summaryrefslogtreecommitdiff
path: root/chromium/base/allocator/partition_allocator/partition_root.h
blob: 34cfe5ae24e39a14d60c7d5202a1a427cbafbb93 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
// Copyright (c) 2020 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ROOT_H_
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ROOT_H_

// DESCRIPTION
// PartitionRoot::Alloc() and PartitionRoot::Free() are approximately analogous
// to malloc() and free().
//
// The main difference is that a PartitionRoot object must be supplied to these
// functions, representing a specific "heap partition" that will be used to
// satisfy the allocation. Different partitions are guaranteed to exist in
// separate address spaces, including being separate from the main system
// heap. If the contained objects are all freed, physical memory is returned to
// the system but the address space remains reserved.  See PartitionAlloc.md for
// other security properties PartitionAlloc provides.
//
// THE ONLY LEGITIMATE WAY TO OBTAIN A PartitionRoot IS THROUGH THE
// PartitionAllocator classes. To minimize the instruction count to the fullest
// extent possible, the PartitionRoot is really just a header adjacent to other
// data areas provided by the allocator class.
//
// The constraints for PartitionRoot::Alloc() are:
// - Multi-threaded use against a single partition is ok; locking is handled.
// - Allocations of any arbitrary size can be handled (subject to a limit of
//   INT_MAX bytes for security reasons).
// - Bucketing is by approximate size, for example an allocation of 4000 bytes
//   might be placed into a 4096-byte bucket. Bucket sizes are chosen to try and
//   keep worst-case waste to ~10%.

#include <algorithm>
#include <atomic>
#include <cstddef>
#include <cstdint>

#include "base/allocator/partition_allocator/address_pool_manager_types.h"
#include "base/allocator/partition_allocator/allocation_guard.h"
#include "base/allocator/partition_allocator/chromecast_buildflags.h"
#include "base/allocator/partition_allocator/page_allocator.h"
#include "base/allocator/partition_allocator/page_allocator_constants.h"
#include "base/allocator/partition_allocator/partition_address_space.h"
#include "base/allocator/partition_allocator/partition_alloc-inl.h"
#include "base/allocator/partition_allocator/partition_alloc_base/bits.h"
#include "base/allocator/partition_allocator/partition_alloc_base/compiler_specific.h"
#include "base/allocator/partition_allocator/partition_alloc_base/component_export.h"
#include "base/allocator/partition_allocator/partition_alloc_base/debug/debugging_buildflags.h"
#include "base/allocator/partition_allocator/partition_alloc_base/thread_annotations.h"
#include "base/allocator/partition_allocator/partition_alloc_base/time/time.h"
#include "base/allocator/partition_allocator/partition_alloc_buildflags.h"
#include "base/allocator/partition_allocator/partition_alloc_check.h"
#include "base/allocator/partition_allocator/partition_alloc_config.h"
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
#include "base/allocator/partition_allocator/partition_alloc_forward.h"
#include "base/allocator/partition_allocator/partition_alloc_hooks.h"
#include "base/allocator/partition_allocator/partition_alloc_notreached.h"
#include "base/allocator/partition_allocator/partition_bucket_lookup.h"
#include "base/allocator/partition_allocator/partition_cookie.h"
#include "base/allocator/partition_allocator/partition_direct_map_extent.h"
#include "base/allocator/partition_allocator/partition_freelist_entry.h"
#include "base/allocator/partition_allocator/partition_lock.h"
#include "base/allocator/partition_allocator/partition_oom.h"
#include "base/allocator/partition_allocator/partition_page.h"
#include "base/allocator/partition_allocator/partition_ref_count.h"
#include "base/allocator/partition_allocator/partition_tag.h"
#include "base/allocator/partition_allocator/partition_tag_types.h"
#include "base/allocator/partition_allocator/reservation_offset_table.h"
#include "base/allocator/partition_allocator/starscan/pcscan.h"
#include "base/allocator/partition_allocator/starscan/state_bitmap.h"
#include "base/allocator/partition_allocator/tagging.h"
#include "base/allocator/partition_allocator/thread_cache.h"
#include "build/build_config.h"

// We use this to make MEMORY_TOOL_REPLACES_ALLOCATOR behave the same for max
// size as other alloc code.
#define CHECK_MAX_SIZE_OR_RETURN_NULLPTR(size, flags)        \
  if (size > partition_alloc::internal::MaxDirectMapped()) { \
    if (flags & AllocFlags::kReturnNull) {                   \
      return nullptr;                                        \
    }                                                        \
    PA_CHECK(false);                                         \
  }

namespace partition_alloc::internal {

// This type trait verifies a type can be used as a pointer offset.
//
// We support pointer offsets in signed (ptrdiff_t) or unsigned (size_t) values.
// Smaller types are also allowed.
template <typename Z>
static constexpr bool offset_type =
    std::is_integral_v<Z> && sizeof(Z) <= sizeof(ptrdiff_t);

// We want this size to be big enough that we have time to start up other
// scripts _before_ we wrap around.
static constexpr size_t kAllocInfoSize = 1 << 24;

struct AllocInfo {
  std::atomic<size_t> index{0};
  struct {
    uintptr_t addr;
    size_t size;
  } allocs[kAllocInfoSize] = {};
};

#if BUILDFLAG(RECORD_ALLOC_INFO)
extern AllocInfo g_allocs;

void RecordAllocOrFree(uintptr_t addr, size_t size);
#endif  // BUILDFLAG(RECORD_ALLOC_INFO)
}  // namespace partition_alloc::internal

namespace partition_alloc {

namespace internal {
// Avoid including partition_address_space.h from this .h file, by moving the
// call to IsManagedByPartitionAllocBRPPool into the .cc file.
#if BUILDFLAG(PA_DCHECK_IS_ON)
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
void DCheckIfManagedByPartitionAllocBRPPool(uintptr_t address);
#else
PA_ALWAYS_INLINE void DCheckIfManagedByPartitionAllocBRPPool(
    uintptr_t address) {}
#endif

#if defined(PA_USE_PARTITION_ROOT_ENUMERATOR)
class PartitionRootEnumerator;
#endif

}  // namespace internal

// Bit flag constants used to purge memory.  See PartitionRoot::PurgeMemory.
//
// In order to support bit operations like `flag_a | flag_b`, the old-fashioned
// enum (+ surrounding named struct) is used instead of enum class.
struct PurgeFlags {
  enum : int {
    // Decommitting the ring list of empty slot spans is reasonably fast.
    kDecommitEmptySlotSpans = 1 << 0,
    // Discarding unused system pages is slower, because it involves walking all
    // freelists in all active slot spans of all buckets >= system page
    // size. It often frees a similar amount of memory to decommitting the empty
    // slot spans, though.
    kDiscardUnusedSystemPages = 1 << 1,
    // Aggressively reclaim memory. This is meant to be used in low-memory
    // situations, not for periodic memory reclaiming.
    kAggressiveReclaim = 1 << 2,
  };
};

// Options struct used to configure PartitionRoot and PartitionAllocator.
struct PartitionOptions {
  enum class AlignedAlloc : uint8_t {
    // By default all allocations will be aligned to `kAlignment`,
    // likely to be 8B or 16B depending on platforms and toolchains.
    // AlignedAlloc() allows to enforce higher alignment.
    // This option determines whether it is supported for the partition.
    // Allowing AlignedAlloc() comes at a cost of disallowing extras in front
    // of the allocation.
    kDisallowed,
    kAllowed,
  };

  enum class ThreadCache : uint8_t {
    kDisabled,
    kEnabled,
  };

  enum class Quarantine : uint8_t {
    kDisallowed,
    kAllowed,
  };

  enum class Cookie : uint8_t {
    kDisallowed,
    kAllowed,
  };

  enum class BackupRefPtr : uint8_t {
    kDisabled,
    kEnabled,
  };

  enum class BackupRefPtrZapping : uint8_t {
    kDisabled,
    kEnabled,
  };

  enum class UseConfigurablePool : uint8_t {
    kNo,
    kIfAvailable,
  };

  // Constructor to suppress aggregate initialization.
  constexpr PartitionOptions(AlignedAlloc aligned_alloc,
                             ThreadCache thread_cache,
                             Quarantine quarantine,
                             Cookie cookie,
                             BackupRefPtr backup_ref_ptr,
                             BackupRefPtrZapping backup_ref_ptr_zapping,
                             UseConfigurablePool use_configurable_pool)
      : aligned_alloc(aligned_alloc),
        thread_cache(thread_cache),
        quarantine(quarantine),
        cookie(cookie),
        backup_ref_ptr(backup_ref_ptr),
        backup_ref_ptr_zapping(backup_ref_ptr_zapping),
        use_configurable_pool(use_configurable_pool) {}

  AlignedAlloc aligned_alloc;
  ThreadCache thread_cache;
  Quarantine quarantine;
  Cookie cookie;
  BackupRefPtr backup_ref_ptr;
  BackupRefPtrZapping backup_ref_ptr_zapping;
  UseConfigurablePool use_configurable_pool;
};

// Never instantiate a PartitionRoot directly, instead use
// PartitionAllocator.
template <bool thread_safe>
struct PA_ALIGNAS(64) PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionRoot {
  using SlotSpan = internal::SlotSpanMetadata<thread_safe>;
  using Page = internal::PartitionPage<thread_safe>;
  using Bucket = internal::PartitionBucket<thread_safe>;
  using FreeListEntry = internal::PartitionFreelistEntry;
  using SuperPageExtentEntry =
      internal::PartitionSuperPageExtentEntry<thread_safe>;
  using DirectMapExtent = internal::PartitionDirectMapExtent<thread_safe>;
  using PCScan = internal::PCScan;

  enum class QuarantineMode : uint8_t {
    kAlwaysDisabled,
    kDisabledByDefault,
    kEnabled,
  };

  enum class ScanMode : uint8_t {
    kDisabled,
    kEnabled,
  };

  // Flags accessed on fast paths.
  //
  // Careful! PartitionAlloc's performance is sensitive to its layout.  Please
  // put the fast-path objects in the struct below, and the other ones after
  // the union..
  struct Flags {
    // Defines whether objects should be quarantined for this root.
    QuarantineMode quarantine_mode;

    // Defines whether the root should be scanned.
    ScanMode scan_mode;

    bool with_thread_cache = false;
    bool with_denser_bucket_distribution = false;

    bool allow_aligned_alloc;
    bool allow_cookie;
#if BUILDFLAG(USE_BACKUP_REF_PTR)
    bool brp_enabled_;
    bool brp_zapping_enabled_;
#endif
    bool use_configurable_pool;

#if defined(PA_EXTRAS_REQUIRED)
    uint32_t extras_size;
    uint32_t extras_offset;
#else
    // Teach the compiler that code can be optimized in builds that use no
    // extras.
    static inline constexpr uint32_t extras_size = 0;
    static inline constexpr uint32_t extras_offset = 0;
#endif  // defined(PA_EXTRAS_REQUIRED)
  };

  // Read-mostly flags.
  union {
    Flags flags;

    // The flags above are accessed for all (de)allocations, and are mostly
    // read-only. They should not share a cacheline with the data below, which
    // is only touched when the lock is taken.
    uint8_t one_cacheline[internal::kPartitionCachelineSize];
  };

  // Not used on the fastest path (thread cache allocations), but on the fast
  // path of the central allocator.
  static_assert(thread_safe, "Only the thread-safe root is supported.");
  ::partition_alloc::internal::Lock lock_;

  Bucket buckets[internal::kNumBuckets] = {};
  Bucket sentinel_bucket{};

  // All fields below this comment are not accessed on the fast path.
  bool initialized = false;

  // Bookkeeping.
  // - total_size_of_super_pages - total virtual address space for normal bucket
  //     super pages
  // - total_size_of_direct_mapped_pages - total virtual address space for
  //     direct-map regions
  // - total_size_of_committed_pages - total committed pages for slots (doesn't
  //     include metadata, bitmaps (if any), or any data outside or regions
  //     described in #1 and #2)
  // Invariant: total_size_of_allocated_bytes <=
  //            total_size_of_committed_pages <
  //                total_size_of_super_pages +
  //                total_size_of_direct_mapped_pages.
  // Invariant: total_size_of_committed_pages <= max_size_of_committed_pages.
  // Invariant: total_size_of_allocated_bytes <= max_size_of_allocated_bytes.
  // Invariant: max_size_of_allocated_bytes <= max_size_of_committed_pages.
  // Since all operations on the atomic variables have relaxed semantics, we
  // don't check these invariants with DCHECKs.
  std::atomic<size_t> total_size_of_committed_pages{0};
  std::atomic<size_t> max_size_of_committed_pages{0};
  std::atomic<size_t> total_size_of_super_pages{0};
  std::atomic<size_t> total_size_of_direct_mapped_pages{0};
  size_t total_size_of_allocated_bytes PA_GUARDED_BY(lock_) = 0;
  size_t max_size_of_allocated_bytes PA_GUARDED_BY(lock_) = 0;
  // Atomic, because system calls can be made without the lock held.
  std::atomic<uint64_t> syscall_count{};
  std::atomic<uint64_t> syscall_total_time_ns{};
#if BUILDFLAG(USE_BACKUP_REF_PTR)
  std::atomic<size_t> total_size_of_brp_quarantined_bytes{0};
  std::atomic<size_t> total_count_of_brp_quarantined_slots{0};
  std::atomic<size_t> cumulative_size_of_brp_quarantined_bytes{0};
  std::atomic<size_t> cumulative_count_of_brp_quarantined_slots{0};
#endif
  // Slot span memory which has been provisioned, and is currently unused as
  // it's part of an empty SlotSpan. This is not clean memory, since it has
  // either been used for a memory allocation, and/or contains freelist
  // entries. But it might have been moved to swap. Note that all this memory
  // can be decommitted at any time.
  size_t empty_slot_spans_dirty_bytes PA_GUARDED_BY(lock_) = 0;

  // Only tolerate up to |total_size_of_committed_pages >>
  // max_empty_slot_spans_dirty_bytes_shift| dirty bytes in empty slot
  // spans. That is, the default value of 3 tolerates up to 1/8. Since
  // |empty_slot_spans_dirty_bytes| is never strictly larger than
  // total_size_of_committed_pages, setting this to 0 removes the cap. This is
  // useful to make tests deterministic and easier to reason about.
  int max_empty_slot_spans_dirty_bytes_shift = 3;

  uintptr_t next_super_page = 0;
  uintptr_t next_partition_page = 0;
  uintptr_t next_partition_page_end = 0;
  SuperPageExtentEntry* current_extent = nullptr;
  SuperPageExtentEntry* first_extent = nullptr;
  DirectMapExtent* direct_map_list PA_GUARDED_BY(lock_) = nullptr;
  SlotSpan*
      global_empty_slot_span_ring[internal::kMaxFreeableSpans] PA_GUARDED_BY(
          lock_) = {};
  int16_t global_empty_slot_span_ring_index PA_GUARDED_BY(lock_) = 0;
  int16_t global_empty_slot_span_ring_size PA_GUARDED_BY(lock_) =
      internal::kDefaultEmptySlotSpanRingSize;

  // Integrity check = ~reinterpret_cast<uintptr_t>(this).
  uintptr_t inverted_self = 0;
  std::atomic<int> thread_caches_being_constructed_{0};

  bool quarantine_always_for_testing = false;

#if defined(PA_USE_MTE_CHECKED_PTR_WITH_64_BITS_POINTERS)
  partition_alloc::PartitionTag current_partition_tag = 0;
  // Points to the end of the committed tag bitmap region.
  uintptr_t next_tag_bitmap_page = 0;
#endif  // defined(PA_USE_MTE_CHECKED_PTR_WITH_64_BITS_POINTERS)

  PartitionRoot()
      : flags{/*.quarantine_mode =*/ QuarantineMode::kAlwaysDisabled,
              /*.scan_mode =*/ ScanMode::kDisabled} {}
  explicit PartitionRoot(PartitionOptions opts) : flags() { Init(opts); }
  ~PartitionRoot();

  // This will unreserve any space in the GigaCage that the PartitionRoot is
  // using. This is needed because many tests create and destroy many
  // PartitionRoots over the lifetime of a process, which can exhaust the
  // GigaCage and cause tests to fail.
  void DestructForTesting();

  // Public API
  //
  // Allocates out of the given bucket. Properly, this function should probably
  // be in PartitionBucket, but because the implementation needs to be inlined
  // for performance, and because it needs to inspect SlotSpanMetadata,
  // it becomes impossible to have it in PartitionBucket as this causes a
  // cyclical dependency on SlotSpanMetadata function implementations.
  //
  // Moving it a layer lower couples PartitionRoot and PartitionBucket, but
  // preserves the layering of the includes.
  void Init(PartitionOptions);

  void EnableThreadCacheIfSupported();

  PA_ALWAYS_INLINE static bool IsValidSlotSpan(SlotSpan* slot_span);
  PA_ALWAYS_INLINE static PartitionRoot* FromSlotSpan(SlotSpan* slot_span);
  // These two functions work unconditionally for normal buckets.
  // For direct map, they only work for the first super page of a reservation,
  // (see partition_alloc_constants.h for the direct map allocation layout).
  // In particular, the functions always work for a pointer to the start of a
  // reservation.
  PA_ALWAYS_INLINE static PartitionRoot* FromFirstSuperPage(
      uintptr_t super_page);
  PA_ALWAYS_INLINE static PartitionRoot* FromAddrInFirstSuperpage(
      uintptr_t address);

  PA_ALWAYS_INLINE void DecreaseTotalSizeOfAllocatedBytes(SlotSpan* slot_span)
      PA_EXCLUSIVE_LOCKS_REQUIRED(lock_);
  PA_ALWAYS_INLINE void IncreaseTotalSizeOfAllocatedBytes(SlotSpan* slot_span,
                                                          size_t raw_size)
      PA_EXCLUSIVE_LOCKS_REQUIRED(lock_);
  PA_ALWAYS_INLINE void DecreaseTotalSizeOfAllocatedBytes(uintptr_t addr,
                                                          size_t len)
      PA_EXCLUSIVE_LOCKS_REQUIRED(lock_);
  PA_ALWAYS_INLINE void IncreaseTotalSizeOfAllocatedBytes(uintptr_t addr,
                                                          size_t len,
                                                          size_t raw_size)
      PA_EXCLUSIVE_LOCKS_REQUIRED(lock_);
  PA_ALWAYS_INLINE void IncreaseCommittedPages(size_t len);
  PA_ALWAYS_INLINE void DecreaseCommittedPages(size_t len);
  PA_ALWAYS_INLINE void DecommitSystemPagesForData(
      uintptr_t address,
      size_t length,
      PageAccessibilityDisposition accessibility_disposition)
      PA_EXCLUSIVE_LOCKS_REQUIRED(lock_);
  PA_ALWAYS_INLINE void RecommitSystemPagesForData(
      uintptr_t address,
      size_t length,
      PageAccessibilityDisposition accessibility_disposition)
      PA_EXCLUSIVE_LOCKS_REQUIRED(lock_);
  PA_ALWAYS_INLINE bool TryRecommitSystemPagesForData(
      uintptr_t address,
      size_t length,
      PageAccessibilityDisposition accessibility_disposition)
      PA_LOCKS_EXCLUDED(lock_);

  [[noreturn]] PA_NOINLINE void OutOfMemory(size_t size);

  // Returns a pointer aligned on |alignment|, or nullptr.
  //
  // |alignment| has to be a power of two and a multiple of sizeof(void*) (as in
  // posix_memalign() for POSIX systems). The returned pointer may include
  // padding, and can be passed to |Free()| later.
  //
  // NOTE: This is incompatible with anything that adds extras before the
  // returned pointer, such as ref-count.
  PA_ALWAYS_INLINE void* AlignedAllocWithFlags(unsigned int flags,
                                               size_t alignment,
                                               size_t requested_size);

  // PartitionAlloc supports multiple partitions, and hence multiple callers to
  // these functions. Setting PA_ALWAYS_INLINE bloats code, and can be
  // detrimental to performance, for instance if multiple callers are hot (by
  // increasing cache footprint). Set PA_NOINLINE on the "basic" top-level
  // functions to mitigate that for "vanilla" callers.
  PA_NOINLINE PA_MALLOC_FN void* Alloc(size_t requested_size,
                                       const char* type_name) PA_MALLOC_ALIGNED;
  PA_ALWAYS_INLINE PA_MALLOC_FN void* AllocWithFlags(unsigned int flags,
                                                     size_t requested_size,
                                                     const char* type_name)
      PA_MALLOC_ALIGNED;
  // Same as |AllocWithFlags()|, but allows specifying |slot_span_alignment|. It
  // has to be a multiple of partition page size, greater than 0 and no greater
  // than kMaxSupportedAlignment. If it equals exactly 1 partition page, no
  // special action is taken as PartitoinAlloc naturally guarantees this
  // alignment, otherwise a sub-optimial allocation strategy is used to
  // guarantee the higher-order alignment.
  PA_ALWAYS_INLINE PA_MALLOC_FN void* AllocWithFlagsInternal(
      unsigned int flags,
      size_t requested_size,
      size_t slot_span_alignment,
      const char* type_name) PA_MALLOC_ALIGNED;
  // Same as |AllocWithFlags()|, but bypasses the allocator hooks.
  //
  // This is separate from AllocWithFlags() because other callers of
  // AllocWithFlags() should not have the extra branch checking whether the
  // hooks should be ignored or not. This is the same reason why |FreeNoHooks()|
  // exists. However, |AlignedAlloc()| and |Realloc()| have few callers, so
  // taking the extra branch in the non-malloc() case doesn't hurt. In addition,
  // for the malloc() case, the compiler correctly removes the branch, since
  // this is marked |PA_ALWAYS_INLINE|.
  PA_ALWAYS_INLINE PA_MALLOC_FN void* AllocWithFlagsNoHooks(
      unsigned int flags,
      size_t requested_size,
      size_t slot_span_alignment) PA_MALLOC_ALIGNED;

  PA_NOINLINE void* Realloc(void* ptr,
                            size_t newize,
                            const char* type_name) PA_MALLOC_ALIGNED;
  // Overload that may return nullptr if reallocation isn't possible. In this
  // case, |ptr| remains valid.
  PA_NOINLINE void* TryRealloc(void* ptr,
                               size_t new_size,
                               const char* type_name) PA_MALLOC_ALIGNED;
  PA_NOINLINE void* ReallocWithFlags(unsigned int flags,
                                     void* ptr,
                                     size_t new_size,
                                     const char* type_name) PA_MALLOC_ALIGNED;
  PA_NOINLINE static void Free(void* object);
  PA_ALWAYS_INLINE static void FreeWithFlags(unsigned int flags, void* object);
  // Same as |Free()|, bypasses the allocator hooks.
  PA_ALWAYS_INLINE static void FreeNoHooks(void* object);
  // Immediately frees the pointer bypassing the quarantine. |slot_start| is the
  // beginning of the slot that contains |object|.
  PA_ALWAYS_INLINE void FreeNoHooksImmediate(void* object,
                                             SlotSpan* slot_span,
                                             uintptr_t slot_start);

  PA_ALWAYS_INLINE static size_t GetUsableSize(void* ptr);

  PA_ALWAYS_INLINE size_t
  AllocationCapacityFromSlotStart(uintptr_t slot_start) const;
  PA_ALWAYS_INLINE size_t
  AllocationCapacityFromRequestedSize(size_t size) const;

  // Frees memory from this partition, if possible, by decommitting pages or
  // even entire slot spans. |flags| is an OR of base::PartitionPurgeFlags.
  void PurgeMemory(int flags);

  // Reduces the size of the empty slot spans ring, until the dirty size is <=
  // |limit|.
  void ShrinkEmptySlotSpansRing(size_t limit)
      PA_EXCLUSIVE_LOCKS_REQUIRED(lock_);
  // The empty slot span ring starts "small", can be enlarged later. This
  // improves performance by performing fewer system calls, at the cost of more
  // memory usage.
  void EnableLargeEmptySlotSpanRing() {
    ::partition_alloc::internal::ScopedGuard locker{lock_};
    global_empty_slot_span_ring_size = internal::kMaxFreeableSpans;
  }

  void DumpStats(const char* partition_name,
                 bool is_light_dump,
                 PartitionStatsDumper* partition_stats_dumper);

  static void DeleteForTesting(PartitionRoot* partition_root);
  void ResetBookkeepingForTesting();

  static uint16_t SizeToBucketIndex(size_t size,
                                    bool with_denser_bucket_distribution);

  PA_ALWAYS_INLINE void FreeInSlotSpan(uintptr_t slot_start,
                                       SlotSpan* slot_span)
      PA_EXCLUSIVE_LOCKS_REQUIRED(lock_);

  // Frees memory, with |slot_start| as returned by |RawAlloc()|.
  PA_ALWAYS_INLINE void RawFree(uintptr_t slot_start);
  PA_ALWAYS_INLINE void RawFree(uintptr_t slot_start, SlotSpan* slot_span)
      PA_LOCKS_EXCLUDED(lock_);

  PA_ALWAYS_INLINE void RawFreeBatch(FreeListEntry* head,
                                     FreeListEntry* tail,
                                     size_t size,
                                     SlotSpan* slot_span)
      PA_LOCKS_EXCLUDED(lock_);

  PA_ALWAYS_INLINE void RawFreeWithThreadCache(uintptr_t slot_start,
                                               SlotSpan* slot_span);

  // This is safe to do because we are switching to a bucket distribution with
  // more buckets, meaning any allocations we have done before the switch are
  // guaranteed to have a bucket under the new distribution when they are
  // eventually deallocated. We do not need synchronization here or below.
  void SwitchToDenserBucketDistribution() {
    flags.with_denser_bucket_distribution = true;
  }
  // Switching back to the less dense bucket distribution is ok during tests.
  // At worst, we end up with deallocations that are sent to a bucket that we
  // cannot allocate from, which will not cause problems besides wasting
  // memory.
  void ResetBucketDistributionForTesting() {
    flags.with_denser_bucket_distribution = false;
  }

  ThreadCache* thread_cache_for_testing() const {
    return flags.with_thread_cache ? ThreadCache::Get() : nullptr;
  }
  size_t get_total_size_of_committed_pages() const {
    return total_size_of_committed_pages.load(std::memory_order_relaxed);
  }
  size_t get_max_size_of_committed_pages() const {
    return max_size_of_committed_pages.load(std::memory_order_relaxed);
  }

  size_t get_total_size_of_allocated_bytes() const {
    // Since this is only used for bookkeeping, we don't care if the value is
    // stale, so no need to get a lock here.
    return PA_TS_UNCHECKED_READ(total_size_of_allocated_bytes);
  }

  size_t get_max_size_of_allocated_bytes() const {
    // Since this is only used for bookkeeping, we don't care if the value is
    // stale, so no need to get a lock here.
    return PA_TS_UNCHECKED_READ(max_size_of_allocated_bytes);
  }

  internal::pool_handle ChoosePool() const {
    if (flags.use_configurable_pool) {
      return internal::GetConfigurablePool();
    }
#if BUILDFLAG(USE_BACKUP_REF_PTR)
    return brp_enabled() ? internal::GetBRPPool() : internal::GetRegularPool();
#else
    return internal::GetRegularPool();
#endif  // BUILDFLAG(USE_BACKUP_REF_PTR)
  }

  PA_ALWAYS_INLINE bool IsQuarantineAllowed() const {
    return flags.quarantine_mode != QuarantineMode::kAlwaysDisabled;
  }

  PA_ALWAYS_INLINE bool IsQuarantineEnabled() const {
    return flags.quarantine_mode == QuarantineMode::kEnabled;
  }

  PA_ALWAYS_INLINE bool ShouldQuarantine(void* object) const {
    if (PA_UNLIKELY(flags.quarantine_mode != QuarantineMode::kEnabled))
      return false;
#if defined(PA_HAS_MEMORY_TAGGING)
    if (PA_UNLIKELY(quarantine_always_for_testing))
      return true;
    // If quarantine is enabled and the tag overflows, move the containing slot
    // to quarantine, to prevent the attacker from exploiting a pointer that has
    // an old tag.
    return internal::HasOverflowTag(object);
#else
    return true;
#endif
  }

  PA_ALWAYS_INLINE void SetQuarantineAlwaysForTesting(bool value) {
    quarantine_always_for_testing = value;
  }

  PA_ALWAYS_INLINE bool IsScanEnabled() const {
    // Enabled scan implies enabled quarantine.
    PA_DCHECK(flags.scan_mode != ScanMode::kEnabled || IsQuarantineEnabled());
    return flags.scan_mode == ScanMode::kEnabled;
  }

  static PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE size_t
  GetDirectMapMetadataAndGuardPagesSize() {
    // Because we need to fake a direct-map region to look like a super page, we
    // need to allocate more pages around the payload:
    // - The first partition page is a combination of metadata and guard region.
    // - We also add a trailing guard page. In most cases, a system page would
    //   suffice. But on 32-bit systems when BRP is on, we need a partition page
    //   to match granularity of the BRP pool bitmap. For cosistency, we'll use
    //   a partition page everywhere, which is cheap as it's uncommitted address
    //   space anyway.
    return 2 * internal::PartitionPageSize();
  }

  static PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE size_t
  GetDirectMapSlotSize(size_t raw_size) {
    // Caller must check that the size is not above the MaxDirectMapped()
    // limit before calling. This also guards against integer overflow in the
    // calculation here.
    PA_DCHECK(raw_size <= internal::MaxDirectMapped());
    return partition_alloc::internal::base::bits::AlignUp(
        raw_size, internal::SystemPageSize());
  }

  static PA_ALWAYS_INLINE size_t
  GetDirectMapReservationSize(size_t padded_raw_size) {
    // Caller must check that the size is not above the MaxDirectMapped()
    // limit before calling. This also guards against integer overflow in the
    // calculation here.
    PA_DCHECK(padded_raw_size <= internal::MaxDirectMapped());
    return partition_alloc::internal::base::bits::AlignUp(
        padded_raw_size + GetDirectMapMetadataAndGuardPagesSize(),
        internal::DirectMapAllocationGranularity());
  }

  PA_ALWAYS_INLINE size_t AdjustSize0IfNeeded(size_t size) const {
    // There are known cases where allowing size 0 would lead to problems:
    // 1. If extras are present only before allocation (e.g. BRP ref-count), the
    //    extras will fill the entire kAlignment-sized slot, leading to
    //    returning a pointer to the next slot. ReallocWithFlags() calls
    //    SlotSpanMetadata::FromObject() prior to subtracting extras, thus
    //    potentially getting a wrong slot span.
    // 2. If we put BRP ref-count in the previous slot, that slot may be free.
    //    In this case, the slot needs to fit both, a free-list entry and a
    //    ref-count. If sizeof(PartitionRefCount) is 8, it fills the entire
    //    smallest slot on 32-bit systems (kSmallestBucket is 8), thus not
    //    leaving space for the free-list entry.
    // 3. On macOS and iOS, PartitionGetSizeEstimate() is used for two purposes:
    //    as a zone dispatcher and as an underlying implementation of
    //    malloc_size(3). As a zone dispatcher, zero has a special meaning of
    //    "doesn't belong to this zone". When extras fill out the entire slot,
    //    the usable size is 0, thus confusing the zone dispatcher.
    //
    // To save ourselves a branch on this hot path, we could eliminate this
    // check at compile time for cases not listed above. The #if statement would
    // be rather complex. Then there is also the fear of the unknown. The
    // existing cases were discovered through obscure, painful-to-debug crashes.
    // Better save ourselves trouble with not-yet-discovered cases.
    if (PA_UNLIKELY(size == 0))
      return 1;
    return size;
  }

  // Adjusts the size by adding extras. Also include the 0->1 adjustment if
  // needed.
  PA_ALWAYS_INLINE size_t AdjustSizeForExtrasAdd(size_t size) const {
    size = AdjustSize0IfNeeded(size);
    PA_DCHECK(size + flags.extras_size >= size);
    return size + flags.extras_size;
  }

  // Adjusts the size by subtracing extras. Doesn't include the 0->1 adjustment,
  // which leads to an asymmetry with AdjustSizeForExtrasAdd, but callers of
  // AdjustSizeForExtrasSubtract either expect the adjustment to be included, or
  // are indifferent.
  PA_ALWAYS_INLINE size_t AdjustSizeForExtrasSubtract(size_t size) const {
    return size - flags.extras_size;
  }

  PA_ALWAYS_INLINE uintptr_t SlotStartToObjectAddr(uintptr_t slot_start) const {
    // TODO(bartekn): Check that |slot_start| is indeed a slot start.
    return slot_start + flags.extras_offset;
  }

  PA_ALWAYS_INLINE void* SlotStartToObject(uintptr_t slot_start) const {
    // TODO(bartekn): Check that |slot_start| is indeed a slot start.
    return internal::TagAddr(SlotStartToObjectAddr(slot_start));
  }

  PA_ALWAYS_INLINE uintptr_t ObjectToSlotStart(void* object) const {
    return UntagPtr(object) - flags.extras_offset;
    // TODO(bartekn): Check that the result is indeed a slot start.
  }

  bool brp_enabled() const {
#if BUILDFLAG(USE_BACKUP_REF_PTR)
    return flags.brp_enabled_;
#else
    return false;
#endif
  }

  bool brp_zapping_enabled() const {
#if BUILDFLAG(USE_BACKUP_REF_PTR)
    return flags.brp_zapping_enabled_;
#else
    return false;
#endif
  }

  PA_ALWAYS_INLINE bool uses_configurable_pool() const {
    return flags.use_configurable_pool;
  }

  // To make tests deterministic, it is necessary to uncap the amount of memory
  // waste incurred by empty slot spans. Otherwise, the size of various
  // freelists, and committed memory becomes harder to reason about (and
  // brittle) with a single thread, and non-deterministic with several.
  void UncapEmptySlotSpanMemoryForTesting() {
    max_empty_slot_spans_dirty_bytes_shift = 0;
  }

#if defined(PA_USE_MTE_CHECKED_PTR_WITH_64_BITS_POINTERS)
  PA_ALWAYS_INLINE partition_alloc::PartitionTag GetNewPartitionTag() {
    // TODO(crbug.com/1298696): performance is not an issue. We can use
    // random tags in lieu of sequential ones.
    auto tag = ++current_partition_tag;
    tag += !tag;  // Avoid 0.
    current_partition_tag = tag;
    return tag;
  }
#endif  // defined(PA_USE_MTE_CHECKED_PTR_WITH_64_BITS_POINTERS)

  // Enables the sorting of active slot spans in PurgeMemory().
  static void EnableSortActiveSlotSpans();

 private:
  static inline bool sort_active_slot_spans_ = false;

  // |buckets| has `kNumBuckets` elements, but we sometimes access it at index
  // `kNumBuckets`, which is occupied by the sentinel bucket. The correct layout
  // is enforced by a static_assert() in partition_root.cc, so this is
  // fine. However, UBSAN is correctly pointing out that there is an
  // out-of-bounds access, so disable it for these accesses.
  //
  // See crbug.com/1150772 for an instance of Clusterfuzz / UBSAN detecting
  // this.
  PA_ALWAYS_INLINE const Bucket& PA_NO_SANITIZE("undefined")
      bucket_at(size_t i) const {
    PA_DCHECK(i <= internal::kNumBuckets);
    return buckets[i];
  }

  // Returns whether a |bucket| from |this| root is direct-mapped. This function
  // does not touch |bucket|, contrary to  PartitionBucket::is_direct_mapped().
  //
  // This is meant to be used in hot paths, and particularly *before* going into
  // the thread cache fast path. Indeed, real-world profiles show that accessing
  // an allocation's bucket is responsible for a sizable fraction of *total*
  // deallocation time. This can be understood because
  // - All deallocations have to access the bucket to know whether it is
  //   direct-mapped. If not (vast majority of allocations), it can go through
  //   the fast path, i.e. thread cache.
  // - The bucket is relatively frequently written to, by *all* threads
  //   (e.g. every time a slot span becomes full or empty), so accessing it will
  //   result in some amount of cacheline ping-pong.
  PA_ALWAYS_INLINE bool IsDirectMappedBucket(Bucket* bucket) const {
    // All regular allocations are associated with a bucket in the |buckets_|
    // array. A range check is then sufficient to identify direct-mapped
    // allocations.
    bool ret = !(bucket >= this->buckets && bucket <= &this->sentinel_bucket);
    PA_DCHECK(ret == bucket->is_direct_mapped());
    return ret;
  }

  // Allocates a memory slot, without initializing extras.
  //
  // - |flags| are as in AllocWithFlags().
  // - |raw_size| accommodates for extras on top of AllocWithFlags()'s
  //   |requested_size|.
  // - |usable_size| and |is_already_zeroed| are output only. |usable_size| is
  //   guaranteed to be larger or equal to AllocWithFlags()'s |requested_size|.
  PA_ALWAYS_INLINE uintptr_t RawAlloc(Bucket* bucket,
                                      unsigned int flags,
                                      size_t raw_size,
                                      size_t slot_span_alignment,
                                      size_t* usable_size,
                                      bool* is_already_zeroed);
  PA_ALWAYS_INLINE uintptr_t AllocFromBucket(Bucket* bucket,
                                             unsigned int flags,
                                             size_t raw_size,
                                             size_t slot_span_alignment,
                                             size_t* usable_size,
                                             bool* is_already_zeroed)
      PA_EXCLUSIVE_LOCKS_REQUIRED(lock_);

  bool TryReallocInPlaceForNormalBuckets(void* object,
                                         SlotSpan* slot_span,
                                         size_t new_size);
  bool TryReallocInPlaceForDirectMap(
      internal::SlotSpanMetadata<thread_safe>* slot_span,
      size_t requested_size) PA_EXCLUSIVE_LOCKS_REQUIRED(lock_);
  void DecommitEmptySlotSpans() PA_EXCLUSIVE_LOCKS_REQUIRED(lock_);
  PA_ALWAYS_INLINE void RawFreeLocked(uintptr_t slot_start)
      PA_EXCLUSIVE_LOCKS_REQUIRED(lock_);
  uintptr_t MaybeInitThreadCacheAndAlloc(uint16_t bucket_index,
                                         size_t* slot_size);

#if defined(PA_USE_PARTITION_ROOT_ENUMERATOR)
  static internal::Lock& GetEnumeratorLock();

  PartitionRoot* PA_GUARDED_BY(GetEnumeratorLock()) next_root = nullptr;
  PartitionRoot* PA_GUARDED_BY(GetEnumeratorLock()) prev_root = nullptr;

  friend class internal::PartitionRootEnumerator;
#endif  // defined(PA_USE_PARTITION_ROOT_ENUMERATOR)

  friend class ThreadCache;
};

namespace internal {

class ScopedSyscallTimer {
 public:
#if defined(PA_COUNT_SYSCALL_TIME)
  explicit ScopedSyscallTimer(PartitionRoot<>* root)
      : root_(root), tick_(base::TimeTicks::Now()) {}

  ~ScopedSyscallTimer() {
    root_->syscall_count.fetch_add(1, std::memory_order_relaxed);

    uint64_t elapsed_nanos = (base::TimeTicks::Now() - tick_).InNanoseconds();
    root_->syscall_total_time_ns.fetch_add(elapsed_nanos,
                                           std::memory_order_relaxed);
  }

 private:
  PartitionRoot<>* root_;
  const base::TimeTicks tick_;
#else
  explicit ScopedSyscallTimer(PartitionRoot<>* root) {
    root->syscall_count.fetch_add(1, std::memory_order_relaxed);
  }
#endif
};

#if BUILDFLAG(USE_BACKUP_REF_PTR)

PA_ALWAYS_INLINE uintptr_t
PartitionAllocGetDirectMapSlotStartInBRPPool(uintptr_t address) {
  PA_DCHECK(IsManagedByPartitionAllocBRPPool(address));
#if defined(PA_HAS_64_BITS_POINTERS)
  // Use this variant of GetDirectMapReservationStart as it has better
  // performance.
  uintptr_t offset = OffsetInBRPPool(address);
  uintptr_t reservation_start =
      GetDirectMapReservationStart(address, kBRPPoolHandle, offset);
#else
  uintptr_t reservation_start = GetDirectMapReservationStart(address);
#endif
  if (!reservation_start)
    return 0;

  // The direct map allocation may not start exactly from the first page, as
  // there may be padding for alignment. The first page metadata holds an offset
  // to where direct map metadata, and thus direct map start, are located.
  auto* first_page = PartitionPage<ThreadSafe>::FromAddr(reservation_start +
                                                         PartitionPageSize());
  auto* page = first_page + first_page->slot_span_metadata_offset;
  PA_DCHECK(page->is_valid);
  PA_DCHECK(!page->slot_span_metadata_offset);
  auto* slot_span = &page->slot_span_metadata;
  uintptr_t slot_start =
      SlotSpanMetadata<ThreadSafe>::ToSlotSpanStart(slot_span);
#if BUILDFLAG(PA_DCHECK_IS_ON)
  auto* metadata =
      PartitionDirectMapMetadata<ThreadSafe>::FromSlotSpan(slot_span);
  size_t padding_for_alignment =
      metadata->direct_map_extent.padding_for_alignment;
  PA_DCHECK(padding_for_alignment ==
            static_cast<size_t>(page - first_page) * PartitionPageSize());
  PA_DCHECK(slot_start ==
            reservation_start + PartitionPageSize() + padding_for_alignment);
#endif  // BUILDFLAG(PA_DCHECK_IS_ON)
  return slot_start;
}

// Gets the address to the beginning of the allocated slot. The input |address|
// can point anywhere in the slot, including the slot start as well as
// immediately past the slot.
//
// This isn't a general purpose function, it is used specifically for obtaining
// BackupRefPtr's ref-count. The caller is responsible for ensuring that the
// ref-count is in place for this allocation.
PA_ALWAYS_INLINE uintptr_t
PartitionAllocGetSlotStartInBRPPool(uintptr_t address) {
  // Adjust to support pointers right past the end of an allocation, which in
  // some cases appear to point outside the designated allocation slot.
  //
  // If ref-count is present before the allocation, then adjusting a valid
  // pointer down will not cause us to go down to the previous slot, otherwise
  // no adjustment is needed (and likely wouldn't be correct as there is
  // a risk of going down to the previous slot). Either way,
  // kPartitionPastAllocationAdjustment takes care of that detail.
  address -= kPartitionPastAllocationAdjustment;
  PA_DCHECK(IsManagedByNormalBucketsOrDirectMap(address));
  DCheckIfManagedByPartitionAllocBRPPool(address);

  uintptr_t directmap_slot_start =
      PartitionAllocGetDirectMapSlotStartInBRPPool(address);
  if (PA_UNLIKELY(directmap_slot_start))
    return directmap_slot_start;
  auto* slot_span = SlotSpanMetadata<ThreadSafe>::FromAddr(address);
  auto* root = PartitionRoot<ThreadSafe>::FromSlotSpan(slot_span);
  // Double check that ref-count is indeed present.
  PA_DCHECK(root->brp_enabled());

  // Get the offset from the beginning of the slot span.
  uintptr_t slot_span_start =
      SlotSpanMetadata<ThreadSafe>::ToSlotSpanStart(slot_span);
  size_t offset_in_slot_span = address - slot_span_start;

  auto* bucket = slot_span->bucket;
  return slot_span_start +
         bucket->slot_size * bucket->GetSlotNumber(offset_in_slot_span);
}

// Checks whether a given address stays within the same allocation slot after
// modification.
//
// This isn't a general purpose function. The caller is responsible for ensuring
// that the ref-count is in place for this allocation.
template <typename Z, typename = std::enable_if_t<offset_type<Z>, void>>
PA_ALWAYS_INLINE bool PartitionAllocIsValidPtrDelta(uintptr_t address,
                                                    Z delta_in_bytes) {
  // Required for pointers right past an allocation. See
  // |PartitionAllocGetSlotStartInBRPPool()|.
  uintptr_t adjusted_address = address - kPartitionPastAllocationAdjustment;
  PA_DCHECK(IsManagedByNormalBucketsOrDirectMap(adjusted_address));
  DCheckIfManagedByPartitionAllocBRPPool(adjusted_address);

  uintptr_t slot_start = PartitionAllocGetSlotStartInBRPPool(adjusted_address);
  // Don't use |adjusted_address| beyond this point at all. It was needed to
  // pick the right slot, but now we're dealing with very concrete addresses.
  // Zero it just in case, to catch errors.
  adjusted_address = 0;

  auto* slot_span = SlotSpanMetadata<ThreadSafe>::FromSlotStart(slot_start);
  auto* root = PartitionRoot<ThreadSafe>::FromSlotSpan(slot_span);
  // Double check that ref-count is indeed present.
  PA_DCHECK(root->brp_enabled());

  uintptr_t object_addr = root->SlotStartToObjectAddr(slot_start);
  uintptr_t new_address = address + static_cast<uintptr_t>(delta_in_bytes);
  return object_addr <= new_address &&
         // We use "greater than or equal" below because we want to include
         // pointers right past the end of an allocation.
         new_address <= object_addr + slot_span->GetUsableSize(root);
}

PA_ALWAYS_INLINE void PartitionAllocFreeForRefCounting(uintptr_t slot_start) {
  PA_DCHECK(!PartitionRefCountPointer(slot_start)->IsAlive());

  auto* slot_span = SlotSpanMetadata<ThreadSafe>::FromSlotStart(slot_start);
  auto* root = PartitionRoot<ThreadSafe>::FromSlotSpan(slot_span);
  // PartitionRefCount is required to be allocated inside a `PartitionRoot` that
  // supports reference counts.
  PA_DCHECK(root->brp_enabled());

  // memset() can be really expensive.
#if BUILDFLAG(PA_EXPENSIVE_DCHECKS_ARE_ON)
  DebugMemset(SlotStartAddr2Ptr(slot_start), kFreedByte,
              slot_span->GetUtilizedSlotSize()
#if BUILDFLAG(PUT_REF_COUNT_IN_PREVIOUS_SLOT)
                  - sizeof(PartitionRefCount)
#endif
  );
#endif

  root->total_size_of_brp_quarantined_bytes.fetch_sub(
      slot_span->GetSlotSizeForBookkeeping(), std::memory_order_relaxed);
  root->total_count_of_brp_quarantined_slots.fetch_sub(
      1, std::memory_order_relaxed);

  root->RawFreeWithThreadCache(slot_start, slot_span);
}
#endif  // BUILDFLAG(USE_BACKUP_REF_PTR)

}  // namespace internal

template <bool thread_safe>
PA_ALWAYS_INLINE uintptr_t
PartitionRoot<thread_safe>::AllocFromBucket(Bucket* bucket,
                                            unsigned int flags,
                                            size_t raw_size,
                                            size_t slot_span_alignment,
                                            size_t* usable_size,
                                            bool* is_already_zeroed) {
  PA_DCHECK((slot_span_alignment >= internal::PartitionPageSize()) &&
            internal::base::bits::IsPowerOfTwo(slot_span_alignment));
  SlotSpan* slot_span = bucket->active_slot_spans_head;
  // There always must be a slot span on the active list (could be a sentinel).
  PA_DCHECK(slot_span);
  // Check that it isn't marked full, which could only be true if the span was
  // removed from the active list.
  PA_DCHECK(!slot_span->marked_full);

  uintptr_t slot_start =
      internal::SlotStartPtr2Addr(slot_span->get_freelist_head());
  // Use the fast path when a slot is readily available on the free list of the
  // first active slot span. However, fall back to the slow path if a
  // higher-order alignment is requested, because an inner slot of an existing
  // slot span is unlikely to satisfy it.
  if (PA_LIKELY(slot_span_alignment <= internal::PartitionPageSize() &&
                slot_start)) {
    *is_already_zeroed = false;
    // This is a fast path, so avoid calling GetUsableSize() on Release builds
    // as it is more costly. Copy its small bucket path instead.
    *usable_size = AdjustSizeForExtrasSubtract(bucket->slot_size);
    PA_DCHECK(*usable_size == slot_span->GetUsableSize(this));

    // If these DCHECKs fire, you probably corrupted memory.
    // TODO(crbug.com/1257655): See if we can afford to make these CHECKs.
    PA_DCHECK(IsValidSlotSpan(slot_span));

    // All large allocations must go through the slow path to correctly update
    // the size metadata.
    PA_DCHECK(!slot_span->CanStoreRawSize());
    PA_DCHECK(!slot_span->bucket->is_direct_mapped());
    void* entry = slot_span->PopForAlloc(bucket->slot_size);
    PA_DCHECK(internal::SlotStartPtr2Addr(entry) == slot_start);

    PA_DCHECK(slot_span->bucket == bucket);
  } else {
    slot_start = bucket->SlowPathAlloc(this, flags, raw_size,
                                       slot_span_alignment, is_already_zeroed);
    if (PA_UNLIKELY(!slot_start))
      return 0;

    slot_span = SlotSpan::FromSlotStart(slot_start);
    // TODO(crbug.com/1257655): See if we can afford to make this a CHECK.
    PA_DCHECK(IsValidSlotSpan(slot_span));
    // For direct mapped allocations, |bucket| is the sentinel.
    PA_DCHECK((slot_span->bucket == bucket) ||
              (slot_span->bucket->is_direct_mapped() &&
               (bucket == &sentinel_bucket)));

    *usable_size = slot_span->GetUsableSize(this);
  }
  PA_DCHECK(slot_span->GetUtilizedSlotSize() <= slot_span->bucket->slot_size);
  IncreaseTotalSizeOfAllocatedBytes(slot_span, raw_size);
  return slot_start;
}

// static
template <bool thread_safe>
PA_NOINLINE void PartitionRoot<thread_safe>::Free(void* object) {
  return FreeWithFlags(0, object);
}

// static
template <bool thread_safe>
PA_ALWAYS_INLINE void PartitionRoot<thread_safe>::FreeWithFlags(
    unsigned int flags,
    void* object) {
  PA_DCHECK(flags < FreeFlags::kLastFlag << 1);

#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
  if (!(flags & FreeFlags::kNoMemoryToolOverride)) {
    free(object);
    return;
  }
#endif  // defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
  if (PA_UNLIKELY(!object))
    return;

  if (PartitionAllocHooks::AreHooksEnabled()) {
    PartitionAllocHooks::FreeObserverHookIfEnabled(object);
    if (PartitionAllocHooks::FreeOverrideHookIfEnabled(object))
      return;
  }

  FreeNoHooks(object);
}

// static
template <bool thread_safe>
PA_ALWAYS_INLINE void PartitionRoot<thread_safe>::FreeNoHooks(void* object) {
  if (PA_UNLIKELY(!object))
    return;
  // Almost all calls to FreeNoNooks() will end up writing to |*object|, the
  // only cases where we don't would be delayed free() in PCScan, but |*object|
  // can be cold in cache.
  PA_PREFETCH(object);
  uintptr_t object_addr = internal::ObjectPtr2Addr(object);

  // On Android, malloc() interception is more fragile than on other
  // platforms, as we use wrapped symbols. However, the GigaCage allows us to
  // quickly tell that a pointer was allocated with PartitionAlloc.
  //
  // This is a crash to detect imperfect symbol interception. However, we can
  // forward allocations we don't own to the system malloc() implementation in
  // these rare cases, assuming that some remain.
  //
  // On Android Chromecast devices, this is already checked in PartitionFree()
  // in the shim.
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC) && \
    (BUILDFLAG(IS_ANDROID) && !BUILDFLAG(PA_IS_CAST_ANDROID))
  PA_CHECK(IsManagedByPartitionAlloc(object_addr));
#endif

  // Fetch the root from the address, and not SlotSpanMetadata. This is
  // important, as obtaining it from SlotSpanMetadata is a slow operation
  // (looking into the metadata area, and following a pointer), which can induce
  // cache coherency traffic (since they're read on every free(), and written to
  // on any malloc()/free() that is not a hit in the thread cache). This way we
  // change the critical path from object -> slot_span -> root into two
  // *parallel* ones:
  // 1. object -> root
  // 2. object -> slot_span
  auto* root = FromAddrInFirstSuperpage(object_addr);
  SlotSpan* slot_span = SlotSpan::FromObject(object);
  PA_DCHECK(FromSlotSpan(slot_span) == root);

  uintptr_t slot_start = root->ObjectToSlotStart(object);
  PA_DCHECK(slot_span == SlotSpan::FromSlotStart(slot_start));

#if defined(PA_HAS_MEMORY_TAGGING)
  const size_t slot_size = slot_span->bucket->slot_size;
  if (PA_LIKELY(slot_size <= internal::kMaxMemoryTaggingSize)) {
    internal::TagMemoryRangeIncrement(slot_start, slot_size);
    // Incrementing the MTE-tag in the memory range invalidates the |object|'s
    // tag, so it must be retagged.
    object = internal::TagPtr(object);
  }
#else
  // We are going to read from |*slot_span| in all branches, but haven't done it
  // yet.
  //
  // TODO(crbug.com/1207307): It would be much better to avoid touching
  // |*slot_span| at all on the fast path, or at least to separate its read-only
  // parts (i.e. bucket pointer) from the rest. Indeed, every thread cache miss
  // (or batch fill) will *write* to |slot_span->freelist_head|, leading to
  // cacheline ping-pong.
  //
  // Don't do it when memory tagging is enabled, as |*slot_span| has already
  // been touched above.
  PA_PREFETCH(slot_span);
#endif  // defined(PA_HAS_MEMORY_TAGGING)

#if defined(PA_USE_MTE_CHECKED_PTR_WITH_64_BITS_POINTERS)
  if (!root->IsDirectMappedBucket(slot_span->bucket)) {
    partition_alloc::internal::PartitionTagIncrementValue(
        slot_start, slot_span->bucket->slot_size);
  }
#endif  // defined(PA_USE_MTE_CHECKED_PTR_WITH_64_BITS_POINTERS)

  // TODO(bikineev): Change the condition to PA_LIKELY once PCScan is enabled by
  // default.
  if (PA_UNLIKELY(root->ShouldQuarantine(object))) {
    // PCScan safepoint. Call before potentially scheduling scanning task.
    PCScan::JoinScanIfNeeded();
    if (PA_LIKELY(internal::IsManagedByNormalBuckets(slot_start))) {
      PCScan::MoveToQuarantine(object, slot_span->GetUsableSize(root),
                               slot_start, slot_span->bucket->slot_size);
      return;
    }
  }

  root->FreeNoHooksImmediate(object, slot_span, slot_start);
}

template <bool thread_safe>
PA_ALWAYS_INLINE void PartitionRoot<thread_safe>::FreeNoHooksImmediate(
    void* object,
    SlotSpan* slot_span,
    uintptr_t slot_start) {
  // The thread cache is added "in the middle" of the main allocator, that is:
  // - After all the cookie/ref-count management
  // - Before the "raw" allocator.
  //
  // On the deallocation side:
  // 1. Check cookie/ref-count, adjust the pointer
  // 2. Deallocation
  //   a. Return to the thread cache if possible. If it succeeds, return.
  //   b. Otherwise, call the "raw" allocator <-- Locking
  PA_DCHECK(object);
  PA_DCHECK(slot_span);
  PA_DCHECK(IsValidSlotSpan(slot_span));
  PA_DCHECK(slot_start);

  // Layout inside the slot:
  //   |[refcnt]|...object...|[empty]|[cookie]|[unused]|
  //            <--------(a)--------->
  //   <--(b)--->         +          <--(b)--->
  //   <-----------------(c)------------------>
  //     (a) usable_size
  //     (b) extras
  //     (c) utilized_slot_size
  //
  // If PUT_REF_COUNT_IN_PREVIOUS_SLOT is set, the layout is:
  //   |...object...|[empty]|[cookie]|[unused]|[refcnt]|
  //   <--------(a)--------->
  //                        <--(b)--->   +    <--(b)--->
  //   <-------------(c)------------->   +    <--(c)--->
  //
  // Note: ref-count and cookie can be 0-sized.
  //
  // For more context, see the other "Layout inside the slot" comment inside
  // AllocWithFlagsNoHooks().

#if BUILDFLAG(PA_DCHECK_IS_ON)
  if (flags.allow_cookie) {
    // Verify the cookie after the allocated region.
    // If this assert fires, you probably corrupted memory.
    internal::PartitionCookieCheckValue(static_cast<unsigned char*>(object) +
                                        slot_span->GetUsableSize(this));
  }
#endif

  // TODO(bikineev): Change the condition to PA_LIKELY once PCScan is enabled by
  // default.
  if (PA_UNLIKELY(IsQuarantineEnabled())) {
    if (PA_LIKELY(internal::IsManagedByNormalBuckets(slot_start))) {
      // Mark the state in the state bitmap as freed.
      internal::StateBitmapFromAddr(slot_start)->Free(slot_start);
    }
  }

#if BUILDFLAG(USE_BACKUP_REF_PTR)
  // TODO(keishi): Add PA_LIKELY when brp is fully enabled as |brp_enabled| will
  // be false only for the aligned partition.
  if (brp_enabled()) {
    auto* ref_count = internal::PartitionRefCountPointer(slot_start);
    // If there are no more references to the allocation, it can be freed
    // immediately. Otherwise, defer the operation and zap the memory to turn
    // potential use-after-free issues into unexploitable crashes.
    if (PA_UNLIKELY(!ref_count->IsAliveWithNoKnownRefs() &&
                    brp_zapping_enabled()))
      internal::SecureMemset(object, internal::kQuarantinedByte,
                             slot_span->GetUsableSize(this));

    if (PA_UNLIKELY(!(ref_count->ReleaseFromAllocator()))) {
      total_size_of_brp_quarantined_bytes.fetch_add(
          slot_span->GetSlotSizeForBookkeeping(), std::memory_order_relaxed);
      total_count_of_brp_quarantined_slots.fetch_add(1,
                                                     std::memory_order_relaxed);
      cumulative_size_of_brp_quarantined_bytes.fetch_add(
          slot_span->GetSlotSizeForBookkeeping(), std::memory_order_relaxed);
      cumulative_count_of_brp_quarantined_slots.fetch_add(
          1, std::memory_order_relaxed);
      return;
    }
  }
#endif  // BUILDFLAG(USE_BACKUP_REF_PTR)

  // memset() can be really expensive.
#if BUILDFLAG(PA_EXPENSIVE_DCHECKS_ARE_ON)
  internal::DebugMemset(internal::SlotStartAddr2Ptr(slot_start),
                        internal::kFreedByte,
                        slot_span->GetUtilizedSlotSize()
#if BUILDFLAG(PUT_REF_COUNT_IN_PREVIOUS_SLOT)
                            - sizeof(internal::PartitionRefCount)
#endif
  );
#elif defined(PA_ZERO_RANDOMLY_ON_FREE)
  // `memset` only once in a while: we're trading off safety for time
  // efficiency.
  if (PA_UNLIKELY(internal::RandomPeriod()) &&
      !IsDirectMappedBucket(slot_span->bucket)) {
    internal::SecureMemset(internal::SlotStartAddr2Ptr(slot_start), 0,
                           slot_span->GetUtilizedSlotSize()
#if BUILDFLAG(PUT_REF_COUNT_IN_PREVIOUS_SLOT)
                               - sizeof(internal::PartitionRefCount)
#endif
    );
  }
#endif  // defined(PA_ZERO_RANDOMLY_ON_FREE)

  RawFreeWithThreadCache(slot_start, slot_span);
}

template <bool thread_safe>
PA_ALWAYS_INLINE void PartitionRoot<thread_safe>::FreeInSlotSpan(
    uintptr_t slot_start,
    SlotSpan* slot_span) {
  DecreaseTotalSizeOfAllocatedBytes(slot_span);
  return slot_span->Free(slot_start);
}

template <bool thread_safe>
PA_ALWAYS_INLINE void PartitionRoot<thread_safe>::RawFree(
    uintptr_t slot_start) {
  SlotSpan* slot_span = SlotSpan::FromSlotStart(slot_start);
  RawFree(slot_start, slot_span);
}

#if defined(COMPILER_MSVC) && !defined(__clang__)
// MSVC only supports inline assembly on x86. This preprocessor directive
// is intended to be a replacement for the same.
//
// TODO(crbug.com/1351310): Make sure inlining doesn't degrade this into
// a no-op or similar. The documentation doesn't say.
#pragma optimize("", off)
#endif
template <bool thread_safe>
PA_ALWAYS_INLINE void PartitionRoot<thread_safe>::RawFree(uintptr_t slot_start,
                                                          SlotSpan* slot_span) {
  // At this point we are about to acquire the lock, so we try to minimize the
  // risk of blocking inside the locked section.
  //
  // For allocations that are not direct-mapped, there will always be a store at
  // the beginning of |*slot_start|, to link the freelist. This is why there is
  // a prefetch of it at the beginning of the free() path.
  //
  // However, the memory which is being freed can be very cold (for instance
  // during browser shutdown, when various caches are finally completely freed),
  // and so moved to either compressed memory or swap. This means that touching
  // it here can cause a major page fault. This is in turn will cause
  // descheduling of the thread *while locked*. Since we don't have priority
  // inheritance locks on most platforms, avoiding long locked periods relies on
  // the OS having proper priority boosting. There is evidence
  // (crbug.com/1228523) that this is not always the case on Windows, and a very
  // low priority background thread can block the main one for a long time,
  // leading to hangs.
  //
  // To mitigate that, make sure that we fault *before* locking. Note that this
  // is useless for direct-mapped allocations (which are very rare anyway), and
  // that this path is *not* taken for thread cache bucket purge (since it calls
  // RawFreeLocked()). This is intentional, as the thread cache is purged often,
  // and the memory has a consequence the memory has already been touched
  // recently (to link the thread cache freelist).
  *static_cast<volatile uintptr_t*>(internal::SlotStartAddr2Ptr(slot_start)) =
      0;
  // Note: even though we write to slot_start + sizeof(void*) as well, due to
  // alignment constraints, the two locations are always going to be in the same
  // OS page. No need to write to the second one as well.
  //
  // Do not move the store above inside the locked section.
#if !(defined(COMPILER_MSVC) && !defined(__clang__))
  __asm__ __volatile__("" : : "r"(slot_start) : "memory");
#endif

  ::partition_alloc::internal::ScopedGuard guard{lock_};
  FreeInSlotSpan(slot_start, slot_span);
}
#if defined(COMPILER_MSVC) && !defined(__clang__)
#pragma optimize("", on)
#endif

template <bool thread_safe>
PA_ALWAYS_INLINE void PartitionRoot<thread_safe>::RawFreeBatch(
    FreeListEntry* head,
    FreeListEntry* tail,
    size_t size,
    SlotSpan* slot_span) {
  PA_DCHECK(head);
  PA_DCHECK(tail);
  PA_DCHECK(size > 0);
  PA_DCHECK(slot_span);
  PA_DCHECK(IsValidSlotSpan(slot_span));
  // The passed freelist is likely to be just built up, which means that the
  // corresponding pages were faulted in (without acquiring the lock). So there
  // is no need to touch pages manually here before the lock.
  ::partition_alloc::internal::ScopedGuard guard{lock_};
  DecreaseTotalSizeOfAllocatedBytes(slot_span);
  slot_span->AppendFreeList(head, tail, size);
}

template <bool thread_safe>
PA_ALWAYS_INLINE void PartitionRoot<thread_safe>::RawFreeWithThreadCache(
    uintptr_t slot_start,
    SlotSpan* slot_span) {
  // TLS access can be expensive, do a cheap local check first.
  //
  // PA_LIKELY: performance-sensitive partitions have a thread cache,
  // direct-mapped allocations are uncommon.
  if (PA_LIKELY(flags.with_thread_cache &&
                !IsDirectMappedBucket(slot_span->bucket))) {
    size_t bucket_index =
        static_cast<size_t>(slot_span->bucket - this->buckets);
    auto* thread_cache = ThreadCache::Get();
    if (PA_LIKELY(ThreadCache::IsValid(thread_cache) &&
                  thread_cache->MaybePutInCache(slot_start, bucket_index))) {
      return;
    }
  }

  RawFree(slot_start, slot_span);
}

template <bool thread_safe>
PA_ALWAYS_INLINE void PartitionRoot<thread_safe>::RawFreeLocked(
    uintptr_t slot_start) {
  SlotSpan* slot_span = SlotSpan::FromSlotStart(slot_start);
  // Direct-mapped deallocation releases then re-acquires the lock. The caller
  // may not expect that, but we never call this function on direct-mapped
  // allocations.
  PA_DCHECK(!IsDirectMappedBucket(slot_span->bucket));
  FreeInSlotSpan(slot_start, slot_span);
}

// static
template <bool thread_safe>
PA_ALWAYS_INLINE bool PartitionRoot<thread_safe>::IsValidSlotSpan(
    SlotSpan* slot_span) {
  PartitionRoot* root = FromSlotSpan(slot_span);
  return root->inverted_self == ~reinterpret_cast<uintptr_t>(root);
}

template <bool thread_safe>
PA_ALWAYS_INLINE PartitionRoot<thread_safe>*
PartitionRoot<thread_safe>::FromSlotSpan(SlotSpan* slot_span) {
  auto* extent_entry = reinterpret_cast<SuperPageExtentEntry*>(
      reinterpret_cast<uintptr_t>(slot_span) & internal::SystemPageBaseMask());
  return extent_entry->root;
}

template <bool thread_safe>
PA_ALWAYS_INLINE PartitionRoot<thread_safe>*
PartitionRoot<thread_safe>::FromFirstSuperPage(uintptr_t super_page) {
  PA_DCHECK(internal::IsReservationStart(super_page));
  auto* extent_entry =
      internal::PartitionSuperPageToExtent<thread_safe>(super_page);
  PartitionRoot* root = extent_entry->root;
  PA_DCHECK(root->inverted_self == ~reinterpret_cast<uintptr_t>(root));
  return root;
}

template <bool thread_safe>
PA_ALWAYS_INLINE PartitionRoot<thread_safe>*
PartitionRoot<thread_safe>::FromAddrInFirstSuperpage(uintptr_t address) {
  uintptr_t super_page = address & internal::kSuperPageBaseMask;
  PA_DCHECK(internal::IsReservationStart(super_page));
  return FromFirstSuperPage(super_page);
}

template <bool thread_safe>
PA_ALWAYS_INLINE void
PartitionRoot<thread_safe>::IncreaseTotalSizeOfAllocatedBytes(
    SlotSpan* slot_span,
    size_t raw_size) {
  IncreaseTotalSizeOfAllocatedBytes(reinterpret_cast<uintptr_t>(slot_span),
                                    slot_span->GetSlotSizeForBookkeeping(),
                                    raw_size);
}

template <bool thread_safe>
PA_ALWAYS_INLINE void
PartitionRoot<thread_safe>::DecreaseTotalSizeOfAllocatedBytes(
    SlotSpan* slot_span) {
  DecreaseTotalSizeOfAllocatedBytes(reinterpret_cast<uintptr_t>(slot_span),
                                    slot_span->GetSlotSizeForBookkeeping());
}

template <bool thread_safe>
PA_ALWAYS_INLINE void
PartitionRoot<thread_safe>::IncreaseTotalSizeOfAllocatedBytes(uintptr_t addr,
                                                              size_t len,
                                                              size_t raw_size) {
  total_size_of_allocated_bytes += len;
  max_size_of_allocated_bytes =
      std::max(max_size_of_allocated_bytes, total_size_of_allocated_bytes);
#if BUILDFLAG(RECORD_ALLOC_INFO)
  partition_alloc::internal::RecordAllocOrFree(addr | 0x01, raw_size);
#endif  // BUILDFLAG(RECORD_ALLOC_INFO)
}

template <bool thread_safe>
PA_ALWAYS_INLINE void
PartitionRoot<thread_safe>::DecreaseTotalSizeOfAllocatedBytes(uintptr_t addr,
                                                              size_t len) {
  // An underflow here means we've miscounted |total_size_of_allocated_bytes|
  // somewhere.
  PA_DCHECK(total_size_of_allocated_bytes >= len);
  total_size_of_allocated_bytes -= len;
#if BUILDFLAG(RECORD_ALLOC_INFO)
  partition_alloc::internal::RecordAllocOrFree(addr | 0x00, len);
#endif  // BUILDFLAG(RECORD_ALLOC_INFO)
}

template <bool thread_safe>
PA_ALWAYS_INLINE void PartitionRoot<thread_safe>::IncreaseCommittedPages(
    size_t len) {
  const auto old_total =
      total_size_of_committed_pages.fetch_add(len, std::memory_order_relaxed);

  const auto new_total = old_total + len;

  // This function is called quite frequently; to avoid performance problems, we
  // don't want to hold a lock here, so we use compare and exchange instead.
  size_t expected = max_size_of_committed_pages.load(std::memory_order_relaxed);
  size_t desired;
  do {
    desired = std::max(expected, new_total);
  } while (!max_size_of_committed_pages.compare_exchange_weak(
      expected, desired, std::memory_order_relaxed, std::memory_order_relaxed));
}

template <bool thread_safe>
PA_ALWAYS_INLINE void PartitionRoot<thread_safe>::DecreaseCommittedPages(
    size_t len) {
  total_size_of_committed_pages.fetch_sub(len, std::memory_order_relaxed);
}

template <bool thread_safe>
PA_ALWAYS_INLINE void PartitionRoot<thread_safe>::DecommitSystemPagesForData(
    uintptr_t address,
    size_t length,
    PageAccessibilityDisposition accessibility_disposition) {
  internal::ScopedSyscallTimer timer{this};
  DecommitSystemPages(address, length, accessibility_disposition);
  DecreaseCommittedPages(length);
}

// Not unified with TryRecommitSystemPagesForData() to preserve error codes.
template <bool thread_safe>
PA_ALWAYS_INLINE void PartitionRoot<thread_safe>::RecommitSystemPagesForData(
    uintptr_t address,
    size_t length,
    PageAccessibilityDisposition accessibility_disposition) {
  internal::ScopedSyscallTimer timer{this};

  bool ok = TryRecommitSystemPages(
      address, length, PageAccessibilityConfiguration::kReadWriteTagged,
      accessibility_disposition);
  if (PA_UNLIKELY(!ok)) {
    // Decommit some memory and retry. The alternative is crashing.
    DecommitEmptySlotSpans();
    RecommitSystemPages(address, length,
                        PageAccessibilityConfiguration::kReadWriteTagged,
                        accessibility_disposition);
  }

  IncreaseCommittedPages(length);
}

template <bool thread_safe>
PA_ALWAYS_INLINE bool PartitionRoot<thread_safe>::TryRecommitSystemPagesForData(
    uintptr_t address,
    size_t length,
    PageAccessibilityDisposition accessibility_disposition) {
  internal::ScopedSyscallTimer timer{this};
  bool ok = TryRecommitSystemPages(
      address, length, PageAccessibilityConfiguration::kReadWriteTagged,
      accessibility_disposition);
#if defined(PA_COMMIT_CHARGE_IS_LIMITED)
  if (PA_UNLIKELY(!ok)) {
    {
      ::partition_alloc::internal::ScopedGuard guard(lock_);
      DecommitEmptySlotSpans();
    }
    ok = TryRecommitSystemPages(
        address, length, PageAccessibilityConfiguration::kReadWriteTagged,
        accessibility_disposition);
  }
#endif  // defined(PA_COMMIT_CHARGE_IS_LIMITED)

  if (ok)
    IncreaseCommittedPages(length);

  return ok;
}

// static
//
// Returns the size available to the app. It can be equal or higher than the
// requested size. If higher, the overage won't exceed what's actually usable
// by the app without a risk of running out of an allocated region or into
// PartitionAlloc's internal data. Used as malloc_usable_size and malloc_size.
//
// |ptr| should preferably point to the beginning of an object returned from
// malloc() et al., but it doesn't have to. crbug.com/1292646 shows an example
// where this isn't the case. Note, an inner object pointer won't work for
// direct map, unless it is within the first partition page.
template <bool thread_safe>
PA_ALWAYS_INLINE size_t PartitionRoot<thread_safe>::GetUsableSize(void* ptr) {
  // malloc_usable_size() is expected to handle NULL gracefully and return 0.
  if (!ptr)
    return 0;
  auto* slot_span = SlotSpan::FromObjectInnerPtr(ptr);
  auto* root = FromSlotSpan(slot_span);
  return slot_span->GetUsableSize(root);
}

// Return the capacity of the underlying slot (adjusted for extras). This
// doesn't mean this capacity is readily available. It merely means that if
// a new allocation (or realloc) happened with that returned value, it'd use
// the same amount of underlying memory.
template <bool thread_safe>
PA_ALWAYS_INLINE size_t
PartitionRoot<thread_safe>::AllocationCapacityFromSlotStart(
    uintptr_t slot_start) const {
  auto* slot_span = SlotSpan::FromSlotStart(slot_start);
  return AdjustSizeForExtrasSubtract(slot_span->bucket->slot_size);
}

// static
template <bool thread_safe>
PA_ALWAYS_INLINE uint16_t PartitionRoot<thread_safe>::SizeToBucketIndex(
    size_t size,
    bool with_denser_bucket_distribution) {
  if (with_denser_bucket_distribution)
    return internal::BucketIndexLookup::GetIndexForDenserBuckets(size);
  return internal::BucketIndexLookup::GetIndex(size);
}

template <bool thread_safe>
PA_ALWAYS_INLINE void* PartitionRoot<thread_safe>::AllocWithFlags(
    unsigned int flags,
    size_t requested_size,
    const char* type_name) {
  return AllocWithFlagsInternal(flags, requested_size,
                                internal::PartitionPageSize(), type_name);
}

template <bool thread_safe>
PA_ALWAYS_INLINE void* PartitionRoot<thread_safe>::AllocWithFlagsInternal(
    unsigned int flags,
    size_t requested_size,
    size_t slot_span_alignment,
    const char* type_name) {
  PA_DCHECK(
      (slot_span_alignment >= internal::PartitionPageSize()) &&
      partition_alloc::internal::base::bits::IsPowerOfTwo(slot_span_alignment));

  PA_DCHECK(flags < AllocFlags::kLastFlag << 1);
  PA_DCHECK((flags & AllocFlags::kNoHooks) == 0);  // Internal only.
  PA_DCHECK(initialized);

#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
  if (!(flags & AllocFlags::kNoMemoryToolOverride)) {
    CHECK_MAX_SIZE_OR_RETURN_NULLPTR(requested_size, flags);
    const bool zero_fill = flags & AllocFlags::kZeroFill;
    void* result =
        zero_fill ? calloc(1, requested_size) : malloc(requested_size);
    PA_CHECK(result || flags & AllocFlags::kReturnNull);
    return result;
  }
#endif  // defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
  void* object = nullptr;
  const bool hooks_enabled = PartitionAllocHooks::AreHooksEnabled();
  if (PA_UNLIKELY(hooks_enabled)) {
    if (PartitionAllocHooks::AllocationOverrideHookIfEnabled(
            &object, flags, requested_size, type_name)) {
      PartitionAllocHooks::AllocationObserverHookIfEnabled(
          object, requested_size, type_name);
      return object;
    }
  }

  object = AllocWithFlagsNoHooks(flags, requested_size, slot_span_alignment);

  if (PA_UNLIKELY(hooks_enabled)) {
    PartitionAllocHooks::AllocationObserverHookIfEnabled(object, requested_size,
                                                         type_name);
  }

  return object;
}

template <bool thread_safe>
PA_ALWAYS_INLINE void* PartitionRoot<thread_safe>::AllocWithFlagsNoHooks(
    unsigned int flags,
    size_t requested_size,
    size_t slot_span_alignment) {
  PA_DCHECK(
      (slot_span_alignment >= internal::PartitionPageSize()) &&
      partition_alloc::internal::base::bits::IsPowerOfTwo(slot_span_alignment));

  // The thread cache is added "in the middle" of the main allocator, that is:
  // - After all the cookie/ref-count management
  // - Before the "raw" allocator.
  //
  // That is, the general allocation flow is:
  // 1. Adjustment of requested size to make room for extras
  // 2. Allocation:
  //   a. Call to the thread cache, if it succeeds, go to step 3.
  //   b. Otherwise, call the "raw" allocator <-- Locking
  // 3. Handle cookie/ref-count, zero allocation if required

  size_t raw_size = AdjustSizeForExtrasAdd(requested_size);
  PA_CHECK(raw_size >= requested_size);  // check for overflows

  // We should only call |SizeToBucketIndex| at most once when allocating.
  // Otherwise, we risk having |with_denser_bucket_distribution| changed
  // underneath us (between calls to |SizeToBucketIndex| during the same call),
  // which would result in an inconsistent state.
  uint16_t bucket_index =
      SizeToBucketIndex(raw_size, this->flags.with_denser_bucket_distribution);
  size_t usable_size;
  bool is_already_zeroed = false;
  uintptr_t slot_start = 0;
  size_t slot_size;

  const bool is_quarantine_enabled = IsQuarantineEnabled();
  // PCScan safepoint. Call before trying to allocate from cache.
  // TODO(bikineev): Change the condition to PA_LIKELY once PCScan is enabled by
  // default.
  if (PA_UNLIKELY(is_quarantine_enabled)) {
    PCScan::JoinScanIfNeeded();
  }

  // Don't use thread cache if higher order alignment is requested, because the
  // thread cache will not be able to satisfy it.
  //
  // PA_LIKELY: performance-sensitive partitions use the thread cache.
  if (PA_LIKELY(this->flags.with_thread_cache &&
                slot_span_alignment <= internal::PartitionPageSize())) {
    auto* tcache = ThreadCache::Get();
    // PA_LIKELY: Typically always true, except for the very first allocation of
    // this thread.
    if (PA_LIKELY(ThreadCache::IsValid(tcache))) {
      slot_start = tcache->GetFromCache(bucket_index, &slot_size);
    } else {
      slot_start = MaybeInitThreadCacheAndAlloc(bucket_index, &slot_size);
    }

    // PA_LIKELY: median hit rate in the thread cache is 95%, from metrics.
    if (PA_LIKELY(slot_start)) {
      // This follows the logic of SlotSpanMetadata::GetUsableSize for small
      // buckets, which is too expensive to call here.
      // Keep it in sync!
      usable_size = AdjustSizeForExtrasSubtract(slot_size);

#if BUILDFLAG(PA_DCHECK_IS_ON)
      // Make sure that the allocated pointer comes from the same place it would
      // for a non-thread cache allocation.
      SlotSpan* slot_span = SlotSpan::FromSlotStart(slot_start);
      PA_DCHECK(IsValidSlotSpan(slot_span));
      PA_DCHECK(slot_span->bucket == &bucket_at(bucket_index));
      PA_DCHECK(slot_span->bucket->slot_size == slot_size);
      PA_DCHECK(usable_size == slot_span->GetUsableSize(this));
      // All large allocations must go through the RawAlloc path to correctly
      // set |usable_size|.
      PA_DCHECK(!slot_span->CanStoreRawSize());
      PA_DCHECK(!slot_span->bucket->is_direct_mapped());
#endif
    } else {
      slot_start =
          RawAlloc(buckets + bucket_index, flags, raw_size, slot_span_alignment,
                   &usable_size, &is_already_zeroed);
    }
  } else {
    slot_start =
        RawAlloc(buckets + bucket_index, flags, raw_size, slot_span_alignment,
                 &usable_size, &is_already_zeroed);
  }

  if (PA_UNLIKELY(!slot_start))
    return nullptr;

  // Layout inside the slot:
  //   |[refcnt]|...object...|[empty]|[cookie]|[unused]|
  //            <----(a)----->
  //            <--------(b)--------->
  //   <--(c)--->         +          <--(c)--->
  //   <---------(d)--------->   +   <--(d)--->
  //   <-----------------(e)------------------>
  //   <----------------------(f)---------------------->
  //     (a) requested_size
  //     (b) usable_size
  //     (c) extras
  //     (d) raw_size
  //     (e) utilized_slot_size
  //     (f) slot_size
  // Notes:
  // - Ref-count may or may not exist in the slot, depending on brp_enabled().
  // - Cookie exists only in the BUILDFLAG(PA_DCHECK_IS_ON) case.
  // - Think of raw_size as the minimum size required internally to satisfy
  //   the allocation request (i.e. requested_size + extras)
  // - Note, at most one "empty" or "unused" space can occur at a time. It
  //   occurs when slot_size is larger than raw_size. "unused" applies only to
  //   large allocations (direct-mapped and single-slot slot spans) and "empty"
  //   only to small allocations.
  //   Why either-or, one might ask? We make an effort to put the trailing
  //   cookie as close to data as possible to catch overflows (often
  //   off-by-one), but that's possible only if we have enough space in metadata
  //   to save raw_size, i.e. only for large allocations. For small allocations,
  //   we have no other choice than putting the cookie at the very end of the
  //   slot, thus creating the "empty" space.
  //
  // If PUT_REF_COUNT_IN_PREVIOUS_SLOT is set, the layout is:
  //   |...object...|[empty]|[cookie]|[unused]|[refcnt]|
  //   <----(a)----->
  //   <--------(b)--------->
  //                        <--(c)--->   +    <--(c)--->
  //   <----(d)----->   +   <--(d)--->   +    <--(d)--->
  //   <-------------(e)------------->   +    <--(e)--->
  //   <----------------------(f)---------------------->
  // Notes:
  // If |slot_start| is not SystemPageSize()-aligned (possible only for small
  // allocations), ref-count of this slot is stored at the end of the previous
  // slot. Otherwise it is stored in ref-count table placed after the super page
  // metadata. For simplicity, the space for ref-count is still reserved at the
  // end of previous slot, even though redundant.

  void* object = SlotStartToObject(slot_start);

#if BUILDFLAG(PA_DCHECK_IS_ON)
  // Add the cookie after the allocation.
  if (this->flags.allow_cookie) {
    internal::PartitionCookieWriteValue(static_cast<unsigned char*>(object) +
                                        usable_size);
  }
#endif

  // Fill the region kUninitializedByte (on debug builds, if not requested to 0)
  // or 0 (if requested and not 0 already).
  bool zero_fill = flags & AllocFlags::kZeroFill;
  // PA_LIKELY: operator new() calls malloc(), not calloc().
  if (PA_LIKELY(!zero_fill)) {
    // memset() can be really expensive.
#if BUILDFLAG(PA_EXPENSIVE_DCHECKS_ARE_ON)
    internal::DebugMemset(object, internal::kUninitializedByte, usable_size);
#endif
  } else if (!is_already_zeroed) {
    memset(object, 0, usable_size);
  }

#if BUILDFLAG(USE_BACKUP_REF_PTR)
  // TODO(keishi): Add PA_LIKELY when brp is fully enabled as |brp_enabled| will
  // be false only for the aligned partition.
  if (brp_enabled()) {
    auto* ref_count = new (internal::PartitionRefCountPointer(slot_start))
        internal::PartitionRefCount();
#if defined(PA_REF_COUNT_STORE_REQUESTED_SIZE)
    ref_count->SetRequestedSize(requested_size);
#else
    (void)ref_count;
#endif
  }
#endif  // BUILDFLAG(USE_BACKUP_REF_PTR)

  // TODO(bikineev): Change the condition to PA_LIKELY once PCScan is enabled by
  // default.
  if (PA_UNLIKELY(is_quarantine_enabled)) {
    if (PA_LIKELY(internal::IsManagedByNormalBuckets(slot_start))) {
      // Mark the corresponding bits in the state bitmap as allocated.
      internal::StateBitmapFromAddr(slot_start)->Allocate(slot_start);
    }
  }

  return object;
}

template <bool thread_safe>
PA_ALWAYS_INLINE uintptr_t
PartitionRoot<thread_safe>::RawAlloc(Bucket* bucket,
                                     unsigned int flags,
                                     size_t raw_size,
                                     size_t slot_span_alignment,
                                     size_t* usable_size,
                                     bool* is_already_zeroed) {
  ::partition_alloc::internal::ScopedGuard guard{lock_};
  return AllocFromBucket(bucket, flags, raw_size, slot_span_alignment,
                         usable_size, is_already_zeroed);
}

template <bool thread_safe>
PA_ALWAYS_INLINE void* PartitionRoot<thread_safe>::AlignedAllocWithFlags(
    unsigned int flags,
    size_t alignment,
    size_t requested_size) {
  // Aligned allocation support relies on the natural alignment guarantees of
  // PartitionAlloc. Specifically, it relies on the fact that slots within a
  // slot span are aligned to slot size, from the beginning of the span.
  //
  // For alignments <=PartitionPageSize(), the code below adjusts the request
  // size to be a power of two, no less than alignment. Since slot spans are
  // aligned to PartitionPageSize(), which is also a power of two, this will
  // automatically guarantee alignment on the adjusted size boundary, thanks to
  // the natural alignment described above.
  //
  // For alignments >PartitionPageSize(), we need to pass the request down the
  // stack to only give us a slot span aligned to this more restrictive
  // boundary. In the current implementation, this code path will always
  // allocate a new slot span and hand us the first slot, so no need to adjust
  // the request size. As a consequence, allocating many small objects with
  // such a high alignment can cause a non-negligable fragmentation,
  // particularly if these allocations are back to back.
  // TODO(bartekn): We should check that this is not causing issues in practice.
  //
  // Extras before the allocation are forbidden as they shift the returned
  // allocation from the beginning of the slot, thus messing up alignment.
  // Extras after the allocation are acceptable, but they have to be taken into
  // account in the request size calculation to avoid crbug.com/1185484.
  PA_DCHECK(this->flags.allow_aligned_alloc);
  PA_DCHECK(!this->flags.extras_offset);
  // This is mandated by |posix_memalign()|, so should never fire.
  PA_CHECK(partition_alloc::internal::base::bits::IsPowerOfTwo(alignment));
  // Catch unsupported alignment requests early.
  PA_CHECK(alignment <= internal::kMaxSupportedAlignment);
  size_t raw_size = AdjustSizeForExtrasAdd(requested_size);

  size_t adjusted_size = requested_size;
  if (alignment <= internal::PartitionPageSize()) {
    // Handle cases such as size = 16, alignment = 64.
    // Wastes memory when a large alignment is requested with a small size, but
    // this is hard to avoid, and should not be too common.
    if (PA_UNLIKELY(raw_size < alignment)) {
      raw_size = alignment;
    } else {
      // PartitionAlloc only guarantees alignment for power-of-two sized
      // allocations. To make sure this applies here, round up the allocation
      // size.
      raw_size =
          static_cast<size_t>(1)
          << (int{sizeof(size_t) * 8} -
              partition_alloc::internal::base::bits::CountLeadingZeroBits(
                  raw_size - 1));
    }
    PA_DCHECK(partition_alloc::internal::base::bits::IsPowerOfTwo(raw_size));
    // Adjust back, because AllocWithFlagsNoHooks/Alloc will adjust it again.
    adjusted_size = AdjustSizeForExtrasSubtract(raw_size);

    // Overflow check. adjusted_size must be larger or equal to requested_size.
    if (PA_UNLIKELY(adjusted_size < requested_size)) {
      if (flags & AllocFlags::kReturnNull)
        return nullptr;
      // OutOfMemoryDeathTest.AlignedAlloc requires
      // base::TerminateBecauseOutOfMemory (invoked by
      // PartitionExcessiveAllocationSize).
      internal::PartitionExcessiveAllocationSize(requested_size);
      // internal::PartitionExcessiveAllocationSize(size) causes OOM_CRASH.
      PA_NOTREACHED();
    }
  }

  // Slot spans are naturally aligned on partition page size, but make sure you
  // don't pass anything less, because it'll mess up callee's calculations.
  size_t slot_span_alignment =
      std::max(alignment, internal::PartitionPageSize());
  bool no_hooks = flags & AllocFlags::kNoHooks;
  void* object =
      no_hooks
          ? AllocWithFlagsNoHooks(0, adjusted_size, slot_span_alignment)
          : AllocWithFlagsInternal(0, adjusted_size, slot_span_alignment, "");

  // |alignment| is a power of two, but the compiler doesn't necessarily know
  // that. A regular % operation is very slow, make sure to use the equivalent,
  // faster form.
  // No need to MTE-untag, as it doesn't change alignment.
  PA_CHECK(!(reinterpret_cast<uintptr_t>(object) & (alignment - 1)));

  return object;
}

template <bool thread_safe>
PA_NOINLINE void* PartitionRoot<thread_safe>::Alloc(size_t requested_size,
                                                    const char* type_name) {
  return AllocWithFlags(0, requested_size, type_name);
}

template <bool thread_safe>
PA_NOINLINE void* PartitionRoot<thread_safe>::Realloc(void* ptr,
                                                      size_t new_size,
                                                      const char* type_name) {
  return ReallocWithFlags(0, ptr, new_size, type_name);
}

template <bool thread_safe>
PA_NOINLINE void* PartitionRoot<thread_safe>::TryRealloc(
    void* ptr,
    size_t new_size,
    const char* type_name) {
  return ReallocWithFlags(AllocFlags::kReturnNull, ptr, new_size, type_name);
}

// Return the capacity of the underlying slot (adjusted for extras) that'd be
// used to satisfy a request of |size|. This doesn't mean this capacity would be
// readily available. It merely means that if an allocation happened with that
// returned value, it'd use the same amount of underlying memory as the
// allocation with |size|.
template <bool thread_safe>
PA_ALWAYS_INLINE size_t
PartitionRoot<thread_safe>::AllocationCapacityFromRequestedSize(
    size_t size) const {
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
  return size;
#else
  PA_DCHECK(PartitionRoot<thread_safe>::initialized);
  size = AdjustSizeForExtrasAdd(size);
  auto& bucket =
      bucket_at(SizeToBucketIndex(size, flags.with_denser_bucket_distribution));
  PA_DCHECK(!bucket.slot_size || bucket.slot_size >= size);
  PA_DCHECK(!(bucket.slot_size % internal::kSmallestBucket));

  if (PA_LIKELY(!bucket.is_direct_mapped())) {
    size = bucket.slot_size;
  } else if (size > internal::MaxDirectMapped()) {
    // Too large to allocate => return the size unchanged.
  } else {
    size = GetDirectMapSlotSize(size);
  }
  size = AdjustSizeForExtrasSubtract(size);
  return size;
#endif
}

using ThreadSafePartitionRoot = PartitionRoot<internal::ThreadSafe>;

static_assert(offsetof(ThreadSafePartitionRoot, lock_) ==
                  internal::kPartitionCachelineSize,
              "Padding is incorrect");

#if BUILDFLAG(USE_BACKUP_REF_PTR)
// Usage in `raw_ptr.cc` is notable enough to merit a non-internal alias.
using ::partition_alloc::internal::PartitionAllocGetSlotStartInBRPPool;
#endif  // BUILDFLAG(USE_BACKUP_REF_PTR)

}  // namespace partition_alloc

#endif  // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ROOT_H_