summaryrefslogtreecommitdiff
path: root/chromium/components/gcm_driver/crypto/gcm_message_cryptographer_unittest.cc
blob: 380e166e68258564c1290f9cf945581974c062b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "components/gcm_driver/crypto/gcm_message_cryptographer.h"

#include <memory>

#include "base/base64url.h"
#include "base/big_endian.h"
#include "base/cxx17_backports.h"
#include "base/logging.h"
#include "base/strings/string_piece.h"
#include "base/strings/string_util.h"
#include "components/gcm_driver/crypto/message_payload_parser.h"
#include "components/gcm_driver/crypto/p256_key_util.h"
#include "crypto/ec_private_key.h"
#include "crypto/random.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace gcm {

namespace {

// Example plaintext data to use in the tests.
const char kExamplePlaintext[] = "Example plaintext";

// Expected sizes of the different input given to the cryptographer.
constexpr size_t kEcdhSharedSecretSize = 32;
constexpr size_t kAuthSecretSize = 16;
constexpr size_t kSaltSize = 16;

// Keying material for both parties as P-256 EC points. Used to make sure that
// the test vectors are reproducible.
const unsigned char kCommonSenderPublicKey[] = {
    0x04, 0x05, 0x3C, 0xA1, 0xB9, 0xA5, 0xAB, 0xB8, 0x2D, 0x88, 0x48,
    0x82, 0xC9, 0x49, 0x19, 0x91, 0xD5, 0xFD, 0xD1, 0x92, 0xDB, 0xA7,
    0x7E, 0x70, 0x48, 0x37, 0x41, 0xCD, 0x90, 0x05, 0x80, 0xDF, 0x65,
    0x9A, 0xA1, 0x1A, 0x04, 0xF1, 0x98, 0x25, 0xF2, 0xC2, 0x13, 0x5D,
    0xD9, 0x72, 0x35, 0x75, 0x24, 0xF9, 0xFF, 0x25, 0xD1, 0xBC, 0x84,
    0x46, 0x4E, 0x88, 0x08, 0x55, 0x70, 0x9F, 0xA7, 0x07, 0xD9};
static_assert(base::size(kCommonSenderPublicKey) == 65,
              "Raw P-256 public keys must be 65 bytes in size.");

const unsigned char kCommonRecipientPublicKey[] = {
    0x04, 0x35, 0x02, 0x67, 0xB9, 0x10, 0x8F, 0x9B, 0xF1, 0x85, 0xF5,
    0x1B, 0xD7, 0xA4, 0xEF, 0xBD, 0x28, 0xB3, 0x11, 0x40, 0xBA, 0xD0,
    0xEE, 0xB2, 0x97, 0xDA, 0x6A, 0x93, 0x2D, 0x26, 0x45, 0xBD, 0xB2,
    0x9A, 0x9F, 0xB8, 0x19, 0xD8, 0x21, 0x6F, 0x66, 0xE3, 0xF6, 0x0B,
    0x74, 0xB2, 0x28, 0x38, 0xDC, 0xA7, 0x8A, 0x58, 0x0D, 0x56, 0x47,
    0x3E, 0xD0, 0x5B, 0x5C, 0x93, 0x4E, 0xB3, 0x89, 0x87, 0x64};
static_assert(base::size(kCommonRecipientPublicKey) == 65,
              "Raw P-256 public keys must be 65 bytes in size.");

const unsigned char kCommonRecipientPrivateKey[] = {
    0x30, 0x81, 0x87, 0x02, 0x01, 0x00, 0x30, 0x13, 0x06, 0x07, 0x2A, 0x86,
    0x48, 0xCE, 0x3D, 0x02, 0x01, 0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D,
    0x03, 0x01, 0x07, 0x04, 0x6D, 0x30, 0x6B, 0x02, 0x01, 0x01, 0x04, 0x20,
    0x16, 0xCC, 0xB4, 0x37, 0xA3, 0x04, 0x0C, 0x28, 0xDE, 0x56, 0x77, 0x27,
    0x0B, 0xD8, 0x1E, 0x82, 0xD7, 0x7F, 0x07, 0xA6, 0x43, 0x6E, 0x70, 0xDD,
    0x9C, 0x3C, 0xF1, 0x2C, 0x93, 0xE3, 0x37, 0xD1, 0xA1, 0x44, 0x03, 0x42,
    0x00, 0x04, 0x35, 0x02, 0x67, 0xB9, 0x10, 0x8F, 0x9B, 0xF1, 0x85, 0xF5,
    0x1B, 0xD7, 0xA4, 0xEF, 0xBD, 0x28, 0xB3, 0x11, 0x40, 0xBA, 0xD0, 0xEE,
    0xB2, 0x97, 0xDA, 0x6A, 0x93, 0x2D, 0x26, 0x45, 0xBD, 0xB2, 0x9A, 0x9F,
    0xB8, 0x19, 0xD8, 0x21, 0x6F, 0x66, 0xE3, 0xF6, 0x0B, 0x74, 0xB2, 0x28,
    0x38, 0xDC, 0xA7, 0x8A, 0x58, 0x0D, 0x56, 0x47, 0x3E, 0xD0, 0x5B, 0x5C,
    0x93, 0x4E, 0xB3, 0x89, 0x87, 0x64};

const unsigned char kCommonAuthSecret[] = {0x25, 0xF2, 0xC2, 0xB8, 0x19, 0xD8,
                                           0xFD, 0x35, 0x97, 0xDF, 0xFB, 0x5E,
                                           0xF6, 0x0B, 0xD7, 0xA4};
static_assert(base::size(kCommonAuthSecret) == 16,
              "Auth secrets must be 16 bytes in size.");

// Test vectors containing reference input for draft-ietf-webpush-encryption
// that was created using an separate JavaScript implementation of the draft.
struct TestVector {
  const char* const input;
  const unsigned char ecdh_shared_secret[kEcdhSharedSecretSize];
  const unsigned char auth_secret[kAuthSecretSize];
  const unsigned char salt[kSaltSize];
  size_t record_size;
  const char* const output;
};

const TestVector kEncryptionTestVectorsDraft03[] = {
    // Simple message.
    {"Hello, world!",
     {0x0B, 0x32, 0xE2, 0xD1, 0x6A, 0xBF, 0x4F, 0x2C, 0x49, 0xEA, 0xF7,
      0x5D, 0x71, 0x7D, 0x89, 0xA9, 0xA7, 0x5E, 0x21, 0xB2, 0xB5, 0x51,
      0xE6, 0x4C, 0x08, 0x68, 0xD3, 0x6F, 0x8F, 0x72, 0x7E, 0x14},
     {0xD3, 0xF2, 0x78, 0xBD, 0x8D, 0xDD, 0x84, 0x99, 0x66, 0x08, 0xD7, 0x0F,
      0xBA, 0x9B, 0x60, 0xFC},
     {0x15, 0x4A, 0xD7, 0x73, 0x92, 0xBD, 0x3B, 0xCF, 0x6F, 0x98, 0xDC, 0x9B,
      0x8B, 0x56, 0xFB, 0xBD},
     4096,
     "T4SXCyj84drA6wRaBNLGDMzeyOEBWjsIEkS2ros6Aw"},
    // Empty message.
    {"",
     {0x3F, 0xD8, 0x95, 0x2C, 0xA2, 0x11, 0xBD, 0x7B, 0x57, 0xB2, 0x00,
      0xBD, 0x57, 0x68, 0x3F, 0xF0, 0x14, 0x57, 0x5F, 0xB1, 0x9F, 0x15,
      0x4F, 0x11, 0xF0, 0x4D, 0xA2, 0xE8, 0x4C, 0xEA, 0x74, 0x3B},
     {0xB1, 0xE1, 0xC7, 0x32, 0x4C, 0xAA, 0x56, 0x32, 0x68, 0x20, 0x0F, 0x26,
      0x3F, 0x48, 0x4D, 0x99},
     {0xE9, 0x39, 0x45, 0xBC, 0x96, 0x96, 0x88, 0x76, 0xFC, 0xA1, 0xAD, 0xE4,
      0x9D, 0x28, 0xF3, 0x73},
     4096,
     "8s-Tzq8Cn_eobL6uEcNDXL7K"}};

const TestVector kEncryptionTestVectorsDraft08[] = {
    // Simple message.
    {"Hello, world!",
     {0x0B, 0x32, 0xE2, 0xD1, 0x6A, 0xBF, 0x4F, 0x2C, 0x49, 0xEA, 0xF7,
      0x5D, 0x71, 0x7D, 0x89, 0xA9, 0xA7, 0x5E, 0x21, 0xB2, 0xB5, 0x51,
      0xE6, 0x4C, 0x08, 0x68, 0xD3, 0x6F, 0x8F, 0x72, 0x7E, 0x14},
     {0xD3, 0xF2, 0x78, 0xBD, 0x8D, 0xDD, 0x84, 0x99, 0x66, 0x08, 0xD7, 0x0F,
      0xBA, 0x9B, 0x60, 0xFC},
     {0x15, 0x4A, 0xD7, 0x73, 0x92, 0xBD, 0x3B, 0xCF, 0x6F, 0x98, 0xDC, 0x9B,
      0x8B, 0x56, 0xFB, 0xBD},
     4096,
     "3biYN3Aa30D30bKJMdGlEyYPrz7Wg293NYc31rb6"},
    // Empty message.
    {"",
     {0x3F, 0xD8, 0x95, 0x2C, 0xA2, 0x11, 0xBD, 0x7B, 0x57, 0xB2, 0x00,
      0xBD, 0x57, 0x68, 0x3F, 0xF0, 0x14, 0x57, 0x5F, 0xB1, 0x9F, 0x15,
      0x4F, 0x11, 0xF0, 0x4D, 0xA2, 0xE8, 0x4C, 0xEA, 0x74, 0x3B},
     {0xB1, 0xE1, 0xC7, 0x32, 0x4C, 0xAA, 0x56, 0x32, 0x68, 0x20, 0x0F, 0x26,
      0x3F, 0x48, 0x4D, 0x99},
     {0xE9, 0x39, 0x45, 0xBC, 0x96, 0x96, 0x88, 0x76, 0xFC, 0xA1, 0xAD, 0xE4,
      0x9D, 0x28, 0xF3, 0x73},
     4096,
     "5OXY345WYPyIvsF7hx4swuA"}};

const TestVector kDecryptionTestVectorsDraft03[] = {
    // Simple message.
    {"lsemWwzlFoJzoidHCnVuxRiJpotTcYokJHKzmQ2FsA",
     {0x4D, 0x3A, 0x6C, 0xBA, 0xD8, 0x1D, 0x8E, 0x68, 0x8B, 0xE6, 0x76,
      0xA7, 0xFF, 0x60, 0xC7, 0xFE, 0x77, 0xE2, 0x6D, 0x37, 0xF6, 0x12,
      0x44, 0xE2, 0x25, 0xFE, 0xE1, 0xD8, 0xCF, 0x8A, 0xA8, 0x33},
     {0x62, 0x36, 0xAC, 0xCA, 0x74, 0xD4, 0x49, 0x49, 0x6B, 0x27, 0xB4, 0xF7,
      0xC1, 0xE5, 0x30, 0x9A},
     {0x1C, 0xA7, 0xFD, 0x98, 0x1A, 0xE4, 0xA7, 0x92, 0xE1, 0xB6, 0xA1, 0xE3,
      0x41, 0x63, 0x87, 0x76},
     4096,
     "Hello, world!"},
    // Simple message with 16 bytes of padding.
    {"VQB6Ds-q9xRqyM1tj_gksSgc78vCWEhphZ-NF1E7_yMfPuRRZlC_Xt9_2NsX3SU",
     {0x8B, 0x38, 0x8E, 0x22, 0xD5, 0xC4, 0xFD, 0x65, 0x8A, 0xBB, 0xD9,
      0x58, 0xBD, 0xF5, 0xFF, 0x79, 0xCF, 0x9D, 0xBD, 0x87, 0x16, 0x7E,
      0x93, 0x84, 0x20, 0x8E, 0x8D, 0x49, 0x41, 0x7D, 0x8E, 0x8F},
     {0x3E, 0x65, 0xC7, 0x1F, 0x75, 0x7A, 0x43, 0xC4, 0x78, 0x6C, 0x64, 0x99,
      0x49, 0xA0, 0xC4, 0xB2},
     {0x43, 0x4D, 0x30, 0x8E, 0xE4, 0x76, 0xB5, 0xD0, 0x87, 0xFC, 0x04, 0xD1,
      0x2E, 0x35, 0x75, 0x63},
     4096,
     "Hello, world!"},
    // Empty message.
    {"xU8a499UHB_-YSV4VOm-JZnT",
     {0x68, 0x72, 0x3D, 0x13, 0xE7, 0x50, 0xFA, 0x3E, 0xA0, 0x59, 0x33,
      0xF1, 0x73, 0xA8, 0xE8, 0xCD, 0x8D, 0xD4, 0x3C, 0xDC, 0xDE, 0x06,
      0x35, 0x5F, 0x51, 0xBB, 0xB2, 0x57, 0x97, 0x72, 0x9D, 0xFB},
     {0x84, 0xB2, 0x2A, 0xE7, 0xC6, 0xC0, 0xCE, 0x5F, 0xAD, 0x37, 0x06, 0x7F,
      0xD1, 0xFD, 0x10, 0x87},
     {0x9B, 0xC5, 0x8D, 0x5F, 0xD6, 0xD2, 0xA6, 0xBD, 0xAF, 0x4B, 0xD9, 0x60,
      0xC6, 0xB4, 0x50, 0x0F},
     4096,
     ""},
    // Message with an invalid record size.
    {"gfB-_edj7qEVokyVHpkDJN6FVKHnlWs1RCDw5bmrwQ",
     {0x5F, 0xE1, 0x7C, 0x4B, 0xFF, 0x04, 0xBF, 0x2C, 0x70, 0x67, 0xFA,
      0xF8, 0xB0, 0x07, 0x4F, 0xF6, 0x3C, 0x03, 0x6F, 0xBE, 0xA1, 0x1F,
      0x4B, 0x99, 0x25, 0x4F, 0xB9, 0x5F, 0xC4, 0x78, 0x76, 0xDE},
     {0x59, 0xAB, 0x45, 0xFC, 0x6A, 0xF5, 0xB3, 0xE0, 0xF5, 0x40, 0xD7, 0x98,
      0x0F, 0xF0, 0xA4, 0xCB},
     {0xDB, 0xA0, 0xF2, 0x91, 0x8D, 0x50, 0x42, 0xE0, 0x17, 0x68, 0x5B, 0x9B,
      0xF2, 0xA2, 0xC3, 0xF9},
     7,
     nullptr},
    // Message with four bytes of invalid, non-zero padding.
    {"2FJmrF95yVU8Q8cYQy9OoOwCb59ZoRlxazPE0T-MNOSMbr0",
     {0x6B, 0x82, 0x92, 0xD3, 0x71, 0x9A, 0x97, 0x76, 0x45, 0x11, 0x99,
      0x6D, 0xBF, 0x56, 0xCC, 0x81, 0x98, 0x56, 0x80, 0xF5, 0x78, 0x36,
      0xD6, 0x43, 0x95, 0x68, 0xDB, 0x0F, 0x23, 0x39, 0xF3, 0x6E},
     {0x02, 0x16, 0xDC, 0xC3, 0xDE, 0x2C, 0xB5, 0x08, 0x89, 0xDB, 0xD8, 0x18,
      0x68, 0x83, 0x1C, 0xDB},
     {0xB7, 0x85, 0x5D, 0x8E, 0x84, 0xC3, 0x2D, 0x61, 0x9B, 0x78, 0x3B, 0x60,
      0x0E, 0x70, 0x84, 0xF3},
     4096,
     nullptr},
    // Message with multiple (2) records.
    {"reI6sW6y67FI8Kxk-x9GNwiu77His_f5GioDBiKS7IzjDQ",
     {0xC6, 0x16, 0x6F, 0xAF, 0xE1, 0xB6, 0x8F, 0x2B, 0x0F, 0x67, 0x5A,
      0xC7, 0xAC, 0x7E, 0xF6, 0x7C, 0x33, 0xA2, 0xA1, 0x11, 0xB0, 0xB0,
      0xAB, 0xAC, 0x37, 0x61, 0xF4, 0xCB, 0x98, 0xFF, 0x00, 0x51},
     {0xAE, 0xDA, 0x86, 0xDF, 0x6B, 0x03, 0x88, 0xDE, 0x90, 0xBB, 0xB7, 0xA0,
      0x78, 0x91, 0x3A, 0x36},
     {0x4C, 0x4E, 0x2A, 0x8D, 0x88, 0x82, 0xCF, 0xC2, 0xF9, 0x8A, 0xFD, 0x31,
      0xF8, 0xD1, 0xF6, 0xB5},
     8,
     nullptr}};

const TestVector kDecryptionTestVectorsDraft08[] = {
    // Simple message.
    {"baIDPDv-Do_x1RVtlFDex2uCvd3Ugrv-gJG3sWeg",
     {0x4D, 0x3A, 0x6C, 0xBA, 0xD8, 0x1D, 0x8E, 0x68, 0x8B, 0xE6, 0x76,
      0xA7, 0xFF, 0x60, 0xC7, 0xFE, 0x77, 0xE2, 0x6D, 0x37, 0xF6, 0x12,
      0x44, 0xE2, 0x25, 0xFE, 0xE1, 0xD8, 0xCF, 0x8A, 0xA8, 0x33},
     {0x62, 0x36, 0xAC, 0xCA, 0x74, 0xD4, 0x49, 0x49, 0x6B, 0x27, 0xB4, 0xF7,
      0xC1, 0xE5, 0x30, 0x9A},
     {0x1C, 0xA7, 0xFD, 0x98, 0x1A, 0xE4, 0xA7, 0x92, 0xE1, 0xB6, 0xA1, 0xE3,
      0x41, 0x63, 0x87, 0x76},
     4096,
     "Hello, world!"},
    // Simple message with 16 bytes of padding.
    {"6Zq7GKQ7zRxeOWoYR71Nx7xJzCZUUNhz6bhV1-ZIg6dVra0x1uWXms5gHp6F6A",
     {0x8B, 0x38, 0x8E, 0x22, 0xD5, 0xC4, 0xFD, 0x65, 0x8A, 0xBB, 0xD9,
      0x58, 0xBD, 0xF5, 0xFF, 0x79, 0xCF, 0x9D, 0xBD, 0x87, 0x16, 0x7E,
      0x93, 0x84, 0x20, 0x8E, 0x8D, 0x49, 0x41, 0x7D, 0x8E, 0x8F},
     {0x3E, 0x65, 0xC7, 0x1F, 0x75, 0x7A, 0x43, 0xC4, 0x78, 0x6C, 0x64, 0x99,
      0x49, 0xA0, 0xC4, 0xB2},
     {0x43, 0x4D, 0x30, 0x8E, 0xE4, 0x76, 0xB5, 0xD0, 0x87, 0xFC, 0x04, 0xD1,
      0x2E, 0x35, 0x75, 0x63},
     4096,
     "Hello, world!"},
    // Empty message.
    {"bHU7ponA7WAGB0onUybG9nQ",
     {0x68, 0x72, 0x3D, 0x13, 0xE7, 0x50, 0xFA, 0x3E, 0xA0, 0x59, 0x33,
      0xF1, 0x73, 0xA8, 0xE8, 0xCD, 0x8D, 0xD4, 0x3C, 0xDC, 0xDE, 0x06,
      0x35, 0x5F, 0x51, 0xBB, 0xB2, 0x57, 0x97, 0x72, 0x9D, 0xFB},
     {0x84, 0xB2, 0x2A, 0xE7, 0xC6, 0xC0, 0xCE, 0x5F, 0xAD, 0x37, 0x06, 0x7F,
      0xD1, 0xFD, 0x10, 0x87},
     {0x9B, 0xC5, 0x8D, 0x5F, 0xD6, 0xD2, 0xA6, 0xBD, 0xAF, 0x4B, 0xD9, 0x60,
      0xC6, 0xB4, 0x50, 0x0F},
     4096,
     ""}};

// Computes the shared secret between the sender and the receiver. The sender
// must have a ASN.1-encoded PKCS #8 EncryptedPrivateKeyInfo block, whereas
// the receiver must have a public key in uncompressed EC point format.
bool ComputeSharedP256SecretFromPrivateKeyStr(
    const base::StringPiece& private_key,
    const base::StringPiece& peer_public_key,
    std::string* out_shared_secret) {
  DCHECK(out_shared_secret);
  std::unique_ptr<crypto::ECPrivateKey> local_key(
      crypto::ECPrivateKey::CreateFromPrivateKeyInfo(std::vector<uint8_t>(
          private_key.data(), private_key.data() + private_key.size())));
  if (!local_key) {
    DLOG(ERROR) << "Unable to create the local key";
    return false;
  }

  return ComputeSharedP256Secret(*local_key, peer_public_key,
                                 out_shared_secret);
}

void ComputeSharedSecret(
    const base::StringPiece& encoded_sender_private_key,
    const base::StringPiece& encoded_receiver_public_key,
    std::string* shared_secret) {
  std::string sender_private_key, receiver_public_key;
  ASSERT_TRUE(base::Base64UrlDecode(
      encoded_sender_private_key,
      base::Base64UrlDecodePolicy::IGNORE_PADDING, &sender_private_key));
  ASSERT_TRUE(base::Base64UrlDecode(
      encoded_receiver_public_key,
      base::Base64UrlDecodePolicy::IGNORE_PADDING, &receiver_public_key));

  ASSERT_TRUE(ComputeSharedP256SecretFromPrivateKeyStr(
      sender_private_key, receiver_public_key,
      shared_secret));
}

}  // namespace

class GCMMessageCryptographerTestBase : public ::testing::Test {
 public:
  void SetUp() override {
    recipient_public_key_.assign(
        kCommonRecipientPublicKey,
        kCommonRecipientPublicKey + base::size(kCommonRecipientPublicKey));
    sender_public_key_.assign(
        kCommonSenderPublicKey,
        kCommonSenderPublicKey + base::size(kCommonSenderPublicKey));

    std::string recipient_private_key(
        kCommonRecipientPrivateKey,
        kCommonRecipientPrivateKey + base::size(kCommonRecipientPrivateKey));
    std::vector<uint8_t> recipient_private_key_vec(
      recipient_private_key.begin(), recipient_private_key.end());
    std::unique_ptr<crypto::ECPrivateKey> recipient_key =
      crypto::ECPrivateKey::CreateFromPrivateKeyInfo(recipient_private_key_vec);
    ASSERT_TRUE(recipient_key);
    ASSERT_TRUE(ComputeSharedP256Secret(
        *recipient_key, sender_public_key_, &ecdh_shared_secret_));

    auth_secret_.assign(kCommonAuthSecret,
                        kCommonAuthSecret + base::size(kCommonAuthSecret));
  }

 protected:
  // Public keys of the recipient and sender as uncompressed P-256 EC points.
  std::string recipient_public_key_;
  std::string sender_public_key_;

  // Shared secret to use in transformations. Associated with the keys above.
  std::string ecdh_shared_secret_;

  // Authentication secret to use in tests where no specific value is expected.
  std::string auth_secret_;
};

class GCMMessageCryptographerTest
    : public GCMMessageCryptographerTestBase,
      public testing::WithParamInterface<GCMMessageCryptographer::Version> {
 public:
  void SetUp() override {
    GCMMessageCryptographerTestBase::SetUp();

    cryptographer_ = std::make_unique<GCMMessageCryptographer>(GetParam());
  }

 protected:
  // Generates a cryptographically secure random salt of 16-octets in size, the
  // required length as expected by the HKDF.
  std::string GenerateRandomSalt() {
    std::string salt;

    crypto::RandBytes(base::WriteInto(&salt, kSaltSize + 1), kSaltSize);
    return salt;
  }

  // The GCMMessageCryptographer instance to use for the tests.
  std::unique_ptr<GCMMessageCryptographer> cryptographer_;
};

TEST_P(GCMMessageCryptographerTest, RoundTrip) {
  const std::string salt = GenerateRandomSalt();

  size_t record_size = 0;

  std::string ciphertext, plaintext;
  ASSERT_TRUE(cryptographer_->Encrypt(
      recipient_public_key_, sender_public_key_, ecdh_shared_secret_,
      auth_secret_, salt, kExamplePlaintext, &record_size, &ciphertext));

  EXPECT_GT(record_size, ciphertext.size() - 16);
  EXPECT_GT(ciphertext.size(), 0u);

  ASSERT_TRUE(cryptographer_->Decrypt(recipient_public_key_, sender_public_key_,
                                      ecdh_shared_secret_, auth_secret_, salt,
                                      ciphertext, record_size, &plaintext));

  EXPECT_EQ(kExamplePlaintext, plaintext);
}

TEST_P(GCMMessageCryptographerTest, RoundTripEmptyMessage) {
  const std::string salt = GenerateRandomSalt();
  const std::string message;

  size_t record_size = 0;

  std::string ciphertext, plaintext;
  ASSERT_TRUE(cryptographer_->Encrypt(recipient_public_key_, sender_public_key_,
                                      ecdh_shared_secret_, auth_secret_, salt,
                                      message, &record_size, &ciphertext));

  EXPECT_GT(record_size, ciphertext.size() - 16);
  EXPECT_GT(ciphertext.size(), 0u);

  ASSERT_TRUE(cryptographer_->Decrypt(recipient_public_key_, sender_public_key_,
                                      ecdh_shared_secret_, auth_secret_, salt,
                                      ciphertext, record_size, &plaintext));

  EXPECT_EQ(message, plaintext);
}

TEST_P(GCMMessageCryptographerTest, InvalidRecordSize) {
  const std::string salt = GenerateRandomSalt();

  size_t record_size = 0;

  std::string ciphertext, plaintext;
  ASSERT_TRUE(cryptographer_->Encrypt(
      recipient_public_key_, sender_public_key_, ecdh_shared_secret_,
      auth_secret_, salt, kExamplePlaintext, &record_size, &ciphertext));

  EXPECT_GT(record_size, ciphertext.size() - 16);

  EXPECT_FALSE(cryptographer_->Decrypt(
      recipient_public_key_, sender_public_key_, ecdh_shared_secret_,
      auth_secret_, salt, ciphertext, 0 /* record_size */, &plaintext));

  EXPECT_FALSE(cryptographer_->Decrypt(
      recipient_public_key_, sender_public_key_, ecdh_shared_secret_,
      auth_secret_, salt, ciphertext, ciphertext.size() - 17, &plaintext));

  EXPECT_TRUE(cryptographer_->Decrypt(
      recipient_public_key_, sender_public_key_, ecdh_shared_secret_,
      auth_secret_, salt, ciphertext, ciphertext.size() - 16, &plaintext));
}

TEST_P(GCMMessageCryptographerTest, InvalidRecordPadding) {
  std::string message;
  switch (GetParam()) {
    case GCMMessageCryptographer::Version::DRAFT_03:
      message.append(sizeof(uint8_t), '\00');  // padding length octets
      message.append(sizeof(uint8_t), '\01');

      message.append(sizeof(uint8_t), '\00');  // padding octet
      message.append(kExamplePlaintext);
      break;
    case GCMMessageCryptographer::Version::DRAFT_08:
      message.append(kExamplePlaintext);
      message.append(sizeof(uint8_t), '\x02');  // padding delimiter octet
      message.append(sizeof(uint8_t), '\x00');  // padding octet
      break;
  }

  const std::string salt = GenerateRandomSalt();

  const std::string prk =
      cryptographer_->encryption_scheme_->DerivePseudoRandomKey(
          recipient_public_key_, sender_public_key_, ecdh_shared_secret_,
          auth_secret_);
  const std::string content_encryption_key =
      cryptographer_->DeriveContentEncryptionKey(recipient_public_key_,
                                                 sender_public_key_, prk, salt);
  const std::string nonce = cryptographer_->DeriveNonce(
      recipient_public_key_, sender_public_key_, prk, salt);

  ASSERT_GT(message.size(), 2u);
  const size_t record_size = message.size() + 1;

  std::string ciphertext, plaintext;
  ASSERT_TRUE(cryptographer_->TransformRecord(
      GCMMessageCryptographer::Direction::ENCRYPT, message,
      content_encryption_key, nonce, &ciphertext));

  ASSERT_TRUE(cryptographer_->Decrypt(recipient_public_key_, sender_public_key_,
                                      ecdh_shared_secret_, auth_secret_, salt,
                                      ciphertext, record_size, &plaintext));

  // Note that GCMMessageCryptographer::Decrypt removes the padding.
  EXPECT_EQ(kExamplePlaintext, plaintext);

  // Now run the same steps again, but have invalid padding length indicators.
  // (Only applicable to draft-ietf-webpush-encryption-03.)
  if (GetParam() == GCMMessageCryptographer::Version::DRAFT_03) {
    // Padding that will spill over in the payload.
    {
      message[1] = 4;

      ASSERT_TRUE(cryptographer_->TransformRecord(
          GCMMessageCryptographer::Direction::ENCRYPT, message,
          content_encryption_key, nonce, &ciphertext));

      ASSERT_FALSE(cryptographer_->Decrypt(
          recipient_public_key_, sender_public_key_, ecdh_shared_secret_,
          auth_secret_, salt, ciphertext, record_size, &plaintext));
    }

    // More padding octets than the length of the message.
    {
      message[1] = 64;

      ASSERT_TRUE(cryptographer_->TransformRecord(
          GCMMessageCryptographer::Direction::ENCRYPT, message,
          content_encryption_key, nonce, &ciphertext));

      ASSERT_FALSE(cryptographer_->Decrypt(
          recipient_public_key_, sender_public_key_, ecdh_shared_secret_,
          auth_secret_, salt, ciphertext, record_size, &plaintext));
    }

    // Correct the |message| to be valid again. (A single byte of padding.)
    message[1] = 1;
  }

  // Run tests for a missing delimiter in the record.
  // (Only applicable to draft-ietf-webpush-encryption-03.)
  if (GetParam() == GCMMessageCryptographer::Version::DRAFT_08) {
    message[message.size() - 2] = 0x00;

    ASSERT_TRUE(cryptographer_->TransformRecord(
        GCMMessageCryptographer::Direction::ENCRYPT, message,
        content_encryption_key, nonce, &ciphertext));

    ASSERT_FALSE(cryptographer_->Decrypt(
        recipient_public_key_, sender_public_key_, ecdh_shared_secret_,
        auth_secret_, salt, ciphertext, record_size, &plaintext));

    // Correct the |message| to be valid again. (Proper padding delimiter.)
    message[message.size() - 2] = 0x02;
  }

  // Finally run a test to make sure that we validate that all padding bytes are
  // set to zeros. The position of the padding byte depends on the version.
  switch (GetParam()) {
    case GCMMessageCryptographer::Version::DRAFT_03:
      message[2] = 0x13;
      break;
    case GCMMessageCryptographer::Version::DRAFT_08:
      message[message.size() - 1] = 0x13;
      break;
  }

  ASSERT_TRUE(cryptographer_->TransformRecord(
      GCMMessageCryptographer::Direction::ENCRYPT, message,
      content_encryption_key, nonce, &ciphertext));

  ASSERT_FALSE(cryptographer_->Decrypt(
      recipient_public_key_, sender_public_key_, ecdh_shared_secret_,
      auth_secret_, salt, ciphertext, record_size, &plaintext));
}

TEST_P(GCMMessageCryptographerTest, AuthSecretAffectsPRK) {
  std::string first_auth_secret, second_auth_secret;

  crypto::RandBytes(base::WriteInto(&first_auth_secret, kAuthSecretSize + 1),
                    kAuthSecretSize);
  crypto::RandBytes(base::WriteInto(&second_auth_secret, kAuthSecretSize + 1),
                    kAuthSecretSize);

  ASSERT_NE(cryptographer_->encryption_scheme_->DerivePseudoRandomKey(
                recipient_public_key_, sender_public_key_, ecdh_shared_secret_,
                first_auth_secret),
            cryptographer_->encryption_scheme_->DerivePseudoRandomKey(
                recipient_public_key_, sender_public_key_, ecdh_shared_secret_,
                second_auth_secret));

  std::string salt = GenerateRandomSalt();

  // Verify that the IKM actually gets used by the transformations.
  size_t first_record_size, second_record_size;
  std::string first_ciphertext, second_ciphertext;

  ASSERT_TRUE(cryptographer_->Encrypt(recipient_public_key_, sender_public_key_,
                                      ecdh_shared_secret_, first_auth_secret,
                                      salt, kExamplePlaintext,
                                      &first_record_size, &first_ciphertext));

  ASSERT_TRUE(cryptographer_->Encrypt(recipient_public_key_, sender_public_key_,
                                      ecdh_shared_secret_, second_auth_secret,
                                      salt, kExamplePlaintext,
                                      &second_record_size, &second_ciphertext));

  // If the ciphertexts differ despite the same key and salt, it got used.
  ASSERT_NE(first_ciphertext, second_ciphertext);
  EXPECT_EQ(first_record_size, second_record_size);

  // Verify that the different ciphertexts can also be translated back to the
  // plaintext content. This will fail if the auth secret isn't considered.
  std::string first_plaintext, second_plaintext;

  ASSERT_TRUE(cryptographer_->Decrypt(recipient_public_key_, sender_public_key_,
                                      ecdh_shared_secret_, first_auth_secret,
                                      salt, first_ciphertext, first_record_size,
                                      &first_plaintext));

  ASSERT_TRUE(cryptographer_->Decrypt(recipient_public_key_, sender_public_key_,
                                      ecdh_shared_secret_, second_auth_secret,
                                      salt, second_ciphertext,
                                      second_record_size, &second_plaintext));

  EXPECT_EQ(kExamplePlaintext, first_plaintext);
  EXPECT_EQ(kExamplePlaintext, second_plaintext);
}

INSTANTIATE_TEST_SUITE_P(
    GCMMessageCryptographerTestBase,
    GCMMessageCryptographerTest,
    ::testing::Values(GCMMessageCryptographer::Version::DRAFT_03,
                      GCMMessageCryptographer::Version::DRAFT_08));

class GCMMessageCryptographerTestVectorTest
    : public GCMMessageCryptographerTestBase {};

TEST_F(GCMMessageCryptographerTestVectorTest, EncryptionVectorsDraft03) {
  GCMMessageCryptographer cryptographer(
      GCMMessageCryptographer::Version::DRAFT_03);

  std::string ecdh_shared_secret, auth_secret, salt, ciphertext, output;
  size_t record_size = 0;

  for (size_t i = 0; i < base::size(kEncryptionTestVectorsDraft03); ++i) {
    SCOPED_TRACE(i);

    ecdh_shared_secret.assign(
        kEncryptionTestVectorsDraft03[i].ecdh_shared_secret,
        kEncryptionTestVectorsDraft03[i].ecdh_shared_secret +
            kEcdhSharedSecretSize);

    auth_secret.assign(
        kEncryptionTestVectorsDraft03[i].auth_secret,
        kEncryptionTestVectorsDraft03[i].auth_secret + kAuthSecretSize);

    salt.assign(kEncryptionTestVectorsDraft03[i].salt,
                kEncryptionTestVectorsDraft03[i].salt + kSaltSize);

    ASSERT_TRUE(cryptographer.Encrypt(recipient_public_key_, sender_public_key_,
                                      ecdh_shared_secret, auth_secret, salt,
                                      kEncryptionTestVectorsDraft03[i].input,
                                      &record_size, &ciphertext));

    base::Base64UrlEncode(ciphertext, base::Base64UrlEncodePolicy::OMIT_PADDING,
                          &output);

    EXPECT_EQ(kEncryptionTestVectorsDraft03[i].record_size, record_size);
    EXPECT_EQ(kEncryptionTestVectorsDraft03[i].output, output);
  }
}

TEST_F(GCMMessageCryptographerTestVectorTest, DecryptionVectorsDraft03) {
  GCMMessageCryptographer cryptographer(
      GCMMessageCryptographer::Version::DRAFT_03);

  std::string input, ecdh_shared_secret, auth_secret, salt, plaintext;
  for (size_t i = 0; i < base::size(kDecryptionTestVectorsDraft03); ++i) {
    SCOPED_TRACE(i);

    ASSERT_TRUE(base::Base64UrlDecode(
        kDecryptionTestVectorsDraft03[i].input,
        base::Base64UrlDecodePolicy::IGNORE_PADDING, &input));

    ecdh_shared_secret.assign(
        kDecryptionTestVectorsDraft03[i].ecdh_shared_secret,
        kDecryptionTestVectorsDraft03[i].ecdh_shared_secret +
            kEcdhSharedSecretSize);

    auth_secret.assign(
        kDecryptionTestVectorsDraft03[i].auth_secret,
        kDecryptionTestVectorsDraft03[i].auth_secret + kAuthSecretSize);

    salt.assign(kDecryptionTestVectorsDraft03[i].salt,
                kDecryptionTestVectorsDraft03[i].salt + kSaltSize);

    const bool has_output = kDecryptionTestVectorsDraft03[i].output;
    const bool result = cryptographer.Decrypt(
        recipient_public_key_, sender_public_key_, ecdh_shared_secret,
        auth_secret, salt, input, kDecryptionTestVectorsDraft03[i].record_size,
        &plaintext);

    if (!has_output) {
      EXPECT_FALSE(result);
      continue;
    }

    EXPECT_TRUE(result);
    EXPECT_EQ(kDecryptionTestVectorsDraft03[i].output, plaintext);
  }
}

TEST_F(GCMMessageCryptographerTestVectorTest, EncryptionVectorsDraft08) {
  GCMMessageCryptographer cryptographer(
      GCMMessageCryptographer::Version::DRAFT_08);

  std::string ecdh_shared_secret, auth_secret, salt, ciphertext, output;
  size_t record_size = 0;

  for (size_t i = 0; i < base::size(kEncryptionTestVectorsDraft08); ++i) {
    SCOPED_TRACE(i);

    ecdh_shared_secret.assign(
        kEncryptionTestVectorsDraft08[i].ecdh_shared_secret,
        kEncryptionTestVectorsDraft08[i].ecdh_shared_secret +
            kEcdhSharedSecretSize);

    auth_secret.assign(
        kEncryptionTestVectorsDraft08[i].auth_secret,
        kEncryptionTestVectorsDraft08[i].auth_secret + kAuthSecretSize);

    salt.assign(kEncryptionTestVectorsDraft08[i].salt,
                kEncryptionTestVectorsDraft08[i].salt + kSaltSize);

    ASSERT_TRUE(cryptographer.Encrypt(recipient_public_key_, sender_public_key_,
                                      ecdh_shared_secret, auth_secret, salt,
                                      kEncryptionTestVectorsDraft08[i].input,
                                      &record_size, &ciphertext));

    base::Base64UrlEncode(ciphertext, base::Base64UrlEncodePolicy::OMIT_PADDING,
                          &output);

    EXPECT_EQ(kEncryptionTestVectorsDraft08[i].record_size, record_size);
    EXPECT_EQ(kEncryptionTestVectorsDraft08[i].output, output);
  }
}

TEST_F(GCMMessageCryptographerTestVectorTest, DecryptionVectorsDraft08) {
  GCMMessageCryptographer cryptographer(
      GCMMessageCryptographer::Version::DRAFT_08);

  std::string input, ecdh_shared_secret, auth_secret, salt, plaintext;

  for (size_t i = 0; i < base::size(kDecryptionTestVectorsDraft08); ++i) {
    SCOPED_TRACE(i);

    ASSERT_TRUE(base::Base64UrlDecode(
        kDecryptionTestVectorsDraft08[i].input,
        base::Base64UrlDecodePolicy::IGNORE_PADDING, &input));

    ecdh_shared_secret.assign(
        kDecryptionTestVectorsDraft08[i].ecdh_shared_secret,
        kDecryptionTestVectorsDraft08[i].ecdh_shared_secret +
            kEcdhSharedSecretSize);

    auth_secret.assign(
        kDecryptionTestVectorsDraft08[i].auth_secret,
        kDecryptionTestVectorsDraft08[i].auth_secret + kAuthSecretSize);

    salt.assign(kDecryptionTestVectorsDraft08[i].salt,
                kDecryptionTestVectorsDraft08[i].salt + kSaltSize);

    const bool has_output = kDecryptionTestVectorsDraft08[i].output;
    const bool result = cryptographer.Decrypt(
        recipient_public_key_, sender_public_key_, ecdh_shared_secret,
        auth_secret, salt, input, kDecryptionTestVectorsDraft08[i].record_size,
        &plaintext);

    if (!has_output) {
      EXPECT_FALSE(result);
      continue;
    }

    EXPECT_TRUE(result);
    EXPECT_EQ(kDecryptionTestVectorsDraft08[i].output, plaintext);
  }
}

class GCMMessageCryptographerReferenceTest : public ::testing::Test {};

// Reference test included for the Version::DRAFT_03 implementation.
// https://tools.ietf.org/html/draft-ietf-webpush-encryption-03
// https://tools.ietf.org/html/draft-ietf-httpbis-encryption-encoding-02
TEST_F(GCMMessageCryptographerReferenceTest, ReferenceDraft03) {
  // The 16-byte salt unique to the message.
  const char kSalt[] = "lngarbyKfMoi9Z75xYXmkg";

  // The 16-byte prearranged secret between the sender and receiver.
  const char kAuthSecret[] = "R29vIGdvbyBnJyBqb29iIQ";

  // The keying material used by the sender to encrypt the |kCiphertext|.
  const char kSenderPrivate[] =
      "MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgnCScek-QpEjmOOlT-rQ38nZz"
      "vdPlqa00Zy0i6m2OJvahRANCAATaEQ22_OCRpvIOWeQhcbq0qrF1iddSLX1xFmFSxPOWOwmJ"
      "A417CBHOGqsWGkNRvAapFwiegz6Q61rXVo_5roB1";
  const char kSenderPublicKeyUncompressed[] =
      "BNoRDbb84JGm8g5Z5CFxurSqsXWJ11ItfXEWYVLE85Y7CYkDjXsIEc4aqxYaQ1G8BqkXCJ6D"
      "PpDrWtdWj_mugHU";

  // The keying material used by the recipient to decrypt the |kCiphertext|.
  const char kRecipientPrivate[] =
      "MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQg9FWl15_QUQAWDaD3k3l50ZBZ"
      "QJ4au27F1V4F0uLSD_OhRANCAAQhJAY8y_GdwvqItkO6BObdjafqe6LIxi4Pd6lD9ML6kU9t"
      "RBFsn9HEA0HGpEDKs-IUCmDkN4pdpzWXLeB4AFEF";
  const char kRecipientPublicKeyUncompressed[] =
      "BCEkBjzL8Z3C-oi2Q7oE5t2Np-p7osjGLg93qUP0wvqRT21EEWyf0cQDQcakQMqz4hQKYOQ3"
      "il2nNZct4HgAUQU";

  // The ciphertext and associated plaintext of the message.
  const char kCiphertext[] = "6nqAQUME8hNqw5J3kl8cpVVJylXKYqZOeseZG8UueKpA";
  const char kPlaintext[] = "I am the walrus";

  std::string sender_shared_secret, receiver_shared_secret;

  // Compute the shared secrets between the sender and receiver's keys.
  ASSERT_NO_FATAL_FAILURE(ComputeSharedSecret(
      kSenderPrivate, kRecipientPublicKeyUncompressed, &sender_shared_secret));
  ASSERT_NO_FATAL_FAILURE(ComputeSharedSecret(kRecipientPrivate,
                                              kSenderPublicKeyUncompressed,
                                              &receiver_shared_secret));

  ASSERT_GT(sender_shared_secret.size(), 0u);
  ASSERT_EQ(sender_shared_secret, receiver_shared_secret);

  // Decode the public keys of both parties, the auth secret and the salt.
  std::string recipient_public_key, sender_public_key, auth_secret, salt;
  ASSERT_TRUE(base::Base64UrlDecode(kRecipientPublicKeyUncompressed,
                                    base::Base64UrlDecodePolicy::IGNORE_PADDING,
                                    &recipient_public_key));
  ASSERT_TRUE(base::Base64UrlDecode(kSenderPublicKeyUncompressed,
                                    base::Base64UrlDecodePolicy::IGNORE_PADDING,
                                    &sender_public_key));
  ASSERT_TRUE(base::Base64UrlDecode(
      kAuthSecret, base::Base64UrlDecodePolicy::IGNORE_PADDING, &auth_secret));
  ASSERT_TRUE(base::Base64UrlDecode(
        kSalt, base::Base64UrlDecodePolicy::IGNORE_PADDING, &salt));

  std::string encoded_ciphertext, ciphertext, plaintext;
  size_t record_size = 0;

  // Now verify that encrypting a message with the given information yields the
  // expected ciphertext given the defined input.
  GCMMessageCryptographer cryptographer(
      GCMMessageCryptographer::Version::DRAFT_03);

  ASSERT_TRUE(cryptographer.Encrypt(recipient_public_key, sender_public_key,
                                    sender_shared_secret, auth_secret, salt,
                                    kPlaintext, &record_size, &ciphertext));

  base::Base64UrlEncode(ciphertext, base::Base64UrlEncodePolicy::OMIT_PADDING,
                        &encoded_ciphertext);
  ASSERT_EQ(kCiphertext, encoded_ciphertext);

  // And verify that decrypting the message yields the plaintext again.
  ASSERT_TRUE(cryptographer.Decrypt(recipient_public_key, sender_public_key,
                                    sender_shared_secret, auth_secret, salt,
                                    ciphertext, record_size, &plaintext));

  ASSERT_EQ(kPlaintext, plaintext);
}

// Reference test included for the Version::DRAFT_08 implementation.
// https://tools.ietf.org/html/draft-ietf-webpush-encryption-08
// https://tools.ietf.org/html/draft-ietf-httpbis-encryption-encoding-07
TEST_F(GCMMessageCryptographerReferenceTest, ReferenceDraft08) {
  // The 16-byte prearranged secret between the sender and receiver.
  const char kAuthSecret[] = "BTBZMqHH6r4Tts7J_aSIgg";

  // The keying material used by the sender to encrypt the |kCiphertext|.
  const char kSenderPrivate[] =
      "MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgyfWPiYE-n46HLnH0KqZOF1fJ"
      "JU3MYrct3AELtAQ-oRyhRANCAAT-M_SrDepxkU21WCP3O1SUj0EwbZIHMtu5pZpTKGSCIA5Z"
      "ent7wmC6HCJ5mFgJkuk5cwAvMBKiiujwa7t45ewP";

  // The keying material used by the recipient to decrypt the |kCiphertext|.
const char kRecipientPrivate[] =
      "MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgq1dXpw3UpT5VOmu_cf_v6ih0"
      "7Aems3njxI-JWgLcM96hRANCAAQlcbK-zf3jYFUarx7Q9M02bBHOvlVfiby3sYalMzkXMWjs"
      "4uvgGFl70wR5uG48j47O1XfKWRh-kkaZDbaCAIsO";
  const char kRecipientPublicKeyUncompressed[] =
      "BCVxsr7N_eNgVRqvHtD0zTZsEc6-VV-JvLexhqUzORcxaOzi6-AYWXvTBHm4bjyPjs7Vd8pZ"
      "GH6SRpkNtoIAiw4";

  // The plain text of the message, as well as the encrypted reference message.
  const char kPlaintext[] = "When I grow up, I want to be a watermelon";
  const char kReferenceMessage[] =
      "DGv6ra1nlYgDCS1FRnbzlwAAEABBBP4z9KsN6nGRTbVYI_"
      "c7VJSPQTBtkgcy27mlmlMoZIIgDll6e3vCYLocInmYWAmS6TlzAC8wEqKK6PBru3jl7A_"
      "yl95bQpu6cVPTpK4Mqgkf1CXztLVBSt2Ks3oZwbuwXPXLWyouBWLVWGNWQexSgSxsj_"
      "Qulcy4a-fN";

  std::string message;
  ASSERT_TRUE(base::Base64UrlDecode(kReferenceMessage,
                                    base::Base64UrlDecodePolicy::IGNORE_PADDING,
                                    &message));

  MessagePayloadParser message_parser(message);
  ASSERT_TRUE(message_parser.IsValid());

  base::StringPiece salt = message_parser.salt();
  uint32_t record_size = message_parser.record_size();
  base::StringPiece sender_public_key = message_parser.public_key();
  base::StringPiece ciphertext = message_parser.ciphertext();

  std::string sender_shared_secret, receiver_shared_secret;

  // Compute the shared secrets between the sender and receiver's keys.
  ASSERT_NO_FATAL_FAILURE(ComputeSharedSecret(
      kSenderPrivate, kRecipientPublicKeyUncompressed, &sender_shared_secret));

  // Compute the shared secret based on the sender's public key, which isn't a
  // constant but instead is included in the message's binary header.
  std::string recipient_private_key;
  ASSERT_TRUE(base::Base64UrlDecode(kRecipientPrivate,
                                    base::Base64UrlDecodePolicy::IGNORE_PADDING,
                                    &recipient_private_key));
  ASSERT_NO_FATAL_FAILURE(ComputeSharedP256SecretFromPrivateKeyStr(
      recipient_private_key, sender_public_key,
      &receiver_shared_secret));

  ASSERT_GT(sender_shared_secret.size(), 0u);
  ASSERT_EQ(sender_shared_secret, receiver_shared_secret);

  // Decode the public keys of both parties and the auth secret.
  std::string recipient_public_key, auth_secret;
  ASSERT_TRUE(base::Base64UrlDecode(kRecipientPublicKeyUncompressed,
                                    base::Base64UrlDecodePolicy::IGNORE_PADDING,
                                    &recipient_public_key));
  ASSERT_TRUE(base::Base64UrlDecode(
      kAuthSecret, base::Base64UrlDecodePolicy::IGNORE_PADDING, &auth_secret));

  // Attempt to decrypt the message using a GCMMessageCryptographer for this
  // version of the draft, and then re-encrypt it agian to make sure it matches.
  GCMMessageCryptographer cryptographer(
      GCMMessageCryptographer::Version::DRAFT_08);

  std::string plaintext;

  ASSERT_TRUE(cryptographer.Decrypt(recipient_public_key, sender_public_key,
                                    sender_shared_secret, auth_secret, salt,
                                    ciphertext, record_size, &plaintext));
  ASSERT_EQ(kPlaintext, plaintext);

  size_t record_size2;
  std::string ciphertext2;

  ASSERT_TRUE(cryptographer.Encrypt(recipient_public_key, sender_public_key,
                                    sender_shared_secret, auth_secret, salt,
                                    kPlaintext, &record_size2, &ciphertext2));

  EXPECT_GE(record_size2, record_size);
  EXPECT_EQ(ciphertext2, ciphertext);
}

}  // namespace gcm