/* * Copyright (C) 2008, 2009, 2010 Apple Inc. All rights reserved. * Copyright (C) 2008 Cameron Zwarich * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "CodeBlock.h" #include "BytecodeGenerator.h" #include "DFGCapabilities.h" #include "DFGNode.h" #include "DFGRepatch.h" #include "Debugger.h" #include "Interpreter.h" #include "JIT.h" #include "JITStubs.h" #include "JSActivation.h" #include "JSFunction.h" #include "JSStaticScopeObject.h" #include "JSValue.h" #include "RepatchBuffer.h" #include "UStringConcatenate.h" #include #include #if ENABLE(DFG_JIT) #include "DFGOperations.h" #endif #define DUMP_CODE_BLOCK_STATISTICS 0 namespace JSC { #if ENABLE(DFG_JIT) using namespace DFG; #endif static UString escapeQuotes(const UString& str) { UString result = str; size_t pos = 0; while ((pos = result.find('\"', pos)) != notFound) { result = makeUString(result.substringSharingImpl(0, pos), "\"\\\"\"", result.substringSharingImpl(pos + 1)); pos += 4; } return result; } static UString valueToSourceString(ExecState* exec, JSValue val) { if (!val) return "0"; if (val.isString()) return makeUString("\"", escapeQuotes(val.toString(exec)->value(exec)), "\""); return val.description(); } static CString constantName(ExecState* exec, int k, JSValue value) { return makeUString(valueToSourceString(exec, value), "(@k", UString::number(k - FirstConstantRegisterIndex), ")").utf8(); } static CString idName(int id0, const Identifier& ident) { return makeUString(ident.ustring(), "(@id", UString::number(id0), ")").utf8(); } CString CodeBlock::registerName(ExecState* exec, int r) const { if (r == missingThisObjectMarker()) return ""; if (isConstantRegisterIndex(r)) return constantName(exec, r, getConstant(r)); return makeUString("r", UString::number(r)).utf8(); } static UString regexpToSourceString(RegExp* regExp) { char postfix[5] = { '/', 0, 0, 0, 0 }; int index = 1; if (regExp->global()) postfix[index++] = 'g'; if (regExp->ignoreCase()) postfix[index++] = 'i'; if (regExp->multiline()) postfix[index] = 'm'; return makeUString("/", regExp->pattern(), postfix); } static CString regexpName(int re, RegExp* regexp) { return makeUString(regexpToSourceString(regexp), "(@re", UString::number(re), ")").utf8(); } static UString pointerToSourceString(void* p) { char buffer[2 + 2 * sizeof(void*) + 1]; // 0x [two characters per byte] \0 snprintf(buffer, sizeof(buffer), "%p", p); return buffer; } NEVER_INLINE static const char* debugHookName(int debugHookID) { switch (static_cast(debugHookID)) { case DidEnterCallFrame: return "didEnterCallFrame"; case WillLeaveCallFrame: return "willLeaveCallFrame"; case WillExecuteStatement: return "willExecuteStatement"; case WillExecuteProgram: return "willExecuteProgram"; case DidExecuteProgram: return "didExecuteProgram"; case DidReachBreakpoint: return "didReachBreakpoint"; } ASSERT_NOT_REACHED(); return ""; } void CodeBlock::printUnaryOp(ExecState* exec, int location, Vector::const_iterator& it, const char* op) const { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] %s\t\t %s, %s\n", location, op, registerName(exec, r0).data(), registerName(exec, r1).data()); } void CodeBlock::printBinaryOp(ExecState* exec, int location, Vector::const_iterator& it, const char* op) const { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printf("[%4d] %s\t\t %s, %s, %s\n", location, op, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); } void CodeBlock::printConditionalJump(ExecState* exec, const Vector::const_iterator&, Vector::const_iterator& it, int location, const char* op) const { int r0 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] %s\t\t %s, %d(->%d)\n", location, op, registerName(exec, r0).data(), offset, location + offset); } void CodeBlock::printGetByIdOp(ExecState* exec, int location, Vector::const_iterator& it, const char* op) const { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; printf("[%4d] %s\t %s, %s, %s\n", location, op, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data()); it += 5; } void CodeBlock::printCallOp(ExecState* exec, int location, Vector::const_iterator& it, const char* op) const { int func = (++it)->u.operand; int argCount = (++it)->u.operand; int registerOffset = (++it)->u.operand; printf("[%4d] %s\t %s, %d, %d\n", location, op, registerName(exec, func).data(), argCount, registerOffset); it += 2; } void CodeBlock::printPutByIdOp(ExecState* exec, int location, Vector::const_iterator& it, const char* op) const { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] %s\t %s, %s, %s\n", location, op, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data()); it += 5; } #if ENABLE(JIT) static bool isGlobalResolve(OpcodeID opcodeID) { return opcodeID == op_resolve_global || opcodeID == op_resolve_global_dynamic; } static bool isPropertyAccess(OpcodeID opcodeID) { switch (opcodeID) { case op_get_by_id_self: case op_get_by_id_proto: case op_get_by_id_chain: case op_put_by_id_transition: case op_put_by_id_replace: case op_get_by_id: case op_put_by_id: case op_get_by_id_generic: case op_put_by_id_generic: case op_get_array_length: case op_get_string_length: return true; default: return false; } } static unsigned instructionOffsetForNth(ExecState* exec, const Vector& instructions, int nth, bool (*predicate)(OpcodeID)) { size_t i = 0; while (i < instructions.size()) { OpcodeID currentOpcode = exec->interpreter()->getOpcodeID(instructions[i].u.opcode); if (predicate(currentOpcode)) { if (!--nth) return i; } i += opcodeLengths[currentOpcode]; } ASSERT_NOT_REACHED(); return 0; } static void printGlobalResolveInfo(const GlobalResolveInfo& resolveInfo, unsigned instructionOffset) { printf(" [%4d] %s: %s\n", instructionOffset, "resolve_global", pointerToSourceString(resolveInfo.structure).utf8().data()); } static void printStructureStubInfo(const StructureStubInfo& stubInfo, unsigned instructionOffset) { switch (stubInfo.accessType) { case access_get_by_id_self: printf(" [%4d] %s: %s\n", instructionOffset, "get_by_id_self", pointerToSourceString(stubInfo.u.getByIdSelf.baseObjectStructure).utf8().data()); return; case access_get_by_id_proto: printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_proto", pointerToSourceString(stubInfo.u.getByIdProto.baseObjectStructure).utf8().data(), pointerToSourceString(stubInfo.u.getByIdProto.prototypeStructure).utf8().data()); return; case access_get_by_id_chain: printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_chain", pointerToSourceString(stubInfo.u.getByIdChain.baseObjectStructure).utf8().data(), pointerToSourceString(stubInfo.u.getByIdChain.chain).utf8().data()); return; case access_get_by_id_self_list: printf(" [%4d] %s: %s (%d)\n", instructionOffset, "op_get_by_id_self_list", pointerToSourceString(stubInfo.u.getByIdSelfList.structureList).utf8().data(), stubInfo.u.getByIdSelfList.listSize); return; case access_get_by_id_proto_list: printf(" [%4d] %s: %s (%d)\n", instructionOffset, "op_get_by_id_proto_list", pointerToSourceString(stubInfo.u.getByIdProtoList.structureList).utf8().data(), stubInfo.u.getByIdProtoList.listSize); return; case access_put_by_id_transition_normal: case access_put_by_id_transition_direct: printf(" [%4d] %s: %s, %s, %s\n", instructionOffset, "put_by_id_transition", pointerToSourceString(stubInfo.u.putByIdTransition.previousStructure).utf8().data(), pointerToSourceString(stubInfo.u.putByIdTransition.structure).utf8().data(), pointerToSourceString(stubInfo.u.putByIdTransition.chain).utf8().data()); return; case access_put_by_id_replace: printf(" [%4d] %s: %s\n", instructionOffset, "put_by_id_replace", pointerToSourceString(stubInfo.u.putByIdReplace.baseObjectStructure).utf8().data()); return; case access_unset: printf(" [%4d] %s\n", instructionOffset, "unset"); return; case access_get_by_id_generic: printf(" [%4d] %s\n", instructionOffset, "op_get_by_id_generic"); return; case access_put_by_id_generic: printf(" [%4d] %s\n", instructionOffset, "op_put_by_id_generic"); return; case access_get_array_length: printf(" [%4d] %s\n", instructionOffset, "op_get_array_length"); return; case access_get_string_length: printf(" [%4d] %s\n", instructionOffset, "op_get_string_length"); return; default: ASSERT_NOT_REACHED(); } } #endif void CodeBlock::printStructure(const char* name, const Instruction* vPC, int operand) const { unsigned instructionOffset = vPC - instructions().begin(); printf(" [%4d] %s: %s\n", instructionOffset, name, pointerToSourceString(vPC[operand].u.structure).utf8().data()); } void CodeBlock::printStructures(const Instruction* vPC) const { Interpreter* interpreter = m_globalData->interpreter; unsigned instructionOffset = vPC - instructions().begin(); if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id)) { printStructure("get_by_id", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self)) { printStructure("get_by_id_self", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto)) { printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_proto", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structure).utf8().data()); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) { printf(" [%4d] %s: %s, %s, %s\n", instructionOffset, "put_by_id_transition", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structure).utf8().data(), pointerToSourceString(vPC[6].u.structureChain).utf8().data()); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain)) { printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_chain", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structureChain).utf8().data()); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id)) { printStructure("put_by_id", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) { printStructure("put_by_id_replace", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global)) { printStructure("resolve_global", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global_dynamic)) { printStructure("resolve_global_dynamic", vPC, 4); return; } // These m_instructions doesn't ref Structures. ASSERT(vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_call) || vPC[0].u.opcode == interpreter->getOpcode(op_call_eval) || vPC[0].u.opcode == interpreter->getOpcode(op_construct)); } void CodeBlock::dump(ExecState* exec) const { if (!m_instructions) { printf("No instructions available.\n"); return; } size_t instructionCount = 0; for (size_t i = 0; i < instructions().size(); i += opcodeLengths[exec->interpreter()->getOpcodeID(instructions()[i].u.opcode)]) ++instructionCount; printf("%lu m_instructions; %lu bytes at %p; %d parameter(s); %d callee register(s)\n\n", static_cast(instructionCount), static_cast(instructions().size() * sizeof(Instruction)), this, m_numParameters, m_numCalleeRegisters); Vector::const_iterator begin = instructions().begin(); Vector::const_iterator end = instructions().end(); for (Vector::const_iterator it = begin; it != end; ++it) dump(exec, begin, it); if (!m_identifiers.isEmpty()) { printf("\nIdentifiers:\n"); size_t i = 0; do { printf(" id%u = %s\n", static_cast(i), m_identifiers[i].ustring().utf8().data()); ++i; } while (i != m_identifiers.size()); } if (!m_constantRegisters.isEmpty()) { printf("\nConstants:\n"); size_t i = 0; do { printf(" k%u = %s\n", static_cast(i), valueToSourceString(exec, m_constantRegisters[i].get()).utf8().data()); ++i; } while (i < m_constantRegisters.size()); } if (m_rareData && !m_rareData->m_regexps.isEmpty()) { printf("\nm_regexps:\n"); size_t i = 0; do { printf(" re%u = %s\n", static_cast(i), regexpToSourceString(m_rareData->m_regexps[i].get()).utf8().data()); ++i; } while (i < m_rareData->m_regexps.size()); } #if ENABLE(JIT) if (!m_globalResolveInfos.isEmpty() || !m_structureStubInfos.isEmpty()) printf("\nStructures:\n"); if (!m_globalResolveInfos.isEmpty()) { size_t i = 0; do { printGlobalResolveInfo(m_globalResolveInfos[i], instructionOffsetForNth(exec, instructions(), i + 1, isGlobalResolve)); ++i; } while (i < m_globalResolveInfos.size()); } if (!m_structureStubInfos.isEmpty()) { size_t i = 0; do { printStructureStubInfo(m_structureStubInfos[i], instructionOffsetForNth(exec, instructions(), i + 1, isPropertyAccess)); ++i; } while (i < m_structureStubInfos.size()); } #endif #if ENABLE(INTERPRETER) if (!m_globalResolveInstructions.isEmpty() || !m_propertyAccessInstructions.isEmpty()) printf("\nStructures:\n"); if (!m_globalResolveInstructions.isEmpty()) { size_t i = 0; do { printStructures(&instructions()[m_globalResolveInstructions[i]]); ++i; } while (i < m_globalResolveInstructions.size()); } if (!m_propertyAccessInstructions.isEmpty()) { size_t i = 0; do { printStructures(&instructions()[m_propertyAccessInstructions[i]]); ++i; } while (i < m_propertyAccessInstructions.size()); } #endif if (m_rareData && !m_rareData->m_exceptionHandlers.isEmpty()) { printf("\nException Handlers:\n"); unsigned i = 0; do { printf("\t %d: { start: [%4d] end: [%4d] target: [%4d] }\n", i + 1, m_rareData->m_exceptionHandlers[i].start, m_rareData->m_exceptionHandlers[i].end, m_rareData->m_exceptionHandlers[i].target); ++i; } while (i < m_rareData->m_exceptionHandlers.size()); } if (m_rareData && !m_rareData->m_immediateSwitchJumpTables.isEmpty()) { printf("Immediate Switch Jump Tables:\n"); unsigned i = 0; do { printf(" %1d = {\n", i); int entry = 0; Vector::const_iterator end = m_rareData->m_immediateSwitchJumpTables[i].branchOffsets.end(); for (Vector::const_iterator iter = m_rareData->m_immediateSwitchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) { if (!*iter) continue; printf("\t\t%4d => %04d\n", entry + m_rareData->m_immediateSwitchJumpTables[i].min, *iter); } printf(" }\n"); ++i; } while (i < m_rareData->m_immediateSwitchJumpTables.size()); } if (m_rareData && !m_rareData->m_characterSwitchJumpTables.isEmpty()) { printf("\nCharacter Switch Jump Tables:\n"); unsigned i = 0; do { printf(" %1d = {\n", i); int entry = 0; Vector::const_iterator end = m_rareData->m_characterSwitchJumpTables[i].branchOffsets.end(); for (Vector::const_iterator iter = m_rareData->m_characterSwitchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) { if (!*iter) continue; ASSERT(!((i + m_rareData->m_characterSwitchJumpTables[i].min) & ~0xFFFF)); UChar ch = static_cast(entry + m_rareData->m_characterSwitchJumpTables[i].min); printf("\t\t\"%s\" => %04d\n", UString(&ch, 1).utf8().data(), *iter); } printf(" }\n"); ++i; } while (i < m_rareData->m_characterSwitchJumpTables.size()); } if (m_rareData && !m_rareData->m_stringSwitchJumpTables.isEmpty()) { printf("\nString Switch Jump Tables:\n"); unsigned i = 0; do { printf(" %1d = {\n", i); StringJumpTable::StringOffsetTable::const_iterator end = m_rareData->m_stringSwitchJumpTables[i].offsetTable.end(); for (StringJumpTable::StringOffsetTable::const_iterator iter = m_rareData->m_stringSwitchJumpTables[i].offsetTable.begin(); iter != end; ++iter) printf("\t\t\"%s\" => %04d\n", UString(iter->first).utf8().data(), iter->second.branchOffset); printf(" }\n"); ++i; } while (i < m_rareData->m_stringSwitchJumpTables.size()); } printf("\n"); } void CodeBlock::dump(ExecState* exec, const Vector::const_iterator& begin, Vector::const_iterator& it) const { int location = it - begin; switch (exec->interpreter()->getOpcodeID(it->u.opcode)) { case op_enter: { printf("[%4d] enter\n", location); break; } case op_create_activation: { int r0 = (++it)->u.operand; printf("[%4d] create_activation %s\n", location, registerName(exec, r0).data()); break; } case op_create_arguments: { int r0 = (++it)->u.operand; printf("[%4d] create_arguments\t %s\n", location, registerName(exec, r0).data()); break; } case op_init_lazy_reg: { int r0 = (++it)->u.operand; printf("[%4d] init_lazy_reg\t %s\n", location, registerName(exec, r0).data()); break; } case op_get_callee: { int r0 = (++it)->u.operand; printf("[%4d] op_get_callee %s\n", location, registerName(exec, r0).data()); break; } case op_create_this: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] create_this %s %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data()); break; } case op_convert_this: { int r0 = (++it)->u.operand; printf("[%4d] convert_this\t %s\n", location, registerName(exec, r0).data()); break; } case op_new_object: { int r0 = (++it)->u.operand; printf("[%4d] new_object\t %s\n", location, registerName(exec, r0).data()); break; } case op_new_array: { int dst = (++it)->u.operand; int argv = (++it)->u.operand; int argc = (++it)->u.operand; printf("[%4d] new_array\t %s, %s, %d\n", location, registerName(exec, dst).data(), registerName(exec, argv).data(), argc); break; } case op_new_array_buffer: { int dst = (++it)->u.operand; int argv = (++it)->u.operand; int argc = (++it)->u.operand; printf("[%4d] new_array_buffer %s, %d, %d\n", location, registerName(exec, dst).data(), argv, argc); break; } case op_new_regexp: { int r0 = (++it)->u.operand; int re0 = (++it)->u.operand; printf("[%4d] new_regexp\t %s, ", location, registerName(exec, r0).data()); if (r0 >=0 && r0 < (int)numberOfRegExps()) printf("%s\n", regexpName(re0, regexp(re0)).data()); else printf("bad_regexp(%d)\n", re0); break; } case op_mov: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] mov\t\t %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data()); break; } case op_not: { printUnaryOp(exec, location, it, "not"); break; } case op_eq: { printBinaryOp(exec, location, it, "eq"); break; } case op_eq_null: { printUnaryOp(exec, location, it, "eq_null"); break; } case op_neq: { printBinaryOp(exec, location, it, "neq"); break; } case op_neq_null: { printUnaryOp(exec, location, it, "neq_null"); break; } case op_stricteq: { printBinaryOp(exec, location, it, "stricteq"); break; } case op_nstricteq: { printBinaryOp(exec, location, it, "nstricteq"); break; } case op_less: { printBinaryOp(exec, location, it, "less"); break; } case op_lesseq: { printBinaryOp(exec, location, it, "lesseq"); break; } case op_greater: { printBinaryOp(exec, location, it, "greater"); break; } case op_greatereq: { printBinaryOp(exec, location, it, "greatereq"); break; } case op_pre_inc: { int r0 = (++it)->u.operand; printf("[%4d] pre_inc\t\t %s\n", location, registerName(exec, r0).data()); break; } case op_pre_dec: { int r0 = (++it)->u.operand; printf("[%4d] pre_dec\t\t %s\n", location, registerName(exec, r0).data()); break; } case op_post_inc: { printUnaryOp(exec, location, it, "post_inc"); break; } case op_post_dec: { printUnaryOp(exec, location, it, "post_dec"); break; } case op_to_jsnumber: { printUnaryOp(exec, location, it, "to_jsnumber"); break; } case op_negate: { printUnaryOp(exec, location, it, "negate"); break; } case op_add: { printBinaryOp(exec, location, it, "add"); ++it; break; } case op_mul: { printBinaryOp(exec, location, it, "mul"); ++it; break; } case op_div: { printBinaryOp(exec, location, it, "div"); ++it; break; } case op_mod: { printBinaryOp(exec, location, it, "mod"); break; } case op_sub: { printBinaryOp(exec, location, it, "sub"); ++it; break; } case op_lshift: { printBinaryOp(exec, location, it, "lshift"); break; } case op_rshift: { printBinaryOp(exec, location, it, "rshift"); break; } case op_urshift: { printBinaryOp(exec, location, it, "urshift"); break; } case op_bitand: { printBinaryOp(exec, location, it, "bitand"); ++it; break; } case op_bitxor: { printBinaryOp(exec, location, it, "bitxor"); ++it; break; } case op_bitor: { printBinaryOp(exec, location, it, "bitor"); ++it; break; } case op_bitnot: { printUnaryOp(exec, location, it, "bitnot"); break; } case op_check_has_instance: { int base = (++it)->u.operand; printf("[%4d] check_has_instance\t\t %s\n", location, registerName(exec, base).data()); break; } case op_instanceof: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; int r3 = (++it)->u.operand; printf("[%4d] instanceof\t\t %s, %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data()); break; } case op_typeof: { printUnaryOp(exec, location, it, "typeof"); break; } case op_is_undefined: { printUnaryOp(exec, location, it, "is_undefined"); break; } case op_is_boolean: { printUnaryOp(exec, location, it, "is_boolean"); break; } case op_is_number: { printUnaryOp(exec, location, it, "is_number"); break; } case op_is_string: { printUnaryOp(exec, location, it, "is_string"); break; } case op_is_object: { printUnaryOp(exec, location, it, "is_object"); break; } case op_is_function: { printUnaryOp(exec, location, it, "is_function"); break; } case op_in: { printBinaryOp(exec, location, it, "in"); break; } case op_resolve: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; printf("[%4d] resolve\t\t %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data()); it++; break; } case op_resolve_skip: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int skipLevels = (++it)->u.operand; printf("[%4d] resolve_skip\t %s, %s, %d\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), skipLevels); it++; break; } case op_resolve_global: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; printf("[%4d] resolve_global\t %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data()); it += 3; break; } case op_resolve_global_dynamic: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; JSValue scope = JSValue((++it)->u.jsCell.get()); ++it; int depth = (++it)->u.operand; printf("[%4d] resolve_global_dynamic\t %s, %s, %s, %d\n", location, registerName(exec, r0).data(), valueToSourceString(exec, scope).utf8().data(), idName(id0, m_identifiers[id0]).data(), depth); ++it; break; } case op_get_scoped_var: { int r0 = (++it)->u.operand; int index = (++it)->u.operand; int skipLevels = (++it)->u.operand; printf("[%4d] get_scoped_var\t %s, %d, %d\n", location, registerName(exec, r0).data(), index, skipLevels); it++; break; } case op_put_scoped_var: { int index = (++it)->u.operand; int skipLevels = (++it)->u.operand; int r0 = (++it)->u.operand; printf("[%4d] put_scoped_var\t %d, %d, %s\n", location, index, skipLevels, registerName(exec, r0).data()); break; } case op_get_global_var: { int r0 = (++it)->u.operand; int index = (++it)->u.operand; printf("[%4d] get_global_var\t %s, %d\n", location, registerName(exec, r0).data(), index); it++; break; } case op_put_global_var: { int index = (++it)->u.operand; int r0 = (++it)->u.operand; printf("[%4d] put_global_var\t %d, %s\n", location, index, registerName(exec, r0).data()); break; } case op_resolve_base: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int isStrict = (++it)->u.operand; printf("[%4d] resolve_base%s\t %s, %s\n", location, isStrict ? "_strict" : "", registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data()); it++; break; } case op_ensure_property_exists: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; printf("[%4d] ensure_property_exists\t %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data()); break; } case op_resolve_with_base: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; printf("[%4d] resolve_with_base %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data()); it++; break; } case op_resolve_with_this: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; printf("[%4d] resolve_with_this %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data()); it++; break; } case op_get_by_id: { printGetByIdOp(exec, location, it, "get_by_id"); break; } case op_get_by_id_self: { printGetByIdOp(exec, location, it, "get_by_id_self"); break; } case op_get_by_id_proto: { printGetByIdOp(exec, location, it, "get_by_id_proto"); break; } case op_get_by_id_chain: { printGetByIdOp(exec, location, it, "get_by_id_chain"); break; } case op_get_by_id_getter_self: { printGetByIdOp(exec, location, it, "get_by_id_getter_self"); break; } case op_get_by_id_getter_proto: { printGetByIdOp(exec, location, it, "get_by_id_getter_proto"); break; } case op_get_by_id_getter_chain: { printGetByIdOp(exec, location, it, "get_by_id_getter_chain"); break; } case op_get_by_id_custom_self: { printGetByIdOp(exec, location, it, "get_by_id_custom_self"); break; } case op_get_by_id_custom_proto: { printGetByIdOp(exec, location, it, "get_by_id_custom_proto"); break; } case op_get_by_id_custom_chain: { printGetByIdOp(exec, location, it, "get_by_id_custom_chain"); break; } case op_get_by_id_generic: { printGetByIdOp(exec, location, it, "get_by_id_generic"); break; } case op_get_array_length: { printGetByIdOp(exec, location, it, "get_array_length"); break; } case op_get_string_length: { printGetByIdOp(exec, location, it, "get_string_length"); break; } case op_get_arguments_length: { printUnaryOp(exec, location, it, "get_arguments_length"); it++; break; } case op_put_by_id: { printPutByIdOp(exec, location, it, "put_by_id"); break; } case op_put_by_id_replace: { printPutByIdOp(exec, location, it, "put_by_id_replace"); break; } case op_put_by_id_transition: { printPutByIdOp(exec, location, it, "put_by_id_transition"); break; } case op_put_by_id_generic: { printPutByIdOp(exec, location, it, "put_by_id_generic"); break; } case op_put_getter_setter: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printf("[%4d] put_getter_setter\t %s, %s, %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); break; } case op_method_check: { printf("[%4d] method_check\n", location); break; } case op_del_by_id: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; printf("[%4d] del_by_id\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data()); break; } case op_get_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printf("[%4d] get_by_val\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); it++; break; } case op_get_argument_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printf("[%4d] get_argument_by_val\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); ++it; break; } case op_get_by_pname: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; int r3 = (++it)->u.operand; int r4 = (++it)->u.operand; int r5 = (++it)->u.operand; printf("[%4d] get_by_pname\t %s, %s, %s, %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data(), registerName(exec, r4).data(), registerName(exec, r5).data()); break; } case op_put_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printf("[%4d] put_by_val\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); break; } case op_del_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; printf("[%4d] del_by_val\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); break; } case op_put_by_index: { int r0 = (++it)->u.operand; unsigned n0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] put_by_index\t %s, %u, %s\n", location, registerName(exec, r0).data(), n0, registerName(exec, r1).data()); break; } case op_jmp: { int offset = (++it)->u.operand; printf("[%4d] jmp\t\t %d(->%d)\n", location, offset, location + offset); break; } case op_loop: { int offset = (++it)->u.operand; printf("[%4d] loop\t\t %d(->%d)\n", location, offset, location + offset); break; } case op_jtrue: { printConditionalJump(exec, begin, it, location, "jtrue"); break; } case op_loop_if_true: { printConditionalJump(exec, begin, it, location, "loop_if_true"); break; } case op_loop_if_false: { printConditionalJump(exec, begin, it, location, "loop_if_false"); break; } case op_jfalse: { printConditionalJump(exec, begin, it, location, "jfalse"); break; } case op_jeq_null: { printConditionalJump(exec, begin, it, location, "jeq_null"); break; } case op_jneq_null: { printConditionalJump(exec, begin, it, location, "jneq_null"); break; } case op_jneq_ptr: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jneq_ptr\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jless: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jless\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jlesseq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jlesseq\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jgreater: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jgreater\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jgreatereq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jgreatereq\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jnless: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jnless\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jnlesseq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jnlesseq\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jngreater: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jngreater\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jngreatereq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jngreatereq\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_loop_if_less: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] loop_if_less\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_loop_if_lesseq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] loop_if_lesseq\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_loop_if_greater: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] loop_if_greater\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_loop_if_greatereq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] loop_if_greatereq\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_loop_hint: { printf("[%4d] loop_hint\n", location); break; } case op_switch_imm: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; printf("[%4d] switch_imm\t %d, %d(->%d), %s\n", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data()); break; } case op_switch_char: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; printf("[%4d] switch_char\t %d, %d(->%d), %s\n", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data()); break; } case op_switch_string: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; printf("[%4d] switch_string\t %d, %d(->%d), %s\n", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data()); break; } case op_new_func: { int r0 = (++it)->u.operand; int f0 = (++it)->u.operand; int shouldCheck = (++it)->u.operand; printf("[%4d] new_func\t\t %s, f%d, %s\n", location, registerName(exec, r0).data(), f0, shouldCheck ? "" : ""); break; } case op_new_func_exp: { int r0 = (++it)->u.operand; int f0 = (++it)->u.operand; printf("[%4d] new_func_exp\t %s, f%d\n", location, registerName(exec, r0).data(), f0); break; } case op_call: { printCallOp(exec, location, it, "call"); break; } case op_call_eval: { printCallOp(exec, location, it, "call_eval"); break; } case op_call_varargs: { int callee = (++it)->u.operand; int thisValue = (++it)->u.operand; int arguments = (++it)->u.operand; int firstFreeRegister = (++it)->u.operand; printf("[%4d] call_varargs\t %s, %s, %s, %d\n", location, registerName(exec, callee).data(), registerName(exec, thisValue).data(), registerName(exec, arguments).data(), firstFreeRegister); break; } case op_tear_off_activation: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] tear_off_activation\t %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data()); break; } case op_tear_off_arguments: { int r0 = (++it)->u.operand; printf("[%4d] tear_off_arguments %s\n", location, registerName(exec, r0).data()); break; } case op_ret: { int r0 = (++it)->u.operand; printf("[%4d] ret\t\t %s\n", location, registerName(exec, r0).data()); break; } case op_call_put_result: { int r0 = (++it)->u.operand; printf("[%4d] op_call_put_result\t\t %s\n", location, registerName(exec, r0).data()); it++; break; } case op_ret_object_or_this: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] constructor_ret\t\t %s %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data()); break; } case op_construct: { printCallOp(exec, location, it, "construct"); break; } case op_strcat: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int count = (++it)->u.operand; printf("[%4d] strcat\t\t %s, %s, %d\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), count); break; } case op_to_primitive: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] to_primitive\t %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data()); break; } case op_get_pnames: { int r0 = it[1].u.operand; int r1 = it[2].u.operand; int r2 = it[3].u.operand; int r3 = it[4].u.operand; int offset = it[5].u.operand; printf("[%4d] get_pnames\t %s, %s, %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data(), offset, location + offset); it += OPCODE_LENGTH(op_get_pnames) - 1; break; } case op_next_pname: { int dest = it[1].u.operand; int base = it[2].u.operand; int i = it[3].u.operand; int size = it[4].u.operand; int iter = it[5].u.operand; int offset = it[6].u.operand; printf("[%4d] next_pname\t %s, %s, %s, %s, %s, %d(->%d)\n", location, registerName(exec, dest).data(), registerName(exec, base).data(), registerName(exec, i).data(), registerName(exec, size).data(), registerName(exec, iter).data(), offset, location + offset); it += OPCODE_LENGTH(op_next_pname) - 1; break; } case op_push_scope: { int r0 = (++it)->u.operand; printf("[%4d] push_scope\t %s\n", location, registerName(exec, r0).data()); break; } case op_pop_scope: { printf("[%4d] pop_scope\n", location); break; } case op_push_new_scope: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; printf("[%4d] push_new_scope \t%s, %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data()); break; } case op_jmp_scopes: { int scopeDelta = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jmp_scopes\t^%d, %d(->%d)\n", location, scopeDelta, offset, location + offset); break; } case op_catch: { int r0 = (++it)->u.operand; printf("[%4d] catch\t\t %s\n", location, registerName(exec, r0).data()); break; } case op_throw: { int r0 = (++it)->u.operand; printf("[%4d] throw\t\t %s\n", location, registerName(exec, r0).data()); break; } case op_throw_reference_error: { int k0 = (++it)->u.operand; printf("[%4d] throw_reference_error\t %s\n", location, constantName(exec, k0, getConstant(k0)).data()); break; } case op_jsr: { int retAddrDst = (++it)->u.operand; int offset = (++it)->u.operand; printf("[%4d] jsr\t\t %s, %d(->%d)\n", location, registerName(exec, retAddrDst).data(), offset, location + offset); break; } case op_sret: { int retAddrSrc = (++it)->u.operand; printf("[%4d] sret\t\t %s\n", location, registerName(exec, retAddrSrc).data()); break; } case op_debug: { int debugHookID = (++it)->u.operand; int firstLine = (++it)->u.operand; int lastLine = (++it)->u.operand; printf("[%4d] debug\t\t %s, %d, %d\n", location, debugHookName(debugHookID), firstLine, lastLine); break; } case op_profile_will_call: { int function = (++it)->u.operand; printf("[%4d] profile_will_call %s\n", location, registerName(exec, function).data()); break; } case op_profile_did_call: { int function = (++it)->u.operand; printf("[%4d] profile_did_call\t %s\n", location, registerName(exec, function).data()); break; } case op_end: { int r0 = (++it)->u.operand; printf("[%4d] end\t\t %s\n", location, registerName(exec, r0).data()); break; } } } #if DUMP_CODE_BLOCK_STATISTICS static HashSet liveCodeBlockSet; #endif #define FOR_EACH_MEMBER_VECTOR(macro) \ macro(instructions) \ macro(globalResolveInfos) \ macro(structureStubInfos) \ macro(callLinkInfos) \ macro(linkedCallerList) \ macro(identifiers) \ macro(functionExpressions) \ macro(constantRegisters) #define FOR_EACH_MEMBER_VECTOR_RARE_DATA(macro) \ macro(regexps) \ macro(functions) \ macro(exceptionHandlers) \ macro(immediateSwitchJumpTables) \ macro(characterSwitchJumpTables) \ macro(stringSwitchJumpTables) \ macro(evalCodeCache) \ macro(expressionInfo) \ macro(lineInfo) \ macro(callReturnIndexVector) template static size_t sizeInBytes(const Vector& vector) { return vector.capacity() * sizeof(T); } void CodeBlock::dumpStatistics() { #if DUMP_CODE_BLOCK_STATISTICS #define DEFINE_VARS(name) size_t name##IsNotEmpty = 0; size_t name##TotalSize = 0; FOR_EACH_MEMBER_VECTOR(DEFINE_VARS) FOR_EACH_MEMBER_VECTOR_RARE_DATA(DEFINE_VARS) #undef DEFINE_VARS // Non-vector data members size_t evalCodeCacheIsNotEmpty = 0; size_t symbolTableIsNotEmpty = 0; size_t symbolTableTotalSize = 0; size_t hasRareData = 0; size_t isFunctionCode = 0; size_t isGlobalCode = 0; size_t isEvalCode = 0; HashSet::const_iterator end = liveCodeBlockSet.end(); for (HashSet::const_iterator it = liveCodeBlockSet.begin(); it != end; ++it) { CodeBlock* codeBlock = *it; #define GET_STATS(name) if (!codeBlock->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_##name); } FOR_EACH_MEMBER_VECTOR(GET_STATS) #undef GET_STATS if (!codeBlock->m_symbolTable.isEmpty()) { symbolTableIsNotEmpty++; symbolTableTotalSize += (codeBlock->m_symbolTable.capacity() * (sizeof(SymbolTable::KeyType) + sizeof(SymbolTable::MappedType))); } if (codeBlock->m_rareData) { hasRareData++; #define GET_STATS(name) if (!codeBlock->m_rareData->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_rareData->m_##name); } FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_STATS) #undef GET_STATS if (!codeBlock->m_rareData->m_evalCodeCache.isEmpty()) evalCodeCacheIsNotEmpty++; } switch (codeBlock->codeType()) { case FunctionCode: ++isFunctionCode; break; case GlobalCode: ++isGlobalCode; break; case EvalCode: ++isEvalCode; break; } } size_t totalSize = 0; #define GET_TOTAL_SIZE(name) totalSize += name##TotalSize; FOR_EACH_MEMBER_VECTOR(GET_TOTAL_SIZE) FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_TOTAL_SIZE) #undef GET_TOTAL_SIZE totalSize += symbolTableTotalSize; totalSize += (liveCodeBlockSet.size() * sizeof(CodeBlock)); printf("Number of live CodeBlocks: %d\n", liveCodeBlockSet.size()); printf("Size of a single CodeBlock [sizeof(CodeBlock)]: %zu\n", sizeof(CodeBlock)); printf("Size of all CodeBlocks: %zu\n", totalSize); printf("Average size of a CodeBlock: %zu\n", totalSize / liveCodeBlockSet.size()); printf("Number of FunctionCode CodeBlocks: %zu (%.3f%%)\n", isFunctionCode, static_cast(isFunctionCode) * 100.0 / liveCodeBlockSet.size()); printf("Number of GlobalCode CodeBlocks: %zu (%.3f%%)\n", isGlobalCode, static_cast(isGlobalCode) * 100.0 / liveCodeBlockSet.size()); printf("Number of EvalCode CodeBlocks: %zu (%.3f%%)\n", isEvalCode, static_cast(isEvalCode) * 100.0 / liveCodeBlockSet.size()); printf("Number of CodeBlocks with rare data: %zu (%.3f%%)\n", hasRareData, static_cast(hasRareData) * 100.0 / liveCodeBlockSet.size()); #define PRINT_STATS(name) printf("Number of CodeBlocks with " #name ": %zu\n", name##IsNotEmpty); printf("Size of all " #name ": %zu\n", name##TotalSize); FOR_EACH_MEMBER_VECTOR(PRINT_STATS) FOR_EACH_MEMBER_VECTOR_RARE_DATA(PRINT_STATS) #undef PRINT_STATS printf("Number of CodeBlocks with evalCodeCache: %zu\n", evalCodeCacheIsNotEmpty); printf("Number of CodeBlocks with symbolTable: %zu\n", symbolTableIsNotEmpty); printf("Size of all symbolTables: %zu\n", symbolTableTotalSize); #else printf("Dumping CodeBlock statistics is not enabled.\n"); #endif } CodeBlock::CodeBlock(CopyParsedBlockTag, CodeBlock& other, SymbolTable* symTab) : m_globalObject(other.m_globalObject) , m_heap(other.m_heap) , m_numCalleeRegisters(other.m_numCalleeRegisters) , m_numVars(other.m_numVars) , m_numCapturedVars(other.m_numCapturedVars) , m_isConstructor(other.m_isConstructor) , m_shouldDiscardBytecode(false) , m_ownerExecutable(*other.m_globalData, other.m_ownerExecutable.get(), other.m_ownerExecutable.get()) , m_globalData(other.m_globalData) , m_instructions(other.m_instructions) , m_instructionCount(other.m_instructionCount) , m_thisRegister(other.m_thisRegister) , m_argumentsRegister(other.m_argumentsRegister) , m_activationRegister(other.m_activationRegister) , m_needsFullScopeChain(other.m_needsFullScopeChain) , m_usesEval(other.m_usesEval) , m_isNumericCompareFunction(other.m_isNumericCompareFunction) , m_isStrictMode(other.m_isStrictMode) , m_codeType(other.m_codeType) , m_source(other.m_source) , m_sourceOffset(other.m_sourceOffset) #if ENABLE(JIT) , m_globalResolveInfos(other.m_globalResolveInfos) #endif #if ENABLE(VALUE_PROFILER) , m_executionEntryCount(0) #endif , m_jumpTargets(other.m_jumpTargets) , m_loopTargets(other.m_loopTargets) , m_identifiers(other.m_identifiers) , m_constantRegisters(other.m_constantRegisters) , m_functionDecls(other.m_functionDecls) , m_functionExprs(other.m_functionExprs) , m_symbolTable(symTab) , m_speculativeSuccessCounter(0) , m_speculativeFailCounter(0) , m_optimizationDelayCounter(0) , m_reoptimizationRetryCounter(0) #if ENABLE(JIT) , m_canCompileWithDFGState(CompileWithDFGUnset) #endif { setNumParameters(other.numParameters()); optimizeAfterWarmUp(); if (other.m_rareData) { createRareDataIfNecessary(); m_rareData->m_exceptionHandlers = other.m_rareData->m_exceptionHandlers; m_rareData->m_regexps = other.m_rareData->m_regexps; m_rareData->m_constantBuffers = other.m_rareData->m_constantBuffers; m_rareData->m_immediateSwitchJumpTables = other.m_rareData->m_immediateSwitchJumpTables; m_rareData->m_characterSwitchJumpTables = other.m_rareData->m_characterSwitchJumpTables; m_rareData->m_stringSwitchJumpTables = other.m_rareData->m_stringSwitchJumpTables; m_rareData->m_expressionInfo = other.m_rareData->m_expressionInfo; m_rareData->m_lineInfo = other.m_rareData->m_lineInfo; } } CodeBlock::CodeBlock(ScriptExecutable* ownerExecutable, CodeType codeType, JSGlobalObject *globalObject, PassRefPtr sourceProvider, unsigned sourceOffset, SymbolTable* symTab, bool isConstructor, PassOwnPtr alternative) : m_globalObject(globalObject->globalData(), ownerExecutable, globalObject) , m_heap(&m_globalObject->globalData().heap) , m_numCalleeRegisters(0) , m_numVars(0) , m_isConstructor(isConstructor) , m_shouldDiscardBytecode(false) , m_numParameters(0) , m_ownerExecutable(globalObject->globalData(), ownerExecutable, ownerExecutable) , m_globalData(0) , m_instructions(adoptRef(new Instructions)) , m_instructionCount(0) , m_argumentsRegister(-1) , m_needsFullScopeChain(ownerExecutable->needsActivation()) , m_usesEval(ownerExecutable->usesEval()) , m_isNumericCompareFunction(false) , m_isStrictMode(ownerExecutable->isStrictMode()) , m_codeType(codeType) , m_source(sourceProvider) , m_sourceOffset(sourceOffset) #if ENABLE(VALUE_PROFILER) , m_executionEntryCount(0) #endif , m_symbolTable(symTab) , m_alternative(alternative) , m_speculativeSuccessCounter(0) , m_speculativeFailCounter(0) , m_optimizationDelayCounter(0) , m_reoptimizationRetryCounter(0) { ASSERT(m_source); optimizeAfterWarmUp(); #if DUMP_CODE_BLOCK_STATISTICS liveCodeBlockSet.add(this); #endif } CodeBlock::~CodeBlock() { #if ENABLE(DFG_JIT) // Remove myself from the set of DFG code blocks. Note that I may not be in this set // (because I'm not a DFG code block), in which case this is a no-op anyway. m_globalData->heap.m_dfgCodeBlocks.m_set.remove(this); #endif #if ENABLE(VERBOSE_VALUE_PROFILE) dumpValueProfiles(); #endif #if ENABLE(JIT) // We may be destroyed before any CodeBlocks that refer to us are destroyed. // Consider that two CodeBlocks become unreachable at the same time. There // is no guarantee about the order in which the CodeBlocks are destroyed. // So, if we don't remove incoming calls, and get destroyed before the // CodeBlock(s) that have calls into us, then the CallLinkInfo vector's // destructor will try to remove nodes from our (no longer valid) linked list. while (m_incomingCalls.begin() != m_incomingCalls.end()) m_incomingCalls.begin()->remove(); // Note that our outgoing calls will be removed from other CodeBlocks' // m_incomingCalls linked lists through the execution of the ~CallLinkInfo // destructors. for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i) m_structureStubInfos[i].deref(); #endif // ENABLE(JIT) #if DUMP_CODE_BLOCK_STATISTICS liveCodeBlockSet.remove(this); #endif } void CodeBlock::setNumParameters(int newValue) { m_numParameters = newValue; #if ENABLE(VALUE_PROFILER) m_argumentValueProfiles.resize(newValue); #endif } void CodeBlock::addParameter() { m_numParameters++; #if ENABLE(VALUE_PROFILER) m_argumentValueProfiles.append(ValueProfile()); #endif } void CodeBlock::visitStructures(SlotVisitor& visitor, Instruction* vPC) const { Interpreter* interpreter = m_globalData->interpreter; if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id) && vPC[4].u.structure) { visitor.append(&vPC[4].u.structure); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_self) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_self)) { visitor.append(&vPC[4].u.structure); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_proto) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_proto)) { visitor.append(&vPC[4].u.structure); visitor.append(&vPC[5].u.structure); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_chain) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_chain)) { visitor.append(&vPC[4].u.structure); visitor.append(&vPC[5].u.structureChain); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) { visitor.append(&vPC[4].u.structure); visitor.append(&vPC[5].u.structure); visitor.append(&vPC[6].u.structureChain); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id) && vPC[4].u.structure) { visitor.append(&vPC[4].u.structure); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) { visitor.append(&vPC[4].u.structure); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global) || vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global_dynamic)) { if (vPC[3].u.structure) visitor.append(&vPC[3].u.structure); return; } // These instructions don't ref their Structures. ASSERT(vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_get_array_length) || vPC[0].u.opcode == interpreter->getOpcode(op_get_string_length)); } void EvalCodeCache::visitAggregate(SlotVisitor& visitor) { EvalCacheMap::iterator end = m_cacheMap.end(); for (EvalCacheMap::iterator ptr = m_cacheMap.begin(); ptr != end; ++ptr) visitor.append(&ptr->second); } void CodeBlock::visitAggregate(SlotVisitor& visitor) { if (!!m_alternative) m_alternative->visitAggregate(visitor); // There are three things that may use unconditional finalizers: lazy bytecode freeing, // inline cache clearing, and jettisoning. The probability of us wanting to do at // least one of those things is probably quite close to 1. So we add one no matter what // and when it runs, it figures out whether it has any work to do. visitor.addUnconditionalFinalizer(this); if (shouldImmediatelyAssumeLivenessDuringScan()) { // This code block is live, so scan all references strongly and return. stronglyVisitStrongReferences(visitor); stronglyVisitWeakReferences(visitor); return; } #if ENABLE(DFG_JIT) // We get here if we're live in the sense that our owner executable is live, // but we're not yet live for sure in another sense: we may yet decide that this // code block should be jettisoned based on its outgoing weak references being // stale. Set a flag to indicate that we're still assuming that we're dead, and // perform one round of determining if we're live. The GC may determine, based on // either us marking additional objects, or by other objects being marked for // other reasons, that this iteration should run again; it will notify us of this // decision by calling harvestWeakReferences(). m_dfgData->livenessHasBeenProved = false; m_dfgData->allTransitionsHaveBeenMarked = false; performTracingFixpointIteration(visitor); // GC doesn't have enough information yet for us to decide whether to keep our DFG // data, so we need to register a handler to run again at the end of GC, when more // information is available. if (!(m_dfgData->livenessHasBeenProved && m_dfgData->allTransitionsHaveBeenMarked)) visitor.addWeakReferenceHarvester(this); #else // ENABLE(DFG_JIT) ASSERT_NOT_REACHED(); #endif // ENABLE(DFG_JIT) } void CodeBlock::performTracingFixpointIteration(SlotVisitor& visitor) { UNUSED_PARAM(visitor); #if ENABLE(DFG_JIT) // Evaluate our weak reference transitions, if there are still some to evaluate. if (!m_dfgData->allTransitionsHaveBeenMarked) { bool allAreMarkedSoFar = true; for (unsigned i = 0; i < m_dfgData->transitions.size(); ++i) { if ((!m_dfgData->transitions[i].m_codeOrigin || Heap::isMarked(m_dfgData->transitions[i].m_codeOrigin.get())) && Heap::isMarked(m_dfgData->transitions[i].m_from.get())) { // If the following three things are live, then the target of the // transition is also live: // - This code block. We know it's live already because otherwise // we wouldn't be scanning ourselves. // - The code origin of the transition. Transitions may arise from // code that was inlined. They are not relevant if the user's // object that is required for the inlinee to run is no longer // live. // - The source of the transition. The transition checks if some // heap location holds the source, and if so, stores the target. // Hence the source must be live for the transition to be live. visitor.append(&m_dfgData->transitions[i].m_to); } else allAreMarkedSoFar = false; } if (allAreMarkedSoFar) m_dfgData->allTransitionsHaveBeenMarked = true; } // Check if we have any remaining work to do. if (m_dfgData->livenessHasBeenProved) return; // Now check all of our weak references. If all of them are live, then we // have proved liveness and so we scan our strong references. If at end of // GC we still have not proved liveness, then this code block is toast. bool allAreLiveSoFar = true; for (unsigned i = 0; i < m_dfgData->weakReferences.size(); ++i) { if (!Heap::isMarked(m_dfgData->weakReferences[i].get())) { allAreLiveSoFar = false; break; } } // If some weak references are dead, then this fixpoint iteration was // unsuccessful. if (!allAreLiveSoFar) return; // All weak references are live. Record this information so we don't // come back here again, and scan the strong references. m_dfgData->livenessHasBeenProved = true; stronglyVisitStrongReferences(visitor); #endif // ENABLE(DFG_JIT) } void CodeBlock::visitWeakReferences(SlotVisitor& visitor) { performTracingFixpointIteration(visitor); } void CodeBlock::finalizeUnconditionally() { #if ENABLE(JIT) #if ENABLE(JIT_VERBOSE_OSR) static const bool verboseUnlinking = true; #else static const bool verboseUnlinking = false; #endif #endif #if ENABLE(DFG_JIT) // Check if we're not live. If we are, then jettison. if (!(shouldImmediatelyAssumeLivenessDuringScan() || m_dfgData->livenessHasBeenProved)) { if (verboseUnlinking) printf("Code block %p has dead weak references, jettisoning during GC.\n", this); // Make sure that the baseline JIT knows that it should re-warm-up before // optimizing. alternative()->optimizeAfterWarmUp(); jettison(); return; } #endif // ENABLE(DFG_JIT) #if ENABLE(JIT) // Handle inline caches. if (!!getJITCode()) { RepatchBuffer repatchBuffer(this); for (unsigned i = 0; i < numberOfCallLinkInfos(); ++i) { if (callLinkInfo(i).isLinked() && !Heap::isMarked(callLinkInfo(i).callee.get())) { if (verboseUnlinking) printf("Clearing call from %p.\n", this); callLinkInfo(i).unlink(*m_globalData, repatchBuffer); } if (!!callLinkInfo(i).lastSeenCallee && !Heap::isMarked(callLinkInfo(i).lastSeenCallee.get())) callLinkInfo(i).lastSeenCallee.clear(); } for (size_t size = m_globalResolveInfos.size(), i = 0; i < size; ++i) { if (m_globalResolveInfos[i].structure && !Heap::isMarked(m_globalResolveInfos[i].structure.get())) { if (verboseUnlinking) printf("Clearing resolve info in %p.\n", this); m_globalResolveInfos[i].structure.clear(); } } for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i) { StructureStubInfo& stubInfo = m_structureStubInfos[i]; AccessType accessType = static_cast(stubInfo.accessType); if (stubInfo.visitWeakReferences()) continue; if (verboseUnlinking) printf("Clearing structure cache (kind %d) in %p.\n", stubInfo.accessType, this); if (isGetByIdAccess(accessType)) { if (getJITCode().jitType() == JITCode::DFGJIT) DFG::dfgResetGetByID(repatchBuffer, stubInfo); else JIT::resetPatchGetById(repatchBuffer, &stubInfo); } else { ASSERT(isPutByIdAccess(accessType)); if (getJITCode().jitType() == JITCode::DFGJIT) DFG::dfgResetPutByID(repatchBuffer, stubInfo); else JIT::resetPatchPutById(repatchBuffer, &stubInfo); } stubInfo.reset(); } for (size_t size = m_methodCallLinkInfos.size(), i = 0; i < size; ++i) { if (!m_methodCallLinkInfos[i].cachedStructure) continue; ASSERT(m_methodCallLinkInfos[i].seenOnce()); ASSERT(!!m_methodCallLinkInfos[i].cachedPrototypeStructure); if (!Heap::isMarked(m_methodCallLinkInfos[i].cachedStructure.get()) || !Heap::isMarked(m_methodCallLinkInfos[i].cachedPrototypeStructure.get()) || !Heap::isMarked(m_methodCallLinkInfos[i].cachedFunction.get()) || !Heap::isMarked(m_methodCallLinkInfos[i].cachedPrototype.get())) { if (verboseUnlinking) printf("Clearing method call in %p.\n", this); m_methodCallLinkInfos[i].reset(repatchBuffer, getJITType()); StructureStubInfo& stubInfo = getStubInfo(m_methodCallLinkInfos[i].bytecodeIndex); AccessType accessType = static_cast(stubInfo.accessType); if (accessType != access_unset) { ASSERT(isGetByIdAccess(accessType)); if (getJITCode().jitType() == JITCode::DFGJIT) DFG::dfgResetGetByID(repatchBuffer, stubInfo); else JIT::resetPatchGetById(repatchBuffer, &stubInfo); stubInfo.reset(); } } } } #endif // Handle the bytecode discarding chore. if (m_shouldDiscardBytecode) { discardBytecode(); m_shouldDiscardBytecode = false; } } void CodeBlock::stronglyVisitStrongReferences(SlotVisitor& visitor) { visitor.append(&m_globalObject); visitor.append(&m_ownerExecutable); if (m_rareData) { m_rareData->m_evalCodeCache.visitAggregate(visitor); size_t regExpCount = m_rareData->m_regexps.size(); WriteBarrier* regexps = m_rareData->m_regexps.data(); for (size_t i = 0; i < regExpCount; i++) visitor.append(regexps + i); } visitor.appendValues(m_constantRegisters.data(), m_constantRegisters.size()); for (size_t i = 0; i < m_functionExprs.size(); ++i) visitor.append(&m_functionExprs[i]); for (size_t i = 0; i < m_functionDecls.size(); ++i) visitor.append(&m_functionDecls[i]); #if ENABLE(INTERPRETER) for (size_t size = m_propertyAccessInstructions.size(), i = 0; i < size; ++i) visitStructures(visitor, &instructions()[m_propertyAccessInstructions[i]]); for (size_t size = m_globalResolveInstructions.size(), i = 0; i < size; ++i) visitStructures(visitor, &instructions()[m_globalResolveInstructions[i]]); #endif #if ENABLE(DFG_JIT) if (hasCodeOrigins()) { // Make sure that executables that we have inlined don't die. // FIXME: If they would have otherwise died, we should probably trigger recompilation. for (size_t i = 0; i < inlineCallFrames().size(); ++i) { visitor.append(&inlineCallFrames()[i].executable); visitor.append(&inlineCallFrames()[i].callee); } } #endif #if ENABLE(VALUE_PROFILER) for (unsigned profileIndex = 0; profileIndex < numberOfArgumentValueProfiles(); ++profileIndex) valueProfileForArgument(profileIndex)->computeUpdatedPrediction(); for (unsigned profileIndex = 0; profileIndex < numberOfValueProfiles(); ++profileIndex) valueProfile(profileIndex)->computeUpdatedPrediction(); #endif } void CodeBlock::stronglyVisitWeakReferences(SlotVisitor& visitor) { UNUSED_PARAM(visitor); #if ENABLE(DFG_JIT) if (!m_dfgData) return; for (unsigned i = 0; i < m_dfgData->transitions.size(); ++i) { if (!!m_dfgData->transitions[i].m_codeOrigin) visitor.append(&m_dfgData->transitions[i].m_codeOrigin); // Almost certainly not necessary, since the code origin should also be a weak reference. Better to be safe, though. visitor.append(&m_dfgData->transitions[i].m_from); visitor.append(&m_dfgData->transitions[i].m_to); } for (unsigned i = 0; i < m_dfgData->weakReferences.size(); ++i) visitor.append(&m_dfgData->weakReferences[i]); #endif } HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset) { ASSERT(bytecodeOffset < m_instructionCount); if (!m_rareData) return 0; Vector& exceptionHandlers = m_rareData->m_exceptionHandlers; for (size_t i = 0; i < exceptionHandlers.size(); ++i) { // Handlers are ordered innermost first, so the first handler we encounter // that contains the source address is the correct handler to use. if (exceptionHandlers[i].start <= bytecodeOffset && exceptionHandlers[i].end >= bytecodeOffset) return &exceptionHandlers[i]; } return 0; } int CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset) { ASSERT(bytecodeOffset < m_instructionCount); if (!m_rareData) return m_ownerExecutable->source().firstLine(); Vector& lineInfo = m_rareData->m_lineInfo; int low = 0; int high = lineInfo.size(); while (low < high) { int mid = low + (high - low) / 2; if (lineInfo[mid].instructionOffset <= bytecodeOffset) low = mid + 1; else high = mid; } if (!low) return m_ownerExecutable->source().firstLine(); return lineInfo[low - 1].lineNumber; } void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset) { ASSERT(bytecodeOffset < m_instructionCount); if (!m_rareData) { startOffset = 0; endOffset = 0; divot = 0; return; } Vector& expressionInfo = m_rareData->m_expressionInfo; int low = 0; int high = expressionInfo.size(); while (low < high) { int mid = low + (high - low) / 2; if (expressionInfo[mid].instructionOffset <= bytecodeOffset) low = mid + 1; else high = mid; } ASSERT(low); if (!low) { startOffset = 0; endOffset = 0; divot = 0; return; } startOffset = expressionInfo[low - 1].startOffset; endOffset = expressionInfo[low - 1].endOffset; divot = expressionInfo[low - 1].divotPoint + m_sourceOffset; return; } #if ENABLE(INTERPRETER) bool CodeBlock::hasGlobalResolveInstructionAtBytecodeOffset(unsigned bytecodeOffset) { if (m_globalResolveInstructions.isEmpty()) return false; int low = 0; int high = m_globalResolveInstructions.size(); while (low < high) { int mid = low + (high - low) / 2; if (m_globalResolveInstructions[mid] <= bytecodeOffset) low = mid + 1; else high = mid; } if (!low || m_globalResolveInstructions[low - 1] != bytecodeOffset) return false; return true; } #endif #if ENABLE(JIT) bool CodeBlock::hasGlobalResolveInfoAtBytecodeOffset(unsigned bytecodeOffset) { if (m_globalResolveInfos.isEmpty()) return false; int low = 0; int high = m_globalResolveInfos.size(); while (low < high) { int mid = low + (high - low) / 2; if (m_globalResolveInfos[mid].bytecodeOffset <= bytecodeOffset) low = mid + 1; else high = mid; } if (!low || m_globalResolveInfos[low - 1].bytecodeOffset != bytecodeOffset) return false; return true; } #endif void CodeBlock::shrinkToFit() { instructions().shrinkToFit(); #if ENABLE(INTERPRETER) m_propertyAccessInstructions.shrinkToFit(); m_globalResolveInstructions.shrinkToFit(); #endif #if ENABLE(JIT) m_structureStubInfos.shrinkToFit(); m_globalResolveInfos.shrinkToFit(); m_callLinkInfos.shrinkToFit(); #endif m_identifiers.shrinkToFit(); m_functionDecls.shrinkToFit(); m_functionExprs.shrinkToFit(); m_constantRegisters.shrinkToFit(); if (m_rareData) { m_rareData->m_exceptionHandlers.shrinkToFit(); m_rareData->m_regexps.shrinkToFit(); m_rareData->m_immediateSwitchJumpTables.shrinkToFit(); m_rareData->m_characterSwitchJumpTables.shrinkToFit(); m_rareData->m_stringSwitchJumpTables.shrinkToFit(); m_rareData->m_expressionInfo.shrinkToFit(); m_rareData->m_lineInfo.shrinkToFit(); } } void CodeBlock::createActivation(CallFrame* callFrame) { ASSERT(codeType() == FunctionCode); ASSERT(needsFullScopeChain()); ASSERT(!callFrame->uncheckedR(activationRegister()).jsValue()); JSActivation* activation = JSActivation::create(callFrame->globalData(), callFrame, static_cast(ownerExecutable())); callFrame->uncheckedR(activationRegister()) = JSValue(activation); callFrame->setScopeChain(callFrame->scopeChain()->push(activation)); } unsigned CodeBlock::addOrFindConstant(JSValue v) { unsigned numberOfConstants = numberOfConstantRegisters(); for (unsigned i = 0; i < numberOfConstants; ++i) { if (getConstant(FirstConstantRegisterIndex + i) == v) return i; } return addConstant(v); } #if ENABLE(JIT) void CodeBlock::unlinkCalls() { if (!!m_alternative) m_alternative->unlinkCalls(); if (!(m_callLinkInfos.size() || m_methodCallLinkInfos.size())) return; if (!m_globalData->canUseJIT()) return; RepatchBuffer repatchBuffer(this); for (size_t i = 0; i < m_callLinkInfos.size(); i++) { if (!m_callLinkInfos[i].isLinked()) continue; m_callLinkInfos[i].unlink(*m_globalData, repatchBuffer); } } void CodeBlock::unlinkIncomingCalls() { RepatchBuffer repatchBuffer(this); while (m_incomingCalls.begin() != m_incomingCalls.end()) m_incomingCalls.begin()->unlink(*m_globalData, repatchBuffer); } #endif void CodeBlock::clearEvalCache() { if (!!m_alternative) m_alternative->clearEvalCache(); if (!m_rareData) return; m_rareData->m_evalCodeCache.clear(); } template inline void replaceExistingEntries(Vector& target, Vector& source) { ASSERT(target.size() <= source.size()); for (size_t i = 0; i < target.size(); ++i) target[i] = source[i]; } void CodeBlock::copyPostParseDataFrom(CodeBlock* alternative) { if (!alternative) return; replaceExistingEntries(m_constantRegisters, alternative->m_constantRegisters); replaceExistingEntries(m_functionDecls, alternative->m_functionDecls); replaceExistingEntries(m_functionExprs, alternative->m_functionExprs); if (!!m_rareData && !!alternative->m_rareData) replaceExistingEntries(m_rareData->m_constantBuffers, alternative->m_rareData->m_constantBuffers); } void CodeBlock::copyPostParseDataFromAlternative() { copyPostParseDataFrom(m_alternative.get()); } #if ENABLE(JIT) CodeBlock* ProgramCodeBlock::replacement() { return &static_cast(ownerExecutable())->generatedBytecode(); } CodeBlock* EvalCodeBlock::replacement() { return &static_cast(ownerExecutable())->generatedBytecode(); } CodeBlock* FunctionCodeBlock::replacement() { return &static_cast(ownerExecutable())->generatedBytecodeFor(m_isConstructor ? CodeForConstruct : CodeForCall); } JSObject* ProgramCodeBlock::compileOptimized(ExecState* exec, ScopeChainNode* scopeChainNode) { if (replacement()->getJITType() == JITCode::nextTierJIT(getJITType())) return 0; JSObject* error = static_cast(ownerExecutable())->compileOptimized(exec, scopeChainNode); return error; } JSObject* EvalCodeBlock::compileOptimized(ExecState* exec, ScopeChainNode* scopeChainNode) { if (replacement()->getJITType() == JITCode::nextTierJIT(getJITType())) return 0; JSObject* error = static_cast(ownerExecutable())->compileOptimized(exec, scopeChainNode); return error; } JSObject* FunctionCodeBlock::compileOptimized(ExecState* exec, ScopeChainNode* scopeChainNode) { if (replacement()->getJITType() == JITCode::nextTierJIT(getJITType())) return 0; JSObject* error = static_cast(ownerExecutable())->compileOptimizedFor(exec, scopeChainNode, m_isConstructor ? CodeForConstruct : CodeForCall); return error; } bool ProgramCodeBlock::canCompileWithDFGInternal() { return DFG::canCompileProgram(this); } bool EvalCodeBlock::canCompileWithDFGInternal() { return DFG::canCompileEval(this); } bool FunctionCodeBlock::canCompileWithDFGInternal() { if (m_isConstructor) return DFG::canCompileFunctionForConstruct(this); return DFG::canCompileFunctionForCall(this); } void ProgramCodeBlock::jettison() { ASSERT(getJITType() != JITCode::BaselineJIT); ASSERT(this == replacement()); static_cast(ownerExecutable())->jettisonOptimizedCode(*globalData()); } void EvalCodeBlock::jettison() { ASSERT(getJITType() != JITCode::BaselineJIT); ASSERT(this == replacement()); static_cast(ownerExecutable())->jettisonOptimizedCode(*globalData()); } void FunctionCodeBlock::jettison() { ASSERT(getJITType() != JITCode::BaselineJIT); ASSERT(this == replacement()); static_cast(ownerExecutable())->jettisonOptimizedCodeFor(*globalData(), m_isConstructor ? CodeForConstruct : CodeForCall); } #endif #if ENABLE(VALUE_PROFILER) bool CodeBlock::shouldOptimizeNow() { #if ENABLE(JIT_VERBOSE_OSR) printf("Considering optimizing %p...\n", this); #endif #if ENABLE(VERBOSE_VALUE_PROFILE) dumpValueProfiles(); #endif if (m_optimizationDelayCounter >= Options::maximumOptimizationDelay) return true; unsigned numberOfLiveNonArgumentValueProfiles = 0; unsigned numberOfSamplesInProfiles = 0; // If this divided by ValueProfile::numberOfBuckets equals numberOfValueProfiles() then value profiles are full. for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { ValueProfile* profile = getFromAllValueProfiles(i); unsigned numSamples = profile->totalNumberOfSamples(); if (numSamples > ValueProfile::numberOfBuckets) numSamples = ValueProfile::numberOfBuckets; // We don't want profiles that are extremely hot to be given more weight. numberOfSamplesInProfiles += numSamples; if (profile->m_bytecodeOffset < 0) { profile->computeUpdatedPrediction(); continue; } if (profile->numberOfSamples() || profile->m_prediction != PredictNone) numberOfLiveNonArgumentValueProfiles++; profile->computeUpdatedPrediction(); } #if ENABLE(JIT_VERBOSE_OSR) printf("Profile hotness: %lf, %lf\n", (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles(), (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / numberOfValueProfiles()); #endif if ((!numberOfValueProfiles() || (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles() >= Options::desiredProfileLivenessRate) && (!totalNumberOfValueProfiles() || (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / totalNumberOfValueProfiles() >= Options::desiredProfileFullnessRate) && static_cast(m_optimizationDelayCounter) + 1 >= Options::minimumOptimizationDelay) return true; ASSERT(m_optimizationDelayCounter < std::numeric_limits::max()); m_optimizationDelayCounter++; optimizeAfterWarmUp(); return false; } #endif #if ENABLE(DFG_JIT) void CodeBlock::tallyFrequentExitSites() { ASSERT(getJITType() == JITCode::DFGJIT); ASSERT(alternative()->getJITType() == JITCode::BaselineJIT); ASSERT(!!m_dfgData); CodeBlock* profiledBlock = alternative(); for (unsigned i = 0; i < m_dfgData->osrExit.size(); ++i) { DFG::OSRExit& exit = m_dfgData->osrExit[i]; if (!exit.considerAddingAsFrequentExitSite(this, profiledBlock)) continue; #if DFG_ENABLE(DEBUG_VERBOSE) fprintf(stderr, "OSR exit #%u (bc#%u, @%u, %s) for code block %p occurred frequently; counting as frequent exit site.\n", i, exit.m_codeOrigin.bytecodeIndex, exit.m_nodeIndex, DFG::exitKindToString(exit.m_kind), this); #endif } } #endif // ENABLE(DFG_JIT) #if ENABLE(VERBOSE_VALUE_PROFILE) void CodeBlock::dumpValueProfiles() { fprintf(stderr, "ValueProfile for %p:\n", this); for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { ValueProfile* profile = getFromAllValueProfiles(i); if (profile->m_bytecodeOffset < 0) { ASSERT(profile->m_bytecodeOffset == -1); fprintf(stderr, " arg = %u: ", i); } else fprintf(stderr, " bc = %d: ", profile->m_bytecodeOffset); if (!profile->numberOfSamples() && profile->m_prediction == PredictNone) { fprintf(stderr, "\n"); continue; } profile->dump(stderr); fprintf(stderr, "\n"); } fprintf(stderr, "RareCaseProfile for %p:\n", this); for (unsigned i = 0; i < numberOfRareCaseProfiles(); ++i) { RareCaseProfile* profile = rareCaseProfile(i); fprintf(stderr, " bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); } fprintf(stderr, "SpecialFastCaseProfile for %p:\n", this); for (unsigned i = 0; i < numberOfSpecialFastCaseProfiles(); ++i) { RareCaseProfile* profile = specialFastCaseProfile(i); fprintf(stderr, " bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); } } #endif #ifndef NDEBUG bool CodeBlock::usesOpcode(OpcodeID opcodeID) { Interpreter* interpreter = globalData()->interpreter; Instruction* instructionsBegin = instructions().begin(); unsigned instructionCount = instructions().size(); for (unsigned bytecodeOffset = 0; bytecodeOffset < instructionCount; ) { switch (interpreter->getOpcodeID(instructionsBegin[bytecodeOffset].u.opcode)) { #define DEFINE_OP(curOpcode, length) \ case curOpcode: \ if (curOpcode == opcodeID) \ return true; \ bytecodeOffset += length; \ break; FOR_EACH_OPCODE_ID(DEFINE_OP) #undef DEFINE_OP default: ASSERT_NOT_REACHED(); break; } } return false; } #endif } // namespace JSC