (vector::iterator e = state->edges_.begin(); e != state->edges_.end(); ++e) { for (vector::iterator inps = (*e)->inputs_.begin(); inps != (*e)->inputs_.end(); ++inps) { if (!(*inps)->in_edge()) printf("%s\n", (*inps)->path().c_str()); } } return 0; } int ToolTargetsList(State* state, const string& rule_name) { set rules; // Gather the outputs. for (vector::iterator e = state->edges_.begin(); e != state->edges_.end(); ++e) { if ((*e)->rule_->name() == rule_name) { for (vector::iterator out_node = (*e)->outputs_.begin(); out_node != (*e)->outputs_.end(); ++out_node) { rules.insert((*out_node)->path()); } } } // Print them. for (set::const_iterator i = rules.begin(); i != rules.end(); ++i) { printf("%s\n", (*i).c_str()); } return 0; } int ToolTargetsList(State* state) { for (vector::iterator e = state->edges_.begin(); e != state->edges_.end(); ++e) { for (vector::iterator out_node = (*e)->outputs_.begin(); out_node != (*e)->outputs_.end(); ++out_node) { printf("%s: %s\n", (*out_node)->path().c_str(), (*e)->rule_->name().c_str()); } } return 0; } int NinjaMain::ToolDeps(int argc, char** argv) { vector nodes; if (argc == 0) { for (vector::const_iterator ni = deps_log_.nodes().begin(); ni != deps_log_.nodes().end(); ++ni) { if (deps_log_.IsDepsEntryLiveFor(*ni)) nodes.push_back(*ni); } } else { string err; if (!CollectTargetsFromArgs(argc, argv, &nodes, &err)) { Error("%s", err.c_str()); return 1; } } RealDiskInterface disk_interface; for (vector::iterator it = nodes.begin(), end = nodes.end(); it != end; ++it) { DepsLog::Deps* deps = deps_log_.GetDeps(*it); if (!deps) { printf("%s: deps not found\n", (*it)->path().c_str()); continue; } TimeStamp mtime = disk_interface.Stat((*it)->path()); printf("%s: #deps %d, deps mtime %d (%s)\n", (*it)->path().c_str(), deps->node_count, deps->mtime, (!mtime || mtime > deps->mtime ? "STALE":"VALID")); for (int i = 0; i < deps->node_count; ++i) printf(" %s\n", deps->nodes[i]->path().c_str()); printf("\n"); } return 0; } int NinjaMain::ToolTargets(int argc, char* argv[]) { int depth = 1; if (argc >= 1) { string mode = argv[0]; if (mode == "rule") { string rule; if (argc > 1) rule = argv[1]; if (rule.empty()) return ToolTargetsSourceList(&state_); else return ToolTargetsList(&state_, rule); } else if (mode == "depth") { if (argc > 1) depth = atoi(argv[1]); } else if (mode == "all") { return ToolTargetsList(&state_); } else { const char* suggestion = SpellcheckString(mode.c_str(), "rule", "depth", "all", NULL); if (suggestion) { Error("unknown target tool mode '%s', did you mean '%s'?", mode.c_str(), suggestion); } else { Error("unknown target tool mode '%s'", mode.c_str()); } return 1; } } string err; vector root_nodes = state_.RootNodes(&err); if (err.empty()) { return ToolTargetsList(root_nodes, depth, 0); } else { Error("%s", err.c_str()); return 1; } } void PrintCommands(Edge* edge, set* seen) { if (!edge) return; if (!seen->insert(edge).second) return; for (vector::iterator in = edge->inputs_.begin(); in != edge->inputs_.end(); ++in) PrintCommands((*in)->in_edge(), seen); if (!edge->is_phony()) puts(edge->EvaluateCommand().c_str()); } int NinjaMain::ToolCommands(int argc, char* argv[]) { vector nodes; string err; if (!CollectTargetsFromArgs(argc, argv, &nodes, &err)) { Error("%s", err.c_str()); return 1; } set seen; for (vector::iterator in = nodes.begin(); in != nodes.end(); ++in) PrintCommands((*in)->in_edge(), &seen); return 0; } int NinjaMain::ToolClean(int argc, char* argv[]) { // The clean tool uses getopt, and expects argv[0] to contain the name of // the tool, i.e. "clean". argc++; argv--; bool generator = false; bool clean_rules = false; optind = 1; int opt; while ((opt = getopt(argc, argv, const_cast("hgr"))) != -1) { switch (opt) { case 'g': generator = true; break; case 'r': clean_rules = true; break; case 'h': default: printf("usage: ninja -t clean [options] [targets]\n" "\n" "options:\n" " -g also clean files marked as ninja generator output\n" " -r interpret targets as a list of rules to clean instead\n" ); return 1; } } argv += optind; argc -= optind; if (clean_rules && argc == 0) { Error("expected a rule to clean"); return 1; } Cleaner cleaner(&state_, config_); if (argc >= 1) { if (clean_rules) return cleaner.CleanRules(argc, argv); else return cleaner.CleanTargets(argc, argv); } else { return cleaner.CleanAll(generator); } } void EncodeJSONString(const char *str) { while (*str) { if (*str == '"' || *str == '\\') putchar('\\'); putchar(*str); str++; } } int NinjaMain::ToolCompilationDatabase(int argc, char* argv[]) { bool first = true; vector cwd; do { cwd.resize(cwd.size() + 1024); errno = 0; } while (!getcwd(&cwd[0], cwd.size()) && errno == ERANGE); if (errno != 0 && errno != ERANGE) { Error("cannot determine working directory: %s", strerror(errno)); return 1; } putchar('['); for (vector::iterator e = state_.edges_.begin(); e != state_.edges_.end(); ++e) { if ((*e)->inputs_.empty()) continue; for (int i = 0; i != argc; ++i) { if ((*e)->rule_->name() == argv[i]) { if (!first) putchar(','); printf("\n {\n \"directory\": \""); EncodeJSONString(&cwd[0]); printf("\",\n \"command\": \""); EncodeJSONString((*e)->EvaluateCommand().c_str()); printf("\",\n \"file\": \""); EncodeJSONString((*e)->inputs_[0]->path().c_str()); printf("\"\n }"); first = false; } } } puts("\n]"); return 0; } int NinjaMain::ToolRecompact(int argc, char* argv[]) { if (!EnsureBuildDirExists()) return 1; if (!OpenBuildLog(/*recompact_only=*/true) || !OpenDepsLog(/*recompact_only=*/true)) return 1; return 0; } int NinjaMain::ToolUrtle(int argc, char** argv) { // RLE encoded. const char* urtle = " 13 ,3;2!2;\n8 ,;<11!;\n5 `'<10!(2`'2!\n11 ,6;, `\\. `\\9 .,c13$ec,.\n6 " ",2;11!>; `. ,;!2> .e8$2\".2 \"?7$e.\n <:<8!'` 2.3,.2` ,3!' ;,(?7\";2!2'<" "; `?6$PF ,;,\n2 `'4!8;<3;5! J2$b,`!>;2!:2!`,d?b`!>\n26 `'-;,(<9!> $F3 )3.:!.2 d\"" "2 ) !>\n30 7`2'<3!- \"=-='5 .2 `2-=\",!>\n25 .ze9$er2 .,cd16$bc.'\n22 .e" "14$,26$.\n21 z45$c .\n20 J50$c\n20 14$P\"`?34$b\n20 14$ dbc `2\"?22$?7$c" "\n20 ?18$c.6 4\"8?4\" c8$P\n9 .2,.8 \"20$c.3 ._14 J9$\n .2,2c9$bec,.2 `?" "21$c.3`4%,3%,3 c8$P\"\n22$c2 2\"?21$bc2,.2` .2,c7$P2\",cb\n23$b bc,.2\"2" "?14$2F2\"5?2\",J5$P\" ,zd3$\n24$ ?$3?%3 `2\"2?12$bcucd3$P3\"2 2=7$\n23$P" "\" ,3;<5!>2;,. `4\"6?2\"2 ,9;, `\"?2$\n"; int count = 0; for (const char* p = urtle; *p; p++) { if ('0' <= *p && *p <= '9') { count = count*10 + *p - '0'; } else { for (int i = 0; i < std::max(count, 1); ++i) printf("%c", *p); count = 0; } } return 0; } /// Find the function to execute for \a tool_name and return it via \a func. /// Returns a Tool, or NULL if Ninja should exit. const Tool* ChooseTool(const string& tool_name) { static const Tool kTools[] = { #if !defined(_WIN32) && !defined(NINJA_BOOTSTRAP) { "browse", "browse dependency graph in a web browser", Tool::RUN_AFTER_LOAD, &NinjaMain::ToolBrowse }, #endif #if defined(_MSC_VER) { "msvc", "build helper for MSVC cl.exe (EXPERIMENTAL)", Tool::RUN_AFTER_FLAGS, &NinjaMain::ToolMSVC }, #endif { "clean", "clean built files", Tool::RUN_AFTER_LOAD, &NinjaMain::ToolClean }, { "commands", "list all commands required to rebuild given targets", Tool::RUN_AFTER_LOAD, &NinjaMain::ToolCommands }, { "deps", "show dependencies stored in the deps log", Tool::RUN_AFTER_LOGS, &NinjaMain::ToolDeps }, { "graph", "output graphviz dot file for targets", Tool::RUN_AFTER_LOAD, &NinjaMain::ToolGraph }, { "query", "show inputs/outputs for a path", Tool::RUN_AFTER_LOGS, &NinjaMain::ToolQuery }, { "targets", "list targets by their rule or depth in the DAG", Tool::RUN_AFTER_LOAD, &NinjaMain::ToolTargets }, { "compdb", "dump JSON compilation database to stdout", Tool::RUN_AFTER_LOAD, &NinjaMain::ToolCompilationDatabase }, { "recompact", "recompacts ninja-internal data structures", Tool::RUN_AFTER_LOAD, &NinjaMain::ToolRecompact }, { "urtle", NULL, Tool::RUN_AFTER_FLAGS, &NinjaMain::ToolUrtle }, { NULL, NULL, Tool::RUN_AFTER_FLAGS, NULL } }; if (tool_name == "list") { printf("ninja subtools:\n"); for (const Tool* tool = &kTools[0]; tool->name; ++tool) { if (tool->desc) printf("%10s %s\n", tool->name, tool->desc); } return NULL; } for (const Tool* tool = &kTools[0]; tool->name; ++tool) { if (tool->name == tool_name) return tool; } vector words; for (const Tool* tool = &kTools[0]; tool->name; ++tool) words.push_back(tool->name); const char* suggestion = SpellcheckStringV(tool_name, words); if (suggestion) { Fatal("unknown tool '%s', did you mean '%s'?", tool_name.c_str(), suggestion); } else { Fatal("unknown tool '%s'", tool_name.c_str()); } return NULL; // Not reached. } /// Enable a debugging mode. Returns false if Ninja should exit instead /// of continuing. bool DebugEnable(const string& name) { if (name == "list") { printf("debugging modes:\n" " stats print operation counts/timing info\n" " explain explain what caused a command to execute\n" " keeprsp don't delete @response files on success\n" "multiple modes can be enabled via -d FOO -d BAR\n"); return false; } else if (name == "stats") { g_metrics = new Metrics; return true; } else if (name == "explain") { g_explaining = true; return true; } else if (name == "keeprsp") { g_keep_rsp = true; return true; } else { const char* suggestion = SpellcheckString(name.c_str(), "stats", "explain", NULL); if (suggestion) { Error("unknown debug setting '%s', did you mean '%s'?", name.c_str(), suggestion); } else { Error("unknown debug setting '%s'", name.c_str()); } return false; } } bool NinjaMain::OpenBuildLog(bool recompact_only) { string log_path = ".ninja_log"; if (!build_dir_.empty()) log_path = build_dir_ + "/" + log_path; string err; if (!build_log_.Load(log_path, &err)) { Error("loading build log %s: %s", log_path.c_str(), err.c_str()); return false; } if (!err.empty()) { // Hack: Load() can return a warning via err by returning true. Warning("%s", err.c_str()); err.clear(); } if (recompact_only) { bool success = build_log_.Recompact(log_path, *this, &err); if (!success) Error("failed recompaction: %s", err.c_str()); return success; } if (!config_.dry_run) { if (!build_log_.OpenForWrite(log_path, *this, &err)) { Error("opening build log: %s", err.c_str()); return false; } } return true; } /// Open the deps log: load it, then open for writing. /// @return false on error. bool NinjaMain::OpenDepsLog(bool recompact_only) { string path = ".ninja_deps"; if (!build_dir_.empty()) path = build_dir_ + "/" + path; string err; if (!deps_log_.Load(path, &state_, &err)) { Error("loading deps log %s: %s", path.c_str(), err.c_str()); return false; } if (!err.empty()) { // Hack: Load() can return a warning via err by returning true. Warning("%s", err.c_str()); err.clear(); } if (recompact_only) { bool success = deps_log_.Recompact(path, &err); if (!success) Error("failed recompaction: %s", err.c_str()); return success; } if (!config_.dry_run) { if (!deps_log_.OpenForWrite(path, &err)) { Error("opening deps log: %s", err.c_str()); return false; } } return true; } void NinjaMain::DumpMetrics() { g_metrics->Report(); printf("\n"); int count = (int)state_.paths_.size(); int buckets = (int)state_.paths_.bucket_count(); printf("path->node hash load %.2f (%d entries / %d buckets)\n", count / (double) buckets, count, buckets); } bool NinjaMain::EnsureBuildDirExists() { build_dir_ = state_.bindings_.LookupVariable("builddir"); if (!build_dir_.empty() && !config_.dry_run) { if (!disk_interface_.MakeDirs(build_dir_ + "/.") && errno != EEXIST) { Error("creating build directory %s: %s", build_dir_.c_str(), strerror(errno)); return false; } } return true; } int NinjaMain::RunBuild(int argc, char** argv) { string err; vector targets; if (!CollectTargetsFromArgs(argc, argv, &targets, &err)) { Error("%s", err.c_str()); return 1; } Builder builder(&state_, config_, &build_log_, &deps_log_, &disk_interface_); for (size_t i = 0; i < targets.size(); ++i) { if (!builder.AddTarget(targets[i], &err)) { if (!err.empty()) { Error("%s", err.c_str()); return 1; } else { // Added a target that is already up-to-date; not really // an error. } } } if (builder.AlreadyUpToDate()) { printf("ninja: no work to do.\n"); return 0; } if (!builder.Build(&err)) { printf("ninja: build stopped: %s.\n", err.c_str()); if (err.find("interrupted by user") != string::npos) { return 2; } return 1; } return 0; } #ifdef _MSC_VER /// This handler processes fatal crashes that you can't catch /// Test example: C++ exception in a stack-unwind-block /// Real-world example: ninja launched a compiler to process a tricky /// C++ input file. The compiler got itself into a state where it /// generated 3 GB of output and caused ninja to crash. void TerminateHandler() { CreateWin32MiniDump(NULL); Fatal("terminate handler called"); } /// On Windows, we want to prevent error dialogs in case of exceptions. /// This function handles the exception, and writes a minidump. int ExceptionFilter(unsigned int code, struct _EXCEPTION_POINTERS *ep) { Error("exception: 0x%X", code); // e.g. EXCEPTION_ACCESS_VIOLATION fflush(stderr); CreateWin32MiniDump(ep); return EXCEPTION_EXECUTE_HANDLER; } #endif // _MSC_VER /// Parse argv for command-line options. /// Returns an exit code, or -1 if Ninja should continue. int ReadFlags(int* argc, char*** argv, Options* options, BuildConfig* config) { config->parallelism = GuessParallelism(); enum { OPT_VERSION = 1 }; const option kLongOptions[] = { { "help", no_argument, NULL, 'h' }, { "version", no_argument, NULL, OPT_VERSION }, { NULL, 0, NULL, 0 } }; int opt; while (!options->tool && (opt = getopt_long(*argc, *argv, "d:f:j:k:l:nt:vC:h", kLongOptions, NULL)) != -1) { switch (opt) { case 'd': if (!DebugEnable(optarg)) return 1; break; case 'f': options->input_file = optarg; break; case 'j': { char* end; int value = strtol(optarg, &end, 10); if (*end != 0 || value <= 0) Fatal("invalid -j parameter"); config->parallelism = value; break; } case 'k': { char* end; int value = strtol(optarg, &end, 10); if (*end != 0) Fatal("-k parameter not numeric; did you mean -k 0?"); // We want to go until N jobs fail, which means we should allow // N failures and then stop. For N <= 0, INT_MAX is close enough // to infinite for most sane builds. config->failures_allowed = value > 0 ? value : INT_MAX; break; } case 'l': { char* end; double value = strtod(optarg, &end); if (end == optarg) Fatal("-l parameter not numeric: did you mean -l 0.0?"); config->max_load_average = value; break; } case 'n': config->dry_run = true; break; case 't': options->tool = ChooseTool(optarg); if (!options->tool) return 0; break; case 'v': config->verbosity = BuildConfig::VERBOSE; break; case 'C': options->working_dir = optarg; break; case OPT_VERSION: printf("%s\n", kNinjaVersion); return 0; case 'h': default: Usage(*config); return 1; } } *argv += optind; *argc -= optind; return -1; } int real_main(int argc, char** argv) { BuildConfig config; Options options = {}; options.input_file = "build.ninja"; setvbuf(stdout, NULL, _IOLBF, BUFSIZ); const char* ninja_command = argv[0]; int exit_code = ReadFlags(&argc, &argv, &options, &config); if (exit_code >= 0) return exit_code; if (options.tool && options.tool->when == Tool::RUN_AFTER_FLAGS) { // None of the RUN_AFTER_FLAGS actually use a NinjaMain, but it's needed // by other tools. NinjaMain ninja(ninja_command, config); return (ninja.*options.tool->func)(argc, argv); } if (options.working_dir) { // The formatting of this string, complete with funny quotes, is // so Emacs can properly identify that the cwd has changed for // subsequent commands. // Don't print this if a tool is being used, so that tool output // can be piped into a file without this string showing up. if (!options.tool) printf("ninja: Entering directory `%s'\n", options.working_dir); if (chdir(options.working_dir) < 0) { Fatal("chdir to '%s' - %s", options.working_dir, strerror(errno)); } } // The build can take up to 2 passes: one to rebuild the manifest, then // another to build the desired target. for (int cycle = 0; cycle < 2; ++cycle) { NinjaMain ninja(ninja_command, config); RealFileReader file_reader; ManifestParser parser(&ninja.state_, &file_reader); string err; if (!parser.Load(options.input_file, &err)) { Error("%s", err.c_str()); return 1; } if (options.tool && options.tool->when == Tool::RUN_AFTER_LOAD) return (ninja.*options.tool->func)(argc, argv); if (!ninja.EnsureBuildDirExists()) return 1; if (!ninja.OpenBuildLog() || !ninja.OpenDepsLog()) return 1; if (options.tool && options.tool->when == Tool::RUN_AFTER_LOGS) return (ninja.*options.tool->func)(argc, argv); // The first time through, attempt to rebuild the manifest before // building anything else. if (cycle == 0) { if (ninja.RebuildManifest(options.input_file, &err)) { // Start the build over with the new manifest. continue; } else if (!err.empty()) { Error("rebuilding '%s': %s", options.input_file, err.c_str()); return 1; } } int result = ninja.RunBuild(argc, argv); if (g_metrics) ninja.DumpMetrics(); return result; } return 1; // Shouldn't be reached. } } // anonymous namespace int main(int argc, char** argv) { #if !defined(NINJA_BOOTSTRAP) && defined(_MSC_VER) // Set a handler to catch crashes not caught by the __try..__except // block (e.g. an exception in a stack-unwind-block). set_terminate(TerminateHandler); __try { // Running inside __try ... __except suppresses any Windows error // dialogs for errors such as bad_alloc. return real_main(argc, argv); } __except(ExceptionFilter(GetExceptionCode(), GetExceptionInformation())) { // Common error situations return exitCode=1. 2 was chosen to // indicate a more serious problem. return 2; } #else return real_main(argc, argv); #endif }