summaryrefslogtreecommitdiff
path: root/chromium/media/formats/mp2t/es_parser_adts.cc
blob: adf1dbe8ed1032aade94833e9609581d221cd3c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/formats/mp2t/es_parser_adts.h"

#include <vector>

#include "base/basictypes.h"
#include "base/logging.h"
#include "base/strings/string_number_conversions.h"
#include "media/base/audio_timestamp_helper.h"
#include "media/base/bit_reader.h"
#include "media/base/channel_layout.h"
#include "media/base/stream_parser_buffer.h"
#include "media/base/timestamp_constants.h"
#include "media/formats/common/offset_byte_queue.h"
#include "media/formats/mp2t/mp2t_common.h"
#include "media/formats/mpeg/adts_constants.h"

namespace media {

static int ExtractAdtsFrameSize(const uint8* adts_header) {
  return ((static_cast<int>(adts_header[5]) >> 5) |
          (static_cast<int>(adts_header[4]) << 3) |
          ((static_cast<int>(adts_header[3]) & 0x3) << 11));
}

static size_t ExtractAdtsFrequencyIndex(const uint8* adts_header) {
  return ((adts_header[2] >> 2) & 0xf);
}

static size_t ExtractAdtsChannelConfig(const uint8* adts_header) {
  return (((adts_header[3] >> 6) & 0x3) |
          ((adts_header[2] & 0x1) << 2));
}

// Return true if buf corresponds to an ADTS syncword.
// |buf| size must be at least 2.
static bool isAdtsSyncWord(const uint8* buf) {
  // The first 12 bits must be 1.
  // The layer field (2 bits) must be set to 0.
  return (buf[0] == 0xff) && ((buf[1] & 0xf6) == 0xf0);
}

namespace mp2t {

struct EsParserAdts::AdtsFrame {
  // Pointer to the ES data.
  const uint8* data;

  // Frame size;
  int size;

  // Frame offset in the ES queue.
  int64 queue_offset;
};

bool EsParserAdts::LookForAdtsFrame(AdtsFrame* adts_frame) {
  int es_size;
  const uint8* es;
  es_queue_->Peek(&es, &es_size);

  int max_offset = es_size - kADTSHeaderMinSize;
  if (max_offset <= 0)
    return false;

  for (int offset = 0; offset < max_offset; offset++) {
    const uint8* cur_buf = &es[offset];
    if (!isAdtsSyncWord(cur_buf))
      continue;

    int frame_size = ExtractAdtsFrameSize(cur_buf);
    if (frame_size < kADTSHeaderMinSize) {
      // Too short to be an ADTS frame.
      continue;
    }

    int remaining_size = es_size - offset;
    if (remaining_size < frame_size) {
      // Not a full frame: will resume when we have more data.
      es_queue_->Pop(offset);
      return false;
    }

    // Check whether there is another frame
    // |size| apart from the current one.
    if (remaining_size >= frame_size + 2 &&
        !isAdtsSyncWord(&cur_buf[frame_size])) {
      continue;
    }

    es_queue_->Pop(offset);
    es_queue_->Peek(&adts_frame->data, &es_size);
    adts_frame->queue_offset = es_queue_->head();
    adts_frame->size = frame_size;
    DVLOG(LOG_LEVEL_ES)
        << "ADTS syncword @ pos=" << adts_frame->queue_offset
        << " frame_size=" << adts_frame->size;
    DVLOG(LOG_LEVEL_ES)
        << "ADTS header: "
        << base::HexEncode(adts_frame->data, kADTSHeaderMinSize);
    return true;
  }

  es_queue_->Pop(max_offset);
  return false;
}

void EsParserAdts::SkipAdtsFrame(const AdtsFrame& adts_frame) {
  DCHECK_EQ(adts_frame.queue_offset, es_queue_->head());
  es_queue_->Pop(adts_frame.size);
}

EsParserAdts::EsParserAdts(
    const NewAudioConfigCB& new_audio_config_cb,
    const EmitBufferCB& emit_buffer_cb,
    bool sbr_in_mimetype)
  : new_audio_config_cb_(new_audio_config_cb),
    emit_buffer_cb_(emit_buffer_cb),
    sbr_in_mimetype_(sbr_in_mimetype) {
}

EsParserAdts::~EsParserAdts() {
}

bool EsParserAdts::ParseFromEsQueue() {
  // Look for every ADTS frame in the ES buffer.
  AdtsFrame adts_frame;
  while (LookForAdtsFrame(&adts_frame)) {
    // Update the audio configuration if needed.
    DCHECK_GE(adts_frame.size, kADTSHeaderMinSize);
    if (!UpdateAudioConfiguration(adts_frame.data))
      return false;

    // Get the PTS & the duration of this access unit.
    TimingDesc current_timing_desc =
        GetTimingDescriptor(adts_frame.queue_offset);
    if (current_timing_desc.pts != kNoTimestamp())
      audio_timestamp_helper_->SetBaseTimestamp(current_timing_desc.pts);

    if (audio_timestamp_helper_->base_timestamp() == kNoTimestamp()) {
      DVLOG(1) << "Skipping audio frame with unknown timestamp";
      SkipAdtsFrame(adts_frame);
      continue;
    }
    base::TimeDelta current_pts = audio_timestamp_helper_->GetTimestamp();
    base::TimeDelta frame_duration =
        audio_timestamp_helper_->GetFrameDuration(kSamplesPerAACFrame);

    // Emit an audio frame.
    bool is_key_frame = true;

    // TODO(wolenetz/acolwell): Validate and use a common cross-parser TrackId
    // type and allow multiple audio tracks. See https://crbug.com/341581.
    scoped_refptr<StreamParserBuffer> stream_parser_buffer =
        StreamParserBuffer::CopyFrom(
            adts_frame.data,
            adts_frame.size,
            is_key_frame,
            DemuxerStream::AUDIO, 0);
    stream_parser_buffer->set_timestamp(current_pts);
    stream_parser_buffer->SetDecodeTimestamp(
        DecodeTimestamp::FromPresentationTime(current_pts));
    stream_parser_buffer->set_duration(frame_duration);
    emit_buffer_cb_.Run(stream_parser_buffer);

    // Update the PTS of the next frame.
    audio_timestamp_helper_->AddFrames(kSamplesPerAACFrame);

    // Skip the current frame.
    SkipAdtsFrame(adts_frame);
  }

  return true;
}

void EsParserAdts::Flush() {
}

void EsParserAdts::ResetInternal() {
  last_audio_decoder_config_ = AudioDecoderConfig();
}

bool EsParserAdts::UpdateAudioConfiguration(const uint8* adts_header) {
  size_t frequency_index = ExtractAdtsFrequencyIndex(adts_header);
  if (frequency_index >= kADTSFrequencyTableSize) {
    // Frequency index 13 & 14 are reserved
    // while 15 means that the frequency is explicitly written
    // (not supported).
    return false;
  }

  size_t channel_configuration = ExtractAdtsChannelConfig(adts_header);
  if (channel_configuration == 0 ||
      channel_configuration >= kADTSChannelLayoutTableSize) {
    // TODO(damienv): Add support for inband channel configuration.
    return false;
  }

  // TODO(damienv): support HE-AAC frequency doubling (SBR)
  // based on the incoming ADTS profile.
  int samples_per_second = kADTSFrequencyTable[frequency_index];
  int adts_profile = (adts_header[2] >> 6) & 0x3;

  // The following code is written according to ISO 14496 Part 3 Table 1.11 and
  // Table 1.22. (Table 1.11 refers to the capping to 48000, Table 1.22 refers
  // to SBR doubling the AAC sample rate.)
  // TODO(damienv) : Extend sample rate cap to 96kHz for Level 5 content.
  int extended_samples_per_second = sbr_in_mimetype_
      ? std::min(2 * samples_per_second, 48000)
      : samples_per_second;

  // The following code is written according to ISO 14496 Part 3 Table 1.13 -
  // Syntax of AudioSpecificConfig.
  uint16 extra_data_int = static_cast<uint16>(
      // Note: adts_profile is in the range [0,3], since the ADTS header only
      // allows two bits for its value.
      ((adts_profile + 1) << 11) +
      // frequency_index is [0..13], per early out above.
      (frequency_index << 7) +
      // channel_configuration is [0..7], per early out above.
      (channel_configuration << 3));
  std::vector<uint8_t> extra_data;
  extra_data.push_back(static_cast<uint8>(extra_data_int >> 8));
  extra_data.push_back(static_cast<uint8>(extra_data_int & 0xff));

  AudioDecoderConfig audio_decoder_config(
      kCodecAAC,
      kSampleFormatS16,
      kADTSChannelLayoutTable[channel_configuration],
      extended_samples_per_second,
      extra_data,
      false);

  if (!audio_decoder_config.Matches(last_audio_decoder_config_)) {
    DVLOG(1) << "Sampling frequency: " << samples_per_second;
    DVLOG(1) << "Extended sampling frequency: " << extended_samples_per_second;
    DVLOG(1) << "Channel config: " << channel_configuration;
    DVLOG(1) << "Adts profile: " << adts_profile;
    // Reset the timestamp helper to use a new time scale.
    if (audio_timestamp_helper_ &&
        audio_timestamp_helper_->base_timestamp() != kNoTimestamp()) {
      base::TimeDelta base_timestamp = audio_timestamp_helper_->GetTimestamp();
      audio_timestamp_helper_.reset(
        new AudioTimestampHelper(samples_per_second));
      audio_timestamp_helper_->SetBaseTimestamp(base_timestamp);
    } else {
      audio_timestamp_helper_.reset(
          new AudioTimestampHelper(samples_per_second));
    }
    // Audio config notification.
    last_audio_decoder_config_ = audio_decoder_config;
    new_audio_config_cb_.Run(audio_decoder_config);
  }

  return true;
}

}  // namespace mp2t
}  // namespace media