summaryrefslogtreecommitdiff
path: root/chromium/base/memory/madv_free_discardable_memory_posix.cc
blob: b5d0f77208874a364bd106a112c64d8ccfd2d392 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <errno.h>
#include <inttypes.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/utsname.h>

#include <atomic>

#include "base/atomicops.h"
#include "base/bits.h"
#include "base/callback.h"
#include "base/logging.h"
#include "base/memory/madv_free_discardable_memory_allocator_posix.h"
#include "base/memory/madv_free_discardable_memory_posix.h"
#include "base/memory/page_size.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/stringprintf.h"
#include "base/tracing_buildflags.h"

#if BUILDFLAG(ENABLE_BASE_TRACING)
#include "base/trace_event/memory_allocator_dump.h"  // no-presubmit-check
#include "base/trace_event/memory_dump_manager.h"    // no-presubmit-check
#endif  // BUILDFLAG(ENABLE_BASE_TRACING)

#if defined(ADDRESS_SANITIZER)
#include <sanitizer/asan_interface.h>
#endif  // defined(ADDRESS_SANITIZER)

namespace {

constexpr intptr_t kPageMagicCookie = 1;

void* AllocatePages(size_t size_in_pages) {
  void* data = mmap(nullptr, size_in_pages * base::GetPageSize(),
                    PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
  PCHECK(data != MAP_FAILED);
  return data;
}

// Checks if the system supports usage of MADV_FREE as a backing for discardable
// memory.
base::MadvFreeSupport ProbePlatformMadvFreeSupport() {
  // Note: If the compiling system does not have headers for Linux 4.5+, then
  // the MADV_FREE define will not exist and the probe will default to
  // unsupported, regardless of whether the target system actually supports
  // MADV_FREE.
#if !defined(OS_APPLE) && defined(MADV_FREE)
  uint8_t* dummy_page = static_cast<uint8_t*>(AllocatePages(1));
  dummy_page[0] = 1;

  base::MadvFreeSupport support = base::MadvFreeSupport::kUnsupported;

  // Check if the MADV_FREE advice value exists.
  int retval = madvise(dummy_page, base::GetPageSize(), MADV_FREE);
  if (!retval) {
    // For Linux 4.5 to 4.12, MADV_FREE on a swapless system will lead to memory
    // being immediately discarded. Verify that the memory was not discarded.
    if (dummy_page[0]) {
      support = base::MadvFreeSupport::kSupported;
    }
  }
  PCHECK(!munmap(dummy_page, base::GetPageSize()));
  return support;
#else
  return base::MadvFreeSupport::kUnsupported;
#endif
}

}  // namespace

namespace base {

MadvFreeDiscardableMemoryPosix::MadvFreeDiscardableMemoryPosix(
    size_t size_in_bytes,
    std::atomic<size_t>* allocator_byte_count)
    : size_in_bytes_(size_in_bytes),
      allocated_pages_((size_in_bytes_ + base::GetPageSize() - 1) /
                       base::GetPageSize()),
      allocator_byte_count_(allocator_byte_count),
      page_first_word_((size_in_bytes_ + base::GetPageSize() - 1) /
                       base::GetPageSize()) {
  data_ = AllocatePages(allocated_pages_);
  (*allocator_byte_count_) += size_in_bytes_;
}

MadvFreeDiscardableMemoryPosix::~MadvFreeDiscardableMemoryPosix() {
  if (Deallocate()) {
    DVLOG(1) << "Region evicted during destructor with " << allocated_pages_
             << " pages";
  }
}

bool MadvFreeDiscardableMemoryPosix::Lock() {
  DFAKE_SCOPED_LOCK(thread_collision_warner_);
  DCHECK(!is_locked_);
  // Locking fails if the memory has been deallocated.
  if (!data_)
    return false;

#if defined(ADDRESS_SANITIZER)
  // We need to unpoison here since locking pages writes to them.
  // Note that even if locking fails, we want to unpoison anyways after
  // deallocation.
  ASAN_UNPOISON_MEMORY_REGION(data_, allocated_pages_ * base::GetPageSize());
#endif  // defined(ADDRESS_SANITIZER)

  size_t page_index;
  for (page_index = 0; page_index < allocated_pages_; ++page_index) {
    if (!LockPage(page_index))
      break;
  }

  if (page_index < allocated_pages_) {
    DVLOG(1) << "Region eviction discovered during lock with "
             << allocated_pages_ << " pages";
    Deallocate();
    return false;
  }
  DCHECK(IsResident());

  is_locked_ = true;
  return true;
}

void MadvFreeDiscardableMemoryPosix::Unlock() {
  DFAKE_SCOPED_LOCK(thread_collision_warner_);
  DCHECK(is_locked_);
  DCHECK(data_ != nullptr);

  for (size_t page_index = 0; page_index < allocated_pages_; ++page_index) {
    UnlockPage(page_index);
  }

#ifdef MADV_FREE
  if (!keep_memory_for_testing_) {
    int retval =
        madvise(data_, allocated_pages_ * base::GetPageSize(), MADV_FREE);
    DPCHECK(!retval);
  }
#endif

#if defined(ADDRESS_SANITIZER)
  ASAN_POISON_MEMORY_REGION(data_, allocated_pages_ * base::GetPageSize());
#endif  // defined(ADDRESS_SANITIZER)

  is_locked_ = false;
}

void* MadvFreeDiscardableMemoryPosix::data() const {
  DFAKE_SCOPED_LOCK(thread_collision_warner_);
  DCHECK(is_locked_);
  DCHECK(data_ != nullptr);

  return data_;
}

bool MadvFreeDiscardableMemoryPosix::LockPage(size_t page_index) {
  // We require the byte-level representation of std::atomic<intptr_t> to be
  // equivalent to that of an intptr_t. Since std::atomic<intptr_t> has standard
  // layout, having equal size is sufficient but not necessary for them to have
  // the same byte-level representation.
  static_assert(sizeof(intptr_t) == sizeof(std::atomic<intptr_t>),
                "Incompatible layout of std::atomic.");
#ifndef TOOLKIT_QT
  DCHECK(std::atomic<intptr_t>{}.is_lock_free());
#endif
  std::atomic<intptr_t>* page_as_atomic =
      reinterpret_cast<std::atomic<intptr_t>*>(
          static_cast<uint8_t*>(data_) + page_index * base::GetPageSize());

  intptr_t expected = kPageMagicCookie;

  // Recall that we set the first word of the page to |kPageMagicCookie|
  // (non-zero) during unlocking. Thus, if the value has changed, the page has
  // been discarded. Restore the page's original first word from before
  // unlocking only if the page has not been discarded.
  if (!std::atomic_compare_exchange_strong_explicit(
          page_as_atomic, &expected,
          static_cast<intptr_t>(page_first_word_[page_index]),
          std::memory_order_relaxed, std::memory_order_relaxed)) {
    return false;
  }

  return true;
}

void MadvFreeDiscardableMemoryPosix::UnlockPage(size_t page_index) {
#ifndef TOOLKIT_QT
  DCHECK(std::atomic<intptr_t>{}.is_lock_free());
#endif

  std::atomic<intptr_t>* page_as_atomic =
      reinterpret_cast<std::atomic<intptr_t>*>(
          static_cast<uint8_t*>(data_) + page_index * base::GetPageSize());

  // Store the first word of the page for use during unlocking.
  page_first_word_[page_index].store(*page_as_atomic,
                                     std::memory_order_relaxed);
  // Store a non-zero value into the first word of the page, so we can tell when
  // the page is discarded during locking.
  page_as_atomic->store(kPageMagicCookie, std::memory_order_relaxed);
}

void MadvFreeDiscardableMemoryPosix::DiscardPage(size_t page_index) {
  DFAKE_SCOPED_LOCK(thread_collision_warner_);
  DCHECK(!is_locked_);
  DCHECK(page_index < allocated_pages_);
  int retval =
      madvise(static_cast<uint8_t*>(data_) + base::GetPageSize() * page_index,
              base::GetPageSize(), MADV_DONTNEED);
  DPCHECK(!retval);
}

bool MadvFreeDiscardableMemoryPosix::IsLockedForTesting() const {
  DFAKE_SCOPED_LOCK(thread_collision_warner_);
  return is_locked_;
}

void MadvFreeDiscardableMemoryPosix::DiscardForTesting() {
  DFAKE_SCOPED_LOCK(thread_collision_warner_);
  DCHECK(!is_locked_);
  int retval =
      madvise(data_, base::GetPageSize() * allocated_pages_, MADV_DONTNEED);
  DPCHECK(!retval);
}

trace_event::MemoryAllocatorDump*
MadvFreeDiscardableMemoryPosix::CreateMemoryAllocatorDump(
    const char* name,
    trace_event::ProcessMemoryDump* pmd) const {
#if BUILDFLAG(ENABLE_BASE_TRACING)
  DFAKE_SCOPED_LOCK(thread_collision_warner_);

  using base::trace_event::MemoryAllocatorDump;
  std::string allocator_dump_name = base::StringPrintf(
      "discardable/segment_0x%" PRIXPTR, reinterpret_cast<uintptr_t>(this));

  MemoryAllocatorDump* allocator_dump =
      pmd->CreateAllocatorDump(allocator_dump_name);

  bool is_discarded = IsDiscarded();

  MemoryAllocatorDump* dump = pmd->CreateAllocatorDump(name);
  // The effective_size is the amount of unused space as a result of being
  // page-aligned.
  dump->AddScalar(MemoryAllocatorDump::kNameSize,
                  MemoryAllocatorDump::kUnitsBytes,
                  is_discarded ? 0U : static_cast<uint64_t>(size_in_bytes_));

  allocator_dump->AddScalar(
      MemoryAllocatorDump::kNameSize, MemoryAllocatorDump::kUnitsBytes,
      is_discarded
          ? 0U
          : static_cast<uint64_t>(allocated_pages_ * base::GetPageSize()));
  allocator_dump->AddScalar(MemoryAllocatorDump::kNameObjectCount,
                            MemoryAllocatorDump::kUnitsObjects, 1U);
  allocator_dump->AddScalar(
      "wasted_size", MemoryAllocatorDump::kUnitsBytes,
      static_cast<uint64_t>(allocated_pages_ * base::GetPageSize() -
                            size_in_bytes_));
  allocator_dump->AddScalar("locked_size", MemoryAllocatorDump::kUnitsBytes,
                            is_locked_ ? size_in_bytes_ : 0U);
  allocator_dump->AddScalar("page_count", MemoryAllocatorDump::kUnitsObjects,
                            static_cast<uint64_t>(allocated_pages_));

  // The amount of space that is discarded, but not unmapped (i.e. the memory
  // was discarded while unlocked, but the pages are still mapped in memory
  // since Deallocate() has not been called yet). This instance is discarded if
  // it is unlocked and not all pages are resident in memory.
  allocator_dump->AddScalar(
      "discarded_size", MemoryAllocatorDump::kUnitsBytes,
      is_discarded ? allocated_pages_ * base::GetPageSize() : 0U);

  pmd->AddSuballocation(dump->guid(), allocator_dump_name);
  return dump;
#else   // BUILDFLAG(ENABLE_BASE_TRACING)
  NOTREACHED();
  return nullptr;
#endif  // BUILDFLAG(ENABLE_BASE_TRACING)
}

bool MadvFreeDiscardableMemoryPosix::IsValid() const {
  DFAKE_SCOPED_RECURSIVE_LOCK(thread_collision_warner_);
  return data_ != nullptr;
}

void MadvFreeDiscardableMemoryPosix::SetKeepMemoryForTesting(bool keep_memory) {
  DFAKE_SCOPED_LOCK(thread_collision_warner_);
  DCHECK(is_locked_);
  keep_memory_for_testing_ = keep_memory;
}

bool MadvFreeDiscardableMemoryPosix::IsResident() const {
  DFAKE_SCOPED_RECURSIVE_LOCK(thread_collision_warner_);
#if defined(OS_APPLE)
  std::vector<char> vec(allocated_pages_);
#else
  std::vector<unsigned char> vec(allocated_pages_);
#endif

  int retval =
      mincore(data_, allocated_pages_ * base::GetPageSize(), vec.data());
  DPCHECK(retval == 0 || errno == EAGAIN);

  for (size_t i = 0; i < allocated_pages_; ++i) {
    if (!(vec[i] & 1))
      return false;
  }
  return true;
}

bool MadvFreeDiscardableMemoryPosix::IsDiscarded() const {
  return !is_locked_ && !IsResident();
}

bool MadvFreeDiscardableMemoryPosix::Deallocate() {
  DFAKE_SCOPED_RECURSIVE_LOCK(thread_collision_warner_);
  if (data_) {
#if defined(ADDRESS_SANITIZER)
    ASAN_UNPOISON_MEMORY_REGION(data_, allocated_pages_ * base::GetPageSize());
#endif  // defined(ADDRESS_SANITIZER)

    int retval = munmap(data_, allocated_pages_ * base::GetPageSize());
    PCHECK(!retval);
    data_ = nullptr;
    (*allocator_byte_count_) -= size_in_bytes_;
    return true;
  }
  return false;
}

MadvFreeSupport GetMadvFreeSupport() {
  static MadvFreeSupport kMadvFreeSupport = ProbePlatformMadvFreeSupport();
  return kMadvFreeSupport;
}

}  // namespace base