summaryrefslogtreecommitdiff
path: root/chromium/third_party/blink/renderer/platform/animation/timing_function.cc
blob: 35520c8aef313aa047ab299493ae5e09bd1e5852 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "third_party/blink/renderer/platform/animation/timing_function.h"

#include "base/notreached.h"
#include "third_party/blink/renderer/platform/wtf/text/string_builder.h"

namespace blink {

String LinearTimingFunction::ToString() const {
  return "linear";
}

double LinearTimingFunction::Evaluate(double fraction) const {
  return fraction;
}

void LinearTimingFunction::Range(double* min_value, double* max_value) const {}

std::unique_ptr<gfx::TimingFunction> LinearTimingFunction::CloneToCC() const {
  return nullptr;
}

CubicBezierTimingFunction* CubicBezierTimingFunction::Preset(
    EaseType ease_type) {
  DEFINE_STATIC_REF(
      CubicBezierTimingFunction, ease,
      (base::AdoptRef(new CubicBezierTimingFunction(EaseType::EASE))));
  DEFINE_STATIC_REF(
      CubicBezierTimingFunction, ease_in,
      (base::AdoptRef(new CubicBezierTimingFunction(EaseType::EASE_IN))));
  DEFINE_STATIC_REF(
      CubicBezierTimingFunction, ease_out,
      (base::AdoptRef(new CubicBezierTimingFunction(EaseType::EASE_OUT))));
  DEFINE_STATIC_REF(
      CubicBezierTimingFunction, ease_in_out,
      (base::AdoptRef(new CubicBezierTimingFunction(EaseType::EASE_IN_OUT))));
  DEFINE_STATIC_REF(
      CubicBezierTimingFunction, ease_out_natural,
      (base::AdoptRef(new CubicBezierTimingFunction(EaseType::EASE_OUT_NATURAL))));

  switch (ease_type) {
    case EaseType::EASE:
      return ease;
    case EaseType::EASE_IN:
      return ease_in;
    case EaseType::EASE_OUT:
      return ease_out;
    case EaseType::EASE_IN_OUT:
      return ease_in_out;
    case EaseType::EASE_OUT_NATURAL:
      return ease_out_natural;
    default:
      NOTREACHED();
      return nullptr;
  }
}

String CubicBezierTimingFunction::ToString() const {
  switch (GetEaseType()) {
    case CubicBezierTimingFunction::EaseType::EASE:
      return "ease";
    case CubicBezierTimingFunction::EaseType::EASE_IN:
      return "ease-in";
    case CubicBezierTimingFunction::EaseType::EASE_OUT:
      return "ease-out";
    case CubicBezierTimingFunction::EaseType::EASE_IN_OUT:
      return "ease-in-out";
    case CubicBezierTimingFunction::EaseType::EASE_OUT_NATURAL:
    case CubicBezierTimingFunction::EaseType::CUSTOM:
      return "cubic-bezier(" + String::NumberToStringECMAScript(X1()) + ", " +
             String::NumberToStringECMAScript(Y1()) + ", " +
             String::NumberToStringECMAScript(X2()) + ", " +
             String::NumberToStringECMAScript(Y2()) + ")";
    default:
      NOTREACHED();
      return "";
  }
}

double CubicBezierTimingFunction::Evaluate(double fraction) const {
  return bezier_->bezier().Solve(fraction);
}

void CubicBezierTimingFunction::Range(double* min_value,
                                      double* max_value) const {
  const double solution1 = bezier_->bezier().range_min();
  const double solution2 = bezier_->bezier().range_max();

  // Since our input values can be out of the range 0->1 so we must also
  // consider the minimum and maximum points.
  double solution_min = bezier_->bezier().SolveWithEpsilon(
      *min_value, std::numeric_limits<double>::epsilon());
  double solution_max = bezier_->bezier().SolveWithEpsilon(
      *max_value, std::numeric_limits<double>::epsilon());
  *min_value = std::min(std::min(solution_min, solution_max), 0.0);
  *max_value = std::max(std::max(solution_min, solution_max), 1.0);
  *min_value = std::min(std::min(*min_value, solution1), solution2);
  *max_value = std::max(std::max(*max_value, solution1), solution2);
}

std::unique_ptr<gfx::TimingFunction> CubicBezierTimingFunction::CloneToCC()
    const {
  return bezier_->Clone();
}

String StepsTimingFunction::ToString() const {
  const char* position_string = nullptr;
  switch (GetStepPosition()) {
    case StepPosition::START:
      position_string = "start";
      break;

    case StepPosition::END:
      // do not specify step position in output
      break;

    case StepPosition::JUMP_BOTH:
      position_string = "jump-both";
      break;

    case StepPosition::JUMP_END:
      // do not specify step position in output
      break;

    case StepPosition::JUMP_NONE:
      position_string = "jump-none";
      break;

    case StepPosition::JUMP_START:
      position_string = "jump-start";
      break;
  }

  StringBuilder builder;
  builder.Append("steps(");
  builder.Append(String::NumberToStringECMAScript(NumberOfSteps()));
  if (position_string) {
    builder.Append(", ");
    builder.Append(position_string);
  }
  builder.Append(')');
  return builder.ToString();
}

void StepsTimingFunction::Range(double* min_value, double* max_value) const {
  *min_value = 0;
  *max_value = 1;
}

double StepsTimingFunction::Evaluate(double fraction,
                                     LimitDirection limit_direction) const {
  return steps_->GetPreciseValue(fraction, limit_direction);
}

double StepsTimingFunction::Evaluate(double fraction) const {
  NOTREACHED() << "Use Evaluate(fraction, limit_direction) instead.";
  return steps_->GetPreciseValue(fraction, LimitDirection::RIGHT);
}

std::unique_ptr<gfx::TimingFunction> StepsTimingFunction::CloneToCC() const {
  return steps_->Clone();
}

scoped_refptr<TimingFunction> CreateCompositorTimingFunctionFromCC(
    const gfx::TimingFunction* timing_function) {
  if (!timing_function)
    return LinearTimingFunction::Shared();

  switch (timing_function->GetType()) {
    case gfx::TimingFunction::Type::CUBIC_BEZIER: {
      auto* cubic_timing_function =
          static_cast<const gfx::CubicBezierTimingFunction*>(timing_function);
      if (cubic_timing_function->ease_type() !=
          gfx::CubicBezierTimingFunction::EaseType::CUSTOM)
        return CubicBezierTimingFunction::Preset(
            cubic_timing_function->ease_type());

      const auto& bezier = cubic_timing_function->bezier();
      return CubicBezierTimingFunction::Create(bezier.GetX1(), bezier.GetY1(),
                                               bezier.GetX2(), bezier.GetY2());
    }

    case gfx::TimingFunction::Type::STEPS: {
      auto* steps_timing_function =
          static_cast<const gfx::StepsTimingFunction*>(timing_function);
      return StepsTimingFunction::Create(
          steps_timing_function->steps(),
          steps_timing_function->step_position());
    }

    default:
      NOTREACHED();
      return nullptr;
  }
}

// Equals operators
bool operator==(const LinearTimingFunction& lhs, const TimingFunction& rhs) {
  return rhs.GetType() == TimingFunction::Type::LINEAR;
}

bool operator==(const CubicBezierTimingFunction& lhs,
                const TimingFunction& rhs) {
  if (rhs.GetType() != TimingFunction::Type::CUBIC_BEZIER)
    return false;

  const auto& ctf = To<CubicBezierTimingFunction>(rhs);
  if ((lhs.GetEaseType() == CubicBezierTimingFunction::EaseType::CUSTOM) &&
      (ctf.GetEaseType() == CubicBezierTimingFunction::EaseType::CUSTOM))
    return (lhs.X1() == ctf.X1()) && (lhs.Y1() == ctf.Y1()) &&
           (lhs.X2() == ctf.X2()) && (lhs.Y2() == ctf.Y2());

  return lhs.GetEaseType() == ctf.GetEaseType();
}

bool operator==(const StepsTimingFunction& lhs, const TimingFunction& rhs) {
  if (rhs.GetType() != TimingFunction::Type::STEPS)
    return false;

  const auto& stf = To<StepsTimingFunction>(rhs);
  return (lhs.NumberOfSteps() == stf.NumberOfSteps()) &&
         (lhs.GetStepPosition() == stf.GetStepPosition());
}

// The generic operator== *must* come after the
// non-generic operator== otherwise it will end up calling itself.
bool operator==(const TimingFunction& lhs, const TimingFunction& rhs) {
  switch (lhs.GetType()) {
    case TimingFunction::Type::LINEAR: {
      const auto& linear = To<LinearTimingFunction>(lhs);
      return (linear == rhs);
    }
    case TimingFunction::Type::CUBIC_BEZIER: {
      const auto& cubic = To<CubicBezierTimingFunction>(lhs);
      return (cubic == rhs);
    }
    case TimingFunction::Type::STEPS: {
      const auto& step = To<StepsTimingFunction>(lhs);
      return (step == rhs);
    }
    default:
      NOTREACHED();
  }
  return false;
}

// No need to define specific operator!= as they can all come via this function.
bool operator!=(const TimingFunction& lhs, const TimingFunction& rhs) {
  return !(lhs == rhs);
}

}  // namespace blink