summaryrefslogtreecommitdiff
path: root/chromium/third_party/WebKit/Source/wtf/HashTable.h
blob: c85ddc2ad7909cc72f350ab3eb81136b2ce85101 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
/*
 * Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights reserved.
 * Copyright (C) 2008 David Levin <levin@chromium.org>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public License
 * along with this library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 */

#ifndef WTF_HashTable_h
#define WTF_HashTable_h

#include "wtf/Alignment.h"
#include "wtf/Assertions.h"
#include "wtf/ConditionalDestructor.h"
#include "wtf/DefaultAllocator.h"
#include "wtf/HashTraits.h"

#define DUMP_HASHTABLE_STATS 0
#define DUMP_HASHTABLE_STATS_PER_TABLE 0

#if DUMP_HASHTABLE_STATS_PER_TABLE
#include "wtf/DataLog.h"
#endif

#if DUMP_HASHTABLE_STATS
#if DUMP_HASHTABLE_STATS_PER_TABLE
#define UPDATE_PROBE_COUNTS()                            \
    ++probeCount;                                        \
    HashTableStats::recordCollisionAtCount(probeCount);  \
    ++perTableProbeCount;                                \
    m_stats->recordCollisionAtCount(perTableProbeCount)
#define UPDATE_ACCESS_COUNTS()                           \
    atomicIncrement(&HashTableStats::numAccesses);       \
    int probeCount = 0;                                  \
    ++m_stats->numAccesses;                              \
    int perTableProbeCount = 0
#else
#define UPDATE_PROBE_COUNTS()                            \
    ++probeCount;                                        \
    HashTableStats::recordCollisionAtCount(probeCount)
#define UPDATE_ACCESS_COUNTS()                           \
    atomicIncrement(&HashTableStats::numAccesses);       \
    int probeCount = 0
#endif
#else
#if DUMP_HASHTABLE_STATS_PER_TABLE
#define UPDATE_PROBE_COUNTS()                            \
    ++perTableProbeCount;                                \
    m_stats->recordCollisionAtCount(perTableProbeCount)
#define UPDATE_ACCESS_COUNTS()                           \
    ++m_stats->numAccesses;                              \
    int perTableProbeCount = 0
#else
#define UPDATE_PROBE_COUNTS() do { } while (0)
#define UPDATE_ACCESS_COUNTS() do { } while (0)
#endif
#endif

namespace WTF {

#if DUMP_HASHTABLE_STATS

struct HashTableStats {
    // The following variables are all atomically incremented when modified.
    static int numAccesses;
    static int numRehashes;
    static int numRemoves;
    static int numReinserts;

    // The following variables are only modified in the recordCollisionAtCount
    // method within a mutex.
    static int maxCollisions;
    static int numCollisions;
    static int collisionGraph[4096];

    static void recordCollisionAtCount(int count);
    static void dumpStats();
};

#endif

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTable;
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTableIterator;
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTableConstIterator;
template <typename Value, typename HashFunctions, typename HashTraits, typename Allocator>
class LinkedHashSet;
template <WeakHandlingFlag x, typename T, typename U, typename V, typename W, typename X, typename Y, typename Z>
struct WeakProcessingHashTableHelper;

typedef enum { HashItemKnownGood } HashItemKnownGoodTag;

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTableConstIterator {
private:
    typedef HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> HashTableType;
    typedef HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> iterator;
    typedef HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> const_iterator;
    typedef Value ValueType;
    typedef typename Traits::IteratorConstGetType GetType;
    typedef const ValueType* PointerType;

    friend class HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>;
    friend class HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>;

    void skipEmptyBuckets()
    {
        while (m_position != m_endPosition && HashTableType::isEmptyOrDeletedBucket(*m_position))
            ++m_position;
    }

    HashTableConstIterator(PointerType position, PointerType endPosition, const HashTableType* container)
        : m_position(position)
        , m_endPosition(endPosition)
#if ENABLE(ASSERT)
        , m_container(container)
        , m_containerModifications(container->modifications())
#endif
    {
        skipEmptyBuckets();
    }

    HashTableConstIterator(PointerType position, PointerType endPosition, const HashTableType* container, HashItemKnownGoodTag)
        : m_position(position)
        , m_endPosition(endPosition)
#if ENABLE(ASSERT)
        , m_container(container)
        , m_containerModifications(container->modifications())
#endif
    {
        ASSERT(m_containerModifications == m_container->modifications());
    }

    void checkModifications() const
    {
        // HashTable and collections that build on it do not support
        // modifications while there is an iterator in use. The exception is
        // ListHashSet, which has its own iterators that tolerate modification
        // of the underlying set.
        ASSERT(m_containerModifications == m_container->modifications());
    }

public:
    HashTableConstIterator() {}

    GetType get() const
    {
        checkModifications();
        return m_position;
    }
    typename Traits::IteratorConstReferenceType operator*() const { return Traits::getToReferenceConstConversion(get()); }
    GetType operator->() const { return get(); }

    const_iterator& operator++()
    {
        ASSERT(m_position != m_endPosition);
        checkModifications();
        ++m_position;
        skipEmptyBuckets();
        return *this;
    }

    // postfix ++ intentionally omitted

    // Comparison.
    bool operator==(const const_iterator& other) const
    {
        return m_position == other.m_position;
    }
    bool operator!=(const const_iterator& other) const
    {
        return m_position != other.m_position;
    }
    bool operator==(const iterator& other) const
    {
        return *this == static_cast<const_iterator>(other);
    }
    bool operator!=(const iterator& other) const
    {
        return *this != static_cast<const_iterator>(other);
    }

private:
    PointerType m_position;
    PointerType m_endPosition;
#if ENABLE(ASSERT)
    const HashTableType* m_container;
    int64_t m_containerModifications;
#endif
};

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTableIterator {
private:
    typedef HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> HashTableType;
    typedef HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> iterator;
    typedef HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> const_iterator;
    typedef Value ValueType;
    typedef typename Traits::IteratorGetType GetType;
    typedef ValueType* PointerType;

    friend class HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>;

    HashTableIterator(PointerType pos, PointerType end, const HashTableType* container) : m_iterator(pos, end, container) {}
    HashTableIterator(PointerType pos, PointerType end, const HashTableType* container, HashItemKnownGoodTag tag) : m_iterator(pos, end, container, tag) {}

public:
    HashTableIterator() {}

    // default copy, assignment and destructor are OK

    GetType get() const { return const_cast<GetType>(m_iterator.get()); }
    typename Traits::IteratorReferenceType operator*() const { return Traits::getToReferenceConversion(get()); }
    GetType operator->() const { return get(); }

    iterator& operator++() { ++m_iterator; return *this; }

    // postfix ++ intentionally omitted

    // Comparison.
    bool operator==(const iterator& other) const { return m_iterator == other.m_iterator; }
    bool operator!=(const iterator& other) const { return m_iterator != other.m_iterator; }
    bool operator==(const const_iterator& other) const { return m_iterator == other; }
    bool operator!=(const const_iterator& other) const { return m_iterator != other; }

    operator const_iterator() const { return m_iterator; }

private:
    const_iterator m_iterator;
};

using std::swap;

// Work around MSVC's standard library, whose swap for pairs does not swap by component.
template <typename T> inline void hashTableSwap(T& a, T& b)
{
    swap(a, b);
}

template <typename T, typename U> inline void hashTableSwap(KeyValuePair<T, U>& a, KeyValuePair<T, U>& b)
{
    swap(a.key, b.key);
    swap(a.value, b.value);
}

template <typename T, typename Allocator, bool useSwap = !IsTriviallyDestructible<T>::value>
struct Mover;
template <typename T, typename Allocator> struct Mover<T, Allocator, true> {
    static void move(T& from, T& to)
    {
        // The key and value cannot be swapped atomically, and it would be wrong
        // to have a GC when only one was swapped and the other still contained
        // garbage (eg. from a previous use of the same slot).  Therefore we
        // forbid a GC until both the key and the value are swapped.
        Allocator::enterGCForbiddenScope();
        hashTableSwap(from, to);
        Allocator::leaveGCForbiddenScope();
    }
};

template <typename T, typename Allocator> struct Mover<T, Allocator, false> {
    static void move(T& from, T& to) { to = from; }
};

template <typename HashFunctions> class IdentityHashTranslator {
public:
    template <typename T> static unsigned hash(const T& key) { return HashFunctions::hash(key); }
    template <typename T, typename U> static bool equal(const T& a, const U& b) { return HashFunctions::equal(a, b); }
    template <typename T, typename U, typename V> static void translate(T& location, const U&, const V& value) { location = value; }
};

template <typename HashTableType, typename ValueType> struct HashTableAddResult {
    HashTableAddResult(const HashTableType* container, ValueType* storedValue, bool isNewEntry)
        : storedValue(storedValue)
        , isNewEntry(isNewEntry)
#if ENABLE(SECURITY_ASSERT)
        , m_container(container)
        , m_containerModifications(container->modifications())
#endif
    {
        ASSERT_UNUSED(container, container);
    }

    ValueType* storedValue;
    bool isNewEntry;

#if ENABLE(SECURITY_ASSERT)
    ~HashTableAddResult()
    {
        // If rehash happened before accessing storedValue, it's
        // use-after-free. Any modification may cause a rehash, so we check for
        // modifications here.

        // Rehash after accessing storedValue is harmless but will assert if the
        // AddResult destructor takes place after a modification. You may need
        // to limit the scope of the AddResult.
        ASSERT_WITH_SECURITY_IMPLICATION(m_containerModifications == m_container->modifications());
    }

private:
    const HashTableType* m_container;
    const int64_t m_containerModifications;
#endif
};

template <typename Value, typename Extractor, typename KeyTraits>
struct HashTableHelper {
    static bool isEmptyBucket(const Value& value) { return isHashTraitsEmptyValue<KeyTraits>(Extractor::extract(value)); }
    static bool isDeletedBucket(const Value& value) { return KeyTraits::isDeletedValue(Extractor::extract(value)); }
    static bool isEmptyOrDeletedBucket(const Value& value) { return isEmptyBucket(value) || isDeletedBucket(value); }
};

template <typename HashTranslator, typename KeyTraits, bool safeToCompareToEmptyOrDeleted>
struct HashTableKeyChecker {
    // There's no simple generic way to make this check if
    // safeToCompareToEmptyOrDeleted is false, so the check always passes.
    template <typename T>
    static bool checkKey(const T&) { return true; }
};

template <typename HashTranslator, typename KeyTraits>
struct HashTableKeyChecker<HashTranslator, KeyTraits, true> {
    template <typename T>
    static bool checkKey(const T& key)
    {
        // FIXME : Check also equality to the deleted value.
        return !HashTranslator::equal(KeyTraits::emptyValue(), key);
    }
};

// Note: empty or deleted key values are not allowed, using them may lead to
// undefined behavior.  For pointer keys this means that null pointers are not
// allowed unless you supply custom key traits.
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTable : public ConditionalDestructor<HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>, Allocator::isGarbageCollected> {
public:
    typedef HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> iterator;
    typedef HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> const_iterator;
    typedef Traits ValueTraits;
    typedef Key KeyType;
    typedef typename KeyTraits::PeekInType KeyPeekInType;
    typedef typename KeyTraits::PassInType KeyPassInType;
    typedef Value ValueType;
    typedef Extractor ExtractorType;
    typedef KeyTraits KeyTraitsType;
    typedef typename Traits::PassInType ValuePassInType;
    typedef IdentityHashTranslator<HashFunctions> IdentityTranslatorType;
    typedef HashTableAddResult<HashTable, ValueType> AddResult;

#if DUMP_HASHTABLE_STATS_PER_TABLE
    struct Stats {
        Stats()
            : numAccesses(0)
            , numRehashes(0)
            , numRemoves(0)
            , numReinserts(0)
            , maxCollisions(0)
            , numCollisions(0)
            , collisionGraph()
        {
        }

        int numAccesses;
        int numRehashes;
        int numRemoves;
        int numReinserts;

        int maxCollisions;
        int numCollisions;
        int collisionGraph[4096];

        void recordCollisionAtCount(int count)
        {
            if (count > maxCollisions)
                maxCollisions = count;
            numCollisions++;
            collisionGraph[count]++;
        }

        void dumpStats()
        {
            dataLogF("\nWTF::HashTable::Stats dump\n\n");
            dataLogF("%d accesses\n", numAccesses);
            dataLogF("%d total collisions, average %.2f probes per access\n", numCollisions, 1.0 * (numAccesses + numCollisions) / numAccesses);
            dataLogF("longest collision chain: %d\n", maxCollisions);
            for (int i = 1; i <= maxCollisions; i++) {
                dataLogF("  %d lookups with exactly %d collisions (%.2f%% , %.2f%% with this many or more)\n", collisionGraph[i], i, 100.0 * (collisionGraph[i] - collisionGraph[i+1]) / numAccesses, 100.0 * collisionGraph[i] / numAccesses);
            }
            dataLogF("%d rehashes\n", numRehashes);
            dataLogF("%d reinserts\n", numReinserts);
        }
    };
#endif

    HashTable();
    void finalize()
    {
        ASSERT(!Allocator::isGarbageCollected);
        if (LIKELY(!m_table))
            return;
        deleteAllBucketsAndDeallocate(m_table, m_tableSize);
        m_table = nullptr;
    }

    HashTable(const HashTable&);
    void swap(HashTable&);
    HashTable& operator=(const HashTable&);

    // When the hash table is empty, just return the same iterator for end as
    // for begin.  This is more efficient because we don't have to skip all the
    // empty and deleted buckets, and iterating an empty table is a common case
    // that's worth optimizing.
    iterator begin() { return isEmpty() ? end() : makeIterator(m_table); }
    iterator end() { return makeKnownGoodIterator(m_table + m_tableSize); }
    const_iterator begin() const { return isEmpty() ? end() : makeConstIterator(m_table); }
    const_iterator end() const { return makeKnownGoodConstIterator(m_table + m_tableSize); }

    unsigned size() const { return m_keyCount; }
    unsigned capacity() const { return m_tableSize; }
    bool isEmpty() const { return !m_keyCount; }

    void reserveCapacityForSize(unsigned size);

    AddResult add(ValuePassInType value)
    {
        return add<IdentityTranslatorType>(Extractor::extract(value), value);
    }

    // A special version of add() that finds the object by hashing and comparing
    // with some other type, to avoid the cost of type conversion if the object
    // is already in the table.
    template <typename HashTranslator, typename T, typename Extra> AddResult add(const T& key, const Extra&);
    template <typename HashTranslator, typename T, typename Extra> AddResult addPassingHashCode(const T& key, const Extra&);

    iterator find(KeyPeekInType key) { return find<IdentityTranslatorType>(key); }
    const_iterator find(KeyPeekInType key) const { return find<IdentityTranslatorType>(key); }
    bool contains(KeyPeekInType key) const { return contains<IdentityTranslatorType>(key); }

    template <typename HashTranslator, typename T> iterator find(const T&);
    template <typename HashTranslator, typename T> const_iterator find(const T&) const;
    template <typename HashTranslator, typename T> bool contains(const T&) const;

    void remove(KeyPeekInType);
    void remove(iterator);
    void remove(const_iterator);
    void clear();

    static bool isEmptyBucket(const ValueType& value) { return isHashTraitsEmptyValue<KeyTraits>(Extractor::extract(value)); }
    static bool isDeletedBucket(const ValueType& value) { return KeyTraits::isDeletedValue(Extractor::extract(value)); }
    static bool isEmptyOrDeletedBucket(const ValueType& value) { return HashTableHelper<ValueType, Extractor, KeyTraits>:: isEmptyOrDeletedBucket(value); }

    ValueType* lookup(KeyPeekInType key) { return lookup<IdentityTranslatorType, KeyPeekInType>(key); }
    template <typename HashTranslator, typename T> ValueType* lookup(T);
    template <typename HashTranslator, typename T> const ValueType* lookup(T) const;

    template <typename VisitorDispatcher> void trace(VisitorDispatcher);

#if ENABLE(ASSERT)
    int64_t modifications() const { return m_modifications; }
    void registerModification() { m_modifications++; }
    // HashTable and collections that build on it do not support modifications
    // while there is an iterator in use. The exception is ListHashSet, which
    // has its own iterators that tolerate modification of the underlying set.
    void checkModifications(int64_t mods) const { ASSERT(mods == m_modifications); }
#else
    int64_t modifications() const { return 0; }
    void registerModification() {}
    void checkModifications(int64_t mods) const {}
#endif

private:
    static ValueType* allocateTable(unsigned size);
    static void deleteAllBucketsAndDeallocate(ValueType* table, unsigned size);

    typedef std::pair<ValueType*, bool> LookupType;
    typedef std::pair<LookupType, unsigned> FullLookupType;

    LookupType lookupForWriting(const Key& key) { return lookupForWriting<IdentityTranslatorType>(key); }
    template <typename HashTranslator, typename T> FullLookupType fullLookupForWriting(const T&);
    template <typename HashTranslator, typename T> LookupType lookupForWriting(const T&);

    void remove(ValueType*);

    bool shouldExpand() const { return (m_keyCount + m_deletedCount) * m_maxLoad >= m_tableSize; }
    bool mustRehashInPlace() const { return m_keyCount * m_minLoad < m_tableSize * 2; }
    bool shouldShrink() const
    {
        // isAllocationAllowed check should be at the last because it's
        // expensive.
        return m_keyCount * m_minLoad < m_tableSize
            && m_tableSize > KeyTraits::minimumTableSize
            && Allocator::isAllocationAllowed();
    }
    ValueType* expand(ValueType* entry = 0);
    void shrink() { rehash(m_tableSize / 2, 0); }

    ValueType* expandBuffer(unsigned newTableSize, ValueType* entry, bool&);
    ValueType* rehashTo(ValueType* newTable, unsigned newTableSize, ValueType* entry);
    ValueType* rehash(unsigned newTableSize, ValueType* entry);
    ValueType* reinsert(ValueType&);

    static void initializeBucket(ValueType& bucket);
    static void deleteBucket(ValueType& bucket) { bucket.~ValueType(); Traits::constructDeletedValue(bucket, Allocator::isGarbageCollected); }

    FullLookupType makeLookupResult(ValueType* position, bool found, unsigned hash)
        { return FullLookupType(LookupType(position, found), hash); }

    iterator makeIterator(ValueType* pos) { return iterator(pos, m_table + m_tableSize, this); }
    const_iterator makeConstIterator(ValueType* pos) const { return const_iterator(pos, m_table + m_tableSize, this); }
    iterator makeKnownGoodIterator(ValueType* pos) { return iterator(pos, m_table + m_tableSize, this, HashItemKnownGood); }
    const_iterator makeKnownGoodConstIterator(ValueType* pos) const { return const_iterator(pos, m_table + m_tableSize, this, HashItemKnownGood); }

    static const unsigned m_maxLoad = 2;
    static const unsigned m_minLoad = 6;

    unsigned tableSizeMask() const
    {
        size_t mask = m_tableSize - 1;
        ASSERT((mask & m_tableSize) == 0);
        return mask;
    }

    void setEnqueued() { m_queueFlag = true; }
    void clearEnqueued() { m_queueFlag = false; }
    bool enqueued() { return m_queueFlag; }

    ValueType* m_table;
    unsigned m_tableSize;
    unsigned m_keyCount;
    unsigned m_deletedCount:31;
    unsigned m_queueFlag:1;
#if ENABLE(ASSERT)
    unsigned m_modifications;
#endif

#if DUMP_HASHTABLE_STATS_PER_TABLE
public:
    mutable OwnPtr<Stats> m_stats;
#endif

    template <WeakHandlingFlag x, typename T, typename U, typename V, typename W, typename X, typename Y, typename Z> friend struct WeakProcessingHashTableHelper;
    template <typename T, typename U, typename V, typename W> friend class LinkedHashSet;
};

// Set all the bits to one after the most significant bit:
// 00110101010 -> 00111111111.
template <unsigned size> struct OneifyLowBits;
template <>
struct OneifyLowBits<0> {
    static const unsigned value = 0;
};
template <unsigned number>
struct OneifyLowBits {
    static const unsigned value = number | OneifyLowBits<(number >> 1)>::value;
};
// Compute the first power of two integer that is an upper bound of the
// parameter 'number'.
template <unsigned number>
struct UpperPowerOfTwoBound {
    static const unsigned value = (OneifyLowBits<number - 1>::value + 1) * 2;
};

// Because power of two numbers are the limit of maxLoad, their capacity is
// twice the UpperPowerOfTwoBound, or 4 times their values.
template <unsigned size, bool isPowerOfTwo> struct HashTableCapacityForSizeSplitter;
template <unsigned size>
struct HashTableCapacityForSizeSplitter<size, true> {
    static const unsigned value = size * 4;
};
template <unsigned size>
struct HashTableCapacityForSizeSplitter<size, false> {
    static const unsigned value = UpperPowerOfTwoBound<size>::value;
};

// HashTableCapacityForSize computes the upper power of two capacity to hold the
// size parameter.  This is done at compile time to initialize the HashTraits.
template <unsigned size>
struct HashTableCapacityForSize {
    static const unsigned value = HashTableCapacityForSizeSplitter<size, !(size & (size - 1))>::value;
    static_assert(size > 0, "HashTable minimum capacity should be > 0");
    static_assert(!static_cast<int>(value >> 31), "HashTable capacity should not overflow 32bit int");
    static_assert(value > (2 * size), "HashTable capacity should be able to hold content size");
};

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
inline HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::HashTable()
    : m_table(nullptr)
    , m_tableSize(0)
    , m_keyCount(0)
    , m_deletedCount(0)
    , m_queueFlag(false)
#if ENABLE(ASSERT)
    , m_modifications(0)
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
    , m_stats(adoptPtr(new Stats))
#endif
{
}

inline unsigned doubleHash(unsigned key)
{
    key = ~key + (key >> 23);
    key ^= (key << 12);
    key ^= (key >> 7);
    key ^= (key << 2);
    key ^= (key >> 20);
    return key;
}

inline unsigned calculateCapacity(unsigned size)
{
    for (unsigned mask = size; mask; mask >>= 1)
        size |= mask; // 00110101010 -> 00111111111
    return (size + 1) * 2; // 00111111111 -> 10000000000
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::reserveCapacityForSize(unsigned newSize)
{
    unsigned newCapacity = calculateCapacity(newSize);
    if (newCapacity < KeyTraits::minimumTableSize)
        newCapacity = KeyTraits::minimumTableSize;

    if (newCapacity > capacity()) {
        RELEASE_ASSERT(!static_cast<int>(newCapacity >> 31)); // HashTable capacity should not overflow 32bit int.
        rehash(newCapacity, 0);
    }
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T>
inline Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::lookup(T key)
{
    return const_cast<Value*>(const_cast<const HashTable*>(this)->lookup<HashTranslator, T>(key));
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T>
inline const Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::lookup(T key) const
{
    ASSERT((HashTableKeyChecker<HashTranslator, KeyTraits, HashFunctions::safeToCompareToEmptyOrDeleted>::checkKey(key)));
    const ValueType* table = m_table;
    if (!table)
        return nullptr;

    size_t k = 0;
    size_t sizeMask = tableSizeMask();
    unsigned h = HashTranslator::hash(key);
    size_t i = h & sizeMask;

    UPDATE_ACCESS_COUNTS();

    while (1) {
        const ValueType* entry = table + i;

        if (HashFunctions::safeToCompareToEmptyOrDeleted) {
            if (HashTranslator::equal(Extractor::extract(*entry), key))
                return entry;

            if (isEmptyBucket(*entry))
                return nullptr;
        } else {
            if (isEmptyBucket(*entry))
                return nullptr;

            if (!isDeletedBucket(*entry) && HashTranslator::equal(Extractor::extract(*entry), key))
                return entry;
        }
        UPDATE_PROBE_COUNTS();
        if (!k)
            k = 1 | doubleHash(h);
        i = (i + k) & sizeMask;
    }
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T>
inline typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::LookupType HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::lookupForWriting(const T& key)
{
    ASSERT(m_table);
    registerModification();

    ValueType* table = m_table;
    size_t k = 0;
    size_t sizeMask = tableSizeMask();
    unsigned h = HashTranslator::hash(key);
    size_t i = h & sizeMask;

    UPDATE_ACCESS_COUNTS();

    ValueType* deletedEntry = nullptr;

    while (1) {
        ValueType* entry = table + i;

        if (isEmptyBucket(*entry))
            return LookupType(deletedEntry ? deletedEntry : entry, false);

        if (HashFunctions::safeToCompareToEmptyOrDeleted) {
            if (HashTranslator::equal(Extractor::extract(*entry), key))
                return LookupType(entry, true);

            if (isDeletedBucket(*entry))
                deletedEntry = entry;
        } else {
            if (isDeletedBucket(*entry))
                deletedEntry = entry;
            else if (HashTranslator::equal(Extractor::extract(*entry), key))
                return LookupType(entry, true);
        }
        UPDATE_PROBE_COUNTS();
        if (!k)
            k = 1 | doubleHash(h);
        i = (i + k) & sizeMask;
    }
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T>
inline typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::FullLookupType HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::fullLookupForWriting(const T& key)
{
    ASSERT(m_table);
    registerModification();

    ValueType* table = m_table;
    size_t k = 0;
    size_t sizeMask = tableSizeMask();
    unsigned h = HashTranslator::hash(key);
    size_t i = h & sizeMask;

    UPDATE_ACCESS_COUNTS();

    ValueType* deletedEntry = nullptr;

    while (1) {
        ValueType* entry = table + i;

        if (isEmptyBucket(*entry))
            return makeLookupResult(deletedEntry ? deletedEntry : entry, false, h);

        if (HashFunctions::safeToCompareToEmptyOrDeleted) {
            if (HashTranslator::equal(Extractor::extract(*entry), key))
                return makeLookupResult(entry, true, h);

            if (isDeletedBucket(*entry))
                deletedEntry = entry;
        } else {
            if (isDeletedBucket(*entry))
                deletedEntry = entry;
            else if (HashTranslator::equal(Extractor::extract(*entry), key))
                return makeLookupResult(entry, true, h);
        }
        UPDATE_PROBE_COUNTS();
        if (!k)
            k = 1 | doubleHash(h);
        i = (i + k) & sizeMask;
    }
}

template <bool emptyValueIsZero> struct HashTableBucketInitializer;

template <> struct HashTableBucketInitializer<false> {
    template <typename Traits, typename Value> static void initialize(Value& bucket)
    {
        new (NotNull, &bucket) Value(Traits::emptyValue());
    }
};

template <> struct HashTableBucketInitializer<true> {
    template <typename Traits, typename Value> static void initialize(Value& bucket)
    {
        // This initializes the bucket without copying the empty value.  That
        // makes it possible to use this with types that don't support copying.
        // The memset to 0 looks like a slow operation but is optimized by the
        // compilers.
        memset(&bucket, 0, sizeof(bucket));
    }
};

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::initializeBucket(ValueType& bucket)
{
    HashTableBucketInitializer<Traits::emptyValueIsZero>::template initialize<Traits>(bucket);
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T, typename Extra>
typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::AddResult HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::add(const T& key, const Extra& extra)
{
    ASSERT(Allocator::isAllocationAllowed());
    if (!m_table)
        expand();

    ASSERT(m_table);

    ValueType* table = m_table;
    size_t k = 0;
    size_t sizeMask = tableSizeMask();
    unsigned h = HashTranslator::hash(key);
    size_t i = h & sizeMask;

    UPDATE_ACCESS_COUNTS();

    ValueType* deletedEntry = nullptr;
    ValueType* entry;
    while (1) {
        entry = table + i;

        if (isEmptyBucket(*entry))
            break;

        if (HashFunctions::safeToCompareToEmptyOrDeleted) {
            if (HashTranslator::equal(Extractor::extract(*entry), key))
                return AddResult(this, entry, false);

            if (isDeletedBucket(*entry))
                deletedEntry = entry;
        } else {
            if (isDeletedBucket(*entry))
                deletedEntry = entry;
            else if (HashTranslator::equal(Extractor::extract(*entry), key))
                return AddResult(this, entry, false);
        }
        UPDATE_PROBE_COUNTS();
        if (!k)
            k = 1 | doubleHash(h);
        i = (i + k) & sizeMask;
    }

    registerModification();

    if (deletedEntry) {
        // Overwrite any data left over from last use, using placement new or
        // memset.
        initializeBucket(*deletedEntry);
        entry = deletedEntry;
        --m_deletedCount;
    }

    HashTranslator::translate(*entry, key, extra);
    ASSERT(!isEmptyOrDeletedBucket(*entry));

    ++m_keyCount;

    if (shouldExpand())
        entry = expand(entry);

    return AddResult(this, entry, true);
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T, typename Extra>
typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::AddResult HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::addPassingHashCode(const T& key, const Extra& extra)
{
    ASSERT(Allocator::isAllocationAllowed());
    if (!m_table)
        expand();

    FullLookupType lookupResult = fullLookupForWriting<HashTranslator>(key);

    ValueType* entry = lookupResult.first.first;
    bool found = lookupResult.first.second;
    unsigned h = lookupResult.second;

    if (found)
        return AddResult(this, entry, false);

    registerModification();

    if (isDeletedBucket(*entry)) {
        initializeBucket(*entry);
        --m_deletedCount;
    }

    HashTranslator::translate(*entry, key, extra, h);
    ASSERT(!isEmptyOrDeletedBucket(*entry));

    ++m_keyCount;
    if (shouldExpand())
        entry = expand(entry);

    return AddResult(this, entry, true);
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::reinsert(ValueType& entry)
{
    ASSERT(m_table);
    registerModification();
    ASSERT(!lookupForWriting(Extractor::extract(entry)).second);
    ASSERT(!isDeletedBucket(*(lookupForWriting(Extractor::extract(entry)).first)));
#if DUMP_HASHTABLE_STATS
    atomicIncrement(&HashTableStats::numReinserts);
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
    ++m_stats->numReinserts;
#endif
    Value* newEntry = lookupForWriting(Extractor::extract(entry)).first;
    Mover<ValueType, Allocator>::move(entry, *newEntry);

    return newEntry;
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T>
inline typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::iterator HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::find(const T& key)
{
    ValueType* entry = lookup<HashTranslator>(key);
    if (!entry)
        return end();

    return makeKnownGoodIterator(entry);
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T>
inline typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::const_iterator HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::find(const T& key) const
{
    ValueType* entry = const_cast<HashTable*>(this)->lookup<HashTranslator>(key);
    if (!entry)
        return end();

    return makeKnownGoodConstIterator(entry);
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T>
bool HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::contains(const T& key) const
{
    return const_cast<HashTable*>(this)->lookup<HashTranslator>(key);
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::remove(ValueType* pos)
{
    registerModification();
#if DUMP_HASHTABLE_STATS
    atomicIncrement(&HashTableStats::numRemoves);
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
    ++m_stats->numRemoves;
#endif

    deleteBucket(*pos);
    ++m_deletedCount;
    --m_keyCount;

    if (shouldShrink())
        shrink();
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::remove(iterator it)
{
    if (it == end())
        return;
    remove(const_cast<ValueType*>(it.m_iterator.m_position));
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::remove(const_iterator it)
{
    if (it == end())
        return;
    remove(const_cast<ValueType*>(it.m_position));
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::remove(KeyPeekInType key)
{
    remove(find(key));
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::allocateTable(unsigned size)
{
    size_t allocSize = size * sizeof(ValueType);
    ValueType* result;
    // Assert that we will not use memset on things with a vtable entry.  The
    // compiler will also check this on some platforms. We would like to check
    // this on the whole value (key-value pair), but IsPolymorphic will return
    // false for a pair of two types, even if one of the components is
    // polymorphic.
    static_assert(!Traits::emptyValueIsZero || !IsPolymorphic<KeyType>::value, "empty value cannot be zero for things with a vtable");

#if ENABLE(OILPAN)
    static_assert(Allocator::isGarbageCollected
        || ((!IsAllowOnlyInlineAllocation<KeyType>::value || !NeedsTracing<KeyType>::value)
        && (!IsAllowOnlyInlineAllocation<ValueType>::value || !NeedsTracing<ValueType>::value))
        , "Cannot put ALLOW_ONLY_INLINE_ALLOCATION objects that have trace methods into an off-heap HashTable");
#endif
    if (Traits::emptyValueIsZero) {
        result = Allocator::template allocateZeroedHashTableBacking<ValueType, HashTable>(allocSize);
    } else {
        result = Allocator::template allocateHashTableBacking<ValueType, HashTable>(allocSize);
        for (unsigned i = 0; i < size; i++)
            initializeBucket(result[i]);
    }
    return result;
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::deleteAllBucketsAndDeallocate(ValueType* table, unsigned size)
{
    if (!IsTriviallyDestructible<ValueType>::value) {
        for (unsigned i = 0; i < size; ++i) {
            // This code is called when the hash table is cleared or resized. We
            // have allocated a new backing store and we need to run the
            // destructors on the old backing store, as it is being freed. If we
            // are GCing we need to both call the destructor and mark the bucket
            // as deleted, otherwise the destructor gets called again when the
            // GC finds the backing store. With the default allocator it's
            // enough to call the destructor, since we will free the memory
            // explicitly and we won't see the memory with the bucket again.
            if (Allocator::isGarbageCollected) {
                if (!isEmptyOrDeletedBucket(table[i]))
                    deleteBucket(table[i]);
            } else {
                if (!isDeletedBucket(table[i]))
                    table[i].~ValueType();
            }
        }
    }
    Allocator::freeHashTableBacking(table);
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::expand(Value* entry)
{
    unsigned newSize;
    if (!m_tableSize) {
        newSize = KeyTraits::minimumTableSize;
    } else if (mustRehashInPlace()) {
        newSize = m_tableSize;
    } else {
        newSize = m_tableSize * 2;
        RELEASE_ASSERT(newSize > m_tableSize);
    }

    return rehash(newSize, entry);
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::expandBuffer(unsigned newTableSize, Value* entry, bool& success)
{
    success = false;
    ASSERT(m_tableSize < newTableSize);
    if (!Allocator::expandHashTableBacking(m_table, newTableSize * sizeof(ValueType)))
        return nullptr;

    success = true;

    Value* newEntry = nullptr;
    unsigned oldTableSize = m_tableSize;
    ValueType* originalTable = m_table;

    ValueType* temporaryTable = allocateTable(oldTableSize);
    for (unsigned i = 0; i < oldTableSize; i++) {
        if (&m_table[i] == entry)
            newEntry = &temporaryTable[i];
        if (isEmptyOrDeletedBucket(m_table[i])) {
            ASSERT(&m_table[i] != entry);
            if (Traits::emptyValueIsZero) {
                memset(&temporaryTable[i], 0, sizeof(ValueType));
            } else {
                initializeBucket(temporaryTable[i]);
            }
        } else {
            Mover<ValueType, Allocator>::move(m_table[i], temporaryTable[i]);
        }
    }
    m_table = temporaryTable;

    if (Traits::emptyValueIsZero) {
        memset(originalTable, 0, newTableSize * sizeof(ValueType));
    } else {
        for (unsigned i = 0; i < newTableSize; i++)
            initializeBucket(originalTable[i]);
    }
    newEntry = rehashTo(originalTable, newTableSize, newEntry);
    deleteAllBucketsAndDeallocate(temporaryTable, oldTableSize);

    return newEntry;
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::rehashTo(ValueType* newTable, unsigned newTableSize, Value* entry)
{
    unsigned oldTableSize = m_tableSize;
    ValueType* oldTable = m_table;

#if DUMP_HASHTABLE_STATS
    if (oldTableSize != 0)
        atomicIncrement(&HashTableStats::numRehashes);
#endif

#if DUMP_HASHTABLE_STATS_PER_TABLE
    if (oldTableSize != 0)
        ++m_stats->numRehashes;
#endif

    m_table = newTable;
    m_tableSize = newTableSize;

    Value* newEntry = nullptr;
    for (unsigned i = 0; i != oldTableSize; ++i) {
        if (isEmptyOrDeletedBucket(oldTable[i])) {
            ASSERT(&oldTable[i] != entry);
            continue;
        }
        Value* reinsertedEntry = reinsert(oldTable[i]);
        if (&oldTable[i] == entry) {
            ASSERT(!newEntry);
            newEntry = reinsertedEntry;
        }
    }

    m_deletedCount = 0;

    return newEntry;
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::rehash(unsigned newTableSize, Value* entry)
{
    unsigned oldTableSize = m_tableSize;
    ValueType* oldTable = m_table;

#if DUMP_HASHTABLE_STATS
    if (oldTableSize != 0)
        atomicIncrement(&HashTableStats::numRehashes);
#endif

#if DUMP_HASHTABLE_STATS_PER_TABLE
    if (oldTableSize != 0)
        ++m_stats->numRehashes;
#endif

    // The Allocator::isGarbageCollected check is not needed.  The check is just
    // a static hint for a compiler to indicate that Base::expandBuffer returns
    // false if Allocator is a DefaultAllocator.
    if (Allocator::isGarbageCollected && newTableSize > oldTableSize) {
        bool success;
        Value* newEntry = expandBuffer(newTableSize, entry, success);
        if (success)
            return newEntry;
    }

    ValueType* newTable = allocateTable(newTableSize);
    Value* newEntry = rehashTo(newTable, newTableSize, entry);
    deleteAllBucketsAndDeallocate(oldTable, oldTableSize);

    return newEntry;
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::clear()
{
    registerModification();
    if (!m_table)
        return;

    deleteAllBucketsAndDeallocate(m_table, m_tableSize);
    m_table = nullptr;
    m_tableSize = 0;
    m_keyCount = 0;
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::HashTable(const HashTable& other)
    : m_table(nullptr)
    , m_tableSize(0)
    , m_keyCount(0)
    , m_deletedCount(0)
    , m_queueFlag(false)
#if ENABLE(ASSERT)
    , m_modifications(0)
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
    , m_stats(adoptPtr(new Stats(*other.m_stats)))
#endif
{
    // Copy the hash table the dumb way, by adding each element to the new
    // table.  It might be more efficient to copy the table slots, but it's not
    // clear that efficiency is needed.
    const_iterator end = other.end();
    for (const_iterator it = other.begin(); it != end; ++it)
        add(*it);
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::swap(HashTable& other)
{
    std::swap(m_table, other.m_table);
    std::swap(m_tableSize, other.m_tableSize);
    std::swap(m_keyCount, other.m_keyCount);
    // std::swap does not work for bit fields.
    unsigned deleted = m_deletedCount;
    m_deletedCount = other.m_deletedCount;
    other.m_deletedCount = deleted;
    ASSERT(!m_queueFlag);
    ASSERT(!other.m_queueFlag);

#if ENABLE(ASSERT)
    std::swap(m_modifications, other.m_modifications);
#endif

#if DUMP_HASHTABLE_STATS_PER_TABLE
    m_stats.swap(other.m_stats);
#endif
}

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>& HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::operator=(const HashTable& other)
{
    HashTable tmp(other);
    swap(tmp);
    return *this;
}

template <WeakHandlingFlag weakHandlingFlag, typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
struct WeakProcessingHashTableHelper;

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
struct WeakProcessingHashTableHelper<NoWeakHandlingInCollections, Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> {
    static void process(typename Allocator::Visitor* visitor, void* closure) {}
    static void ephemeronIteration(typename Allocator::Visitor* visitor, void* closure) {}
    static void ephemeronIterationDone(typename Allocator::Visitor* visitor, void* closure) {}
};

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
struct WeakProcessingHashTableHelper<WeakHandlingInCollections, Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> {
    // Used for purely weak and for weak-and-strong tables (ephemerons).
    static void process(typename Allocator::Visitor* visitor, void* closure)
    {
        typedef HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> HashTableType;
        HashTableType* table = reinterpret_cast<HashTableType*>(closure);
        ASSERT(table->m_table);
        // Now perform weak processing (this is a no-op if the backing was
        // accessible through an iterator and was already marked strongly).
        typedef typename HashTableType::ValueType ValueType;
        for (ValueType* element = table->m_table + table->m_tableSize - 1; element >= table->m_table; element--) {
            if (!HashTableType::isEmptyOrDeletedBucket(*element)) {
                // At this stage calling trace can make no difference
                // (everything is already traced), but we use the return value
                // to remove things from the collection.

                // FIXME: This should be rewritten so that this can check if the
                // element is dead without calling trace, which is semantically
                // not correct to be called in weak processing stage.
                if (TraceInCollectionTrait<WeakHandlingInCollections, WeakPointersActWeak, ValueType, Traits>::trace(visitor, *element)) {
                    table->registerModification();
                    HashTableType::deleteBucket(*element); // Also calls the destructor.
                    table->m_deletedCount++;
                    table->m_keyCount--;
                    // We don't rehash the backing until the next add or delete,
                    // because that would cause allocation during GC.
                }
            }
        }
    }

    // Called repeatedly for tables that have both weak and strong pointers.
    static void ephemeronIteration(typename Allocator::Visitor* visitor, void* closure)
    {
        typedef HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> HashTableType;
        HashTableType* table = reinterpret_cast<HashTableType*>(closure);
        ASSERT(table->m_table);
        // Check the hash table for elements that we now know will not be
        // removed by weak processing. Those elements need to have their strong
        // pointers traced.
        typedef typename HashTableType::ValueType ValueType;
        for (ValueType* element = table->m_table + table->m_tableSize - 1; element >= table->m_table; element--) {
            if (!HashTableType::isEmptyOrDeletedBucket(*element))
                TraceInCollectionTrait<WeakHandlingInCollections, WeakPointersActWeak, ValueType, Traits>::trace(visitor, *element);
        }
    }

    // Called when the ephemeron iteration is done and before running the per
    // thread weak processing. It is guaranteed to be called before any thread
    // is resumed.
    static void ephemeronIterationDone(typename Allocator::Visitor* visitor, void* closure)
    {
        typedef HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> HashTableType;
        HashTableType* table = reinterpret_cast<HashTableType*>(closure);
        ASSERT(Allocator::weakTableRegistered(visitor, table));
        table->clearEnqueued();
    }
};

template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename VisitorDispatcher>
void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::trace(VisitorDispatcher visitor)
{
    // If someone else already marked the backing and queued up the trace and/or
    // weak callback then we are done. This optimization does not happen for
    // ListHashSet since its iterator does not point at the backing.
    if (!m_table || Allocator::isHeapObjectAlive(m_table))
        return;
    // Normally, we mark the backing store without performing trace. This means
    // it is marked live, but the pointers inside it are not marked.  Instead we
    // will mark the pointers below. However, for backing stores that contain
    // weak pointers the handling is rather different.  We don't mark the
    // backing store here, so the marking GC will leave the backing unmarked. If
    // the backing is found in any other way than through its HashTable (ie from
    // an iterator) then the mark bit will be set and the pointers will be
    // marked strongly, avoiding problems with iterating over things that
    // disappear due to weak processing while we are iterating over them. We
    // register the backing store pointer for delayed marking which will take
    // place after we know if the backing is reachable from elsewhere. We also
    // register a weakProcessing callback which will perform weak processing if
    // needed.
    if (Traits::weakHandlingFlag == NoWeakHandlingInCollections) {
        Allocator::markNoTracing(visitor, m_table);
    } else {
        Allocator::registerDelayedMarkNoTracing(visitor, m_table);
        // Since we're delaying marking this HashTable, it is possible that the
        // registerWeakMembers is called multiple times (in rare
        // cases). However, it shouldn't cause any issue.
        Allocator::registerWeakMembers(visitor, this, m_table, WeakProcessingHashTableHelper<Traits::weakHandlingFlag, Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::process);
    }
    if (ShouldBeTraced<Traits>::value) {
        if (Traits::weakHandlingFlag == WeakHandlingInCollections) {
            // If we have both strong and weak pointers in the collection then
            // we queue up the collection for fixed point iteration a la
            // Ephemerons:
            // http://dl.acm.org/citation.cfm?doid=263698.263733 - see also
            // http://www.jucs.org/jucs_14_21/eliminating_cycles_in_weak
            ASSERT(!enqueued() || Allocator::weakTableRegistered(visitor, this));
            if (!enqueued()) {
                Allocator::registerWeakTable(visitor, this,
                    WeakProcessingHashTableHelper<Traits::weakHandlingFlag, Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::ephemeronIteration,
                    WeakProcessingHashTableHelper<Traits::weakHandlingFlag, Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::ephemeronIterationDone);
                setEnqueued();
            }
            // We don't need to trace the elements here, since registering as a
            // weak table above will cause them to be traced (perhaps several
            // times). It's better to wait until everything else is traced
            // before tracing the elements for the first time; this may reduce
            // (by one) the number of iterations needed to get to a fixed point.
            return;
        }
        for (ValueType* element = m_table + m_tableSize - 1; element >= m_table; element--) {
            if (!isEmptyOrDeletedBucket(*element))
                Allocator::template trace<VisitorDispatcher, ValueType, Traits>(visitor, *element);
        }
    }
}

// iterator adapters

template <typename HashTableType, typename Traits> struct HashTableConstIteratorAdapter {
    HashTableConstIteratorAdapter() {}
    HashTableConstIteratorAdapter(const typename HashTableType::const_iterator& impl) : m_impl(impl) {}
    typedef typename Traits::IteratorConstGetType GetType;
    typedef typename HashTableType::ValueTraits::IteratorConstGetType SourceGetType;

    GetType get() const { return const_cast<GetType>(SourceGetType(m_impl.get())); }
    typename Traits::IteratorConstReferenceType operator*() const { return Traits::getToReferenceConstConversion(get()); }
    GetType operator->() const { return get(); }

    HashTableConstIteratorAdapter& operator++() { ++m_impl; return *this; }
    // postfix ++ intentionally omitted

    typename HashTableType::const_iterator m_impl;
};

template <typename HashTableType, typename Traits> struct HashTableIteratorAdapter {
    typedef typename Traits::IteratorGetType GetType;
    typedef typename HashTableType::ValueTraits::IteratorGetType SourceGetType;

    HashTableIteratorAdapter() {}
    HashTableIteratorAdapter(const typename HashTableType::iterator& impl) : m_impl(impl) {}

    GetType get() const { return const_cast<GetType>(SourceGetType(m_impl.get())); }
    typename Traits::IteratorReferenceType operator*() const { return Traits::getToReferenceConversion(get()); }
    GetType operator->() const { return get(); }

    HashTableIteratorAdapter& operator++() { ++m_impl; return *this; }
    // postfix ++ intentionally omitted

    operator HashTableConstIteratorAdapter<HashTableType, Traits>()
    {
        typename HashTableType::const_iterator i = m_impl;
        return i;
    }

    typename HashTableType::iterator m_impl;
};

template <typename T, typename U>
inline bool operator==(const HashTableConstIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b)
{
    return a.m_impl == b.m_impl;
}

template <typename T, typename U>
inline bool operator!=(const HashTableConstIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b)
{
    return a.m_impl != b.m_impl;
}

template <typename T, typename U>
inline bool operator==(const HashTableIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b)
{
    return a.m_impl == b.m_impl;
}

template <typename T, typename U>
inline bool operator!=(const HashTableIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b)
{
    return a.m_impl != b.m_impl;
}

// All 4 combinations of ==, != and Const,non const.
template <typename T, typename U>
inline bool operator==(const HashTableConstIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b)
{
    return a.m_impl == b.m_impl;
}

template <typename T, typename U>
inline bool operator!=(const HashTableConstIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b)
{
    return a.m_impl != b.m_impl;
}

template <typename T, typename U>
inline bool operator==(const HashTableIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b)
{
    return a.m_impl == b.m_impl;
}

template <typename T, typename U>
inline bool operator!=(const HashTableIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b)
{
    return a.m_impl != b.m_impl;
}

template <typename Collection1, typename Collection2>
inline void removeAll(Collection1& collection, const Collection2& toBeRemoved)
{
    if (collection.isEmpty() || toBeRemoved.isEmpty())
        return;
    typedef typename Collection2::const_iterator CollectionIterator;
    CollectionIterator end(toBeRemoved.end());
    for (CollectionIterator it(toBeRemoved.begin()); it != end; ++it)
        collection.remove(*it);
}

} // namespace WTF

#include "wtf/HashIterators.h"

#endif // WTF_HashTable_h