/* * Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012, 2015 Apple Inc. All rights reserved. * Copyright (C) 2008 David Levin * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #ifndef WTF_HashTable_h #define WTF_HashTable_h #include #include #include #include #include #include #include #include #include #include #include #include #include #define DUMP_HASHTABLE_STATS 0 #define DUMP_HASHTABLE_STATS_PER_TABLE 0 #if DUMP_HASHTABLE_STATS_PER_TABLE #include #endif namespace WTF { // Enables internal WTF consistency checks that are invoked automatically. Non-WTF callers can call checkTableConsistency() even if internal checks are disabled. #define CHECK_HASHTABLE_CONSISTENCY 0 #ifdef NDEBUG #define CHECK_HASHTABLE_ITERATORS 0 #define CHECK_HASHTABLE_USE_AFTER_DESTRUCTION 0 #else #define CHECK_HASHTABLE_ITERATORS 1 #define CHECK_HASHTABLE_USE_AFTER_DESTRUCTION 1 #endif #if DUMP_HASHTABLE_STATS struct HashTableStats { // The following variables are all atomically incremented when modified. WTF_EXPORTDATA static std::atomic numAccesses; WTF_EXPORTDATA static std::atomic numRehashes; WTF_EXPORTDATA static std::atomic numRemoves; WTF_EXPORTDATA static std::atomic numReinserts; // The following variables are only modified in the recordCollisionAtCount method within a mutex. WTF_EXPORTDATA static unsigned maxCollisions; WTF_EXPORTDATA static unsigned numCollisions; WTF_EXPORTDATA static unsigned collisionGraph[4096]; WTF_EXPORT_PRIVATE static void recordCollisionAtCount(unsigned count); WTF_EXPORT_PRIVATE static void dumpStats(); }; #endif template class HashTable; template class HashTableIterator; template class HashTableConstIterator; template void addIterator(const HashTable*, HashTableConstIterator*); template void removeIterator(HashTableConstIterator*); #if !CHECK_HASHTABLE_ITERATORS template inline void addIterator(const HashTable*, HashTableConstIterator*) { } template inline void removeIterator(HashTableConstIterator*) { } #endif typedef enum { HashItemKnownGood } HashItemKnownGoodTag; template class HashTableConstIterator : public std::iterator { private: typedef HashTable HashTableType; typedef HashTableIterator iterator; typedef HashTableConstIterator const_iterator; typedef Value ValueType; typedef const ValueType& ReferenceType; typedef const ValueType* PointerType; friend class HashTable; friend class HashTableIterator; void skipEmptyBuckets() { while (m_position != m_endPosition && HashTableType::isEmptyOrDeletedBucket(*m_position)) ++m_position; } HashTableConstIterator(const HashTableType* table, PointerType position, PointerType endPosition) : m_position(position), m_endPosition(endPosition) { addIterator(table, this); skipEmptyBuckets(); } HashTableConstIterator(const HashTableType* table, PointerType position, PointerType endPosition, HashItemKnownGoodTag) : m_position(position), m_endPosition(endPosition) { addIterator(table, this); } public: HashTableConstIterator() { addIterator(static_cast(0), this); } // default copy, assignment and destructor are OK if CHECK_HASHTABLE_ITERATORS is 0 #if CHECK_HASHTABLE_ITERATORS ~HashTableConstIterator() { removeIterator(this); } HashTableConstIterator(const const_iterator& other) : m_position(other.m_position), m_endPosition(other.m_endPosition) { addIterator(other.m_table, this); } const_iterator& operator=(const const_iterator& other) { m_position = other.m_position; m_endPosition = other.m_endPosition; removeIterator(this); addIterator(other.m_table, this); return *this; } #endif PointerType get() const { checkValidity(); return m_position; } ReferenceType operator*() const { return *get(); } PointerType operator->() const { return get(); } const_iterator& operator++() { checkValidity(); ASSERT(m_position != m_endPosition); ++m_position; skipEmptyBuckets(); return *this; } // postfix ++ intentionally omitted // Comparison. bool operator==(const const_iterator& other) const { checkValidity(other); return m_position == other.m_position; } bool operator!=(const const_iterator& other) const { checkValidity(other); return m_position != other.m_position; } bool operator==(const iterator& other) const { return *this == static_cast(other); } bool operator!=(const iterator& other) const { return *this != static_cast(other); } private: void checkValidity() const { #if CHECK_HASHTABLE_ITERATORS ASSERT(m_table); #endif } #if CHECK_HASHTABLE_ITERATORS void checkValidity(const const_iterator& other) const { ASSERT(m_table); ASSERT_UNUSED(other, other.m_table); ASSERT(m_table == other.m_table); } #else void checkValidity(const const_iterator&) const { } #endif PointerType m_position; PointerType m_endPosition; #if CHECK_HASHTABLE_ITERATORS public: // Any modifications of the m_next or m_previous of an iterator that is in a linked list of a HashTable::m_iterator, // should be guarded with m_table->m_mutex. mutable const HashTableType* m_table; mutable const_iterator* m_next; mutable const_iterator* m_previous; #endif }; template class HashTableIterator : public std::iterator { private: typedef HashTable HashTableType; typedef HashTableIterator iterator; typedef HashTableConstIterator const_iterator; typedef Value ValueType; typedef ValueType& ReferenceType; typedef ValueType* PointerType; friend class HashTable; HashTableIterator(HashTableType* table, PointerType pos, PointerType end) : m_iterator(table, pos, end) { } HashTableIterator(HashTableType* table, PointerType pos, PointerType end, HashItemKnownGoodTag tag) : m_iterator(table, pos, end, tag) { } public: HashTableIterator() { } // default copy, assignment and destructor are OK PointerType get() const { return const_cast(m_iterator.get()); } ReferenceType operator*() const { return *get(); } PointerType operator->() const { return get(); } iterator& operator++() { ++m_iterator; return *this; } // postfix ++ intentionally omitted // Comparison. bool operator==(const iterator& other) const { return m_iterator == other.m_iterator; } bool operator!=(const iterator& other) const { return m_iterator != other.m_iterator; } bool operator==(const const_iterator& other) const { return m_iterator == other; } bool operator!=(const const_iterator& other) const { return m_iterator != other; } operator const_iterator() const { return m_iterator; } private: const_iterator m_iterator; }; template class IdentityHashTranslator { public: template static unsigned hash(const T& key) { return HashFunctions::hash(key); } template static bool equal(const T& a, const U& b) { return HashFunctions::equal(a, b); } template static void translate(T& location, const U&, V&& value) { location = std::forward(value); } }; template struct HashTableAddResult { HashTableAddResult() : isNewEntry(false) { } HashTableAddResult(IteratorType iter, bool isNewEntry) : iterator(iter), isNewEntry(isNewEntry) { } IteratorType iterator; bool isNewEntry; explicit operator bool() const { return isNewEntry; } }; template class HashTable { public: typedef HashTableIterator iterator; typedef HashTableConstIterator const_iterator; typedef Traits ValueTraits; typedef Key KeyType; typedef Value ValueType; typedef IdentityHashTranslator IdentityTranslatorType; typedef HashTableAddResult AddResult; #if DUMP_HASHTABLE_STATS_PER_TABLE struct Stats { Stats() : numAccesses(0) , numRehashes(0) , numRemoves(0) , numReinserts(0) , maxCollisions(0) , numCollisions(0) , collisionGraph() { } unsigned numAccesses; unsigned numRehashes; unsigned numRemoves; unsigned numReinserts; unsigned maxCollisions; unsigned numCollisions; unsigned collisionGraph[4096]; void recordCollisionAtCount(unsigned count) { if (count > maxCollisions) maxCollisions = count; numCollisions++; collisionGraph[count]++; } void dumpStats() { dataLogF("\nWTF::HashTable::Stats dump\n\n"); dataLogF("%d accesses\n", numAccesses); dataLogF("%d total collisions, average %.2f probes per access\n", numCollisions, 1.0 * (numAccesses + numCollisions) / numAccesses); dataLogF("longest collision chain: %d\n", maxCollisions); for (unsigned i = 1; i <= maxCollisions; i++) { dataLogF(" %d lookups with exactly %d collisions (%.2f%% , %.2f%% with this many or more)\n", collisionGraph[i], i, 100.0 * (collisionGraph[i] - collisionGraph[i+1]) / numAccesses, 100.0 * collisionGraph[i] / numAccesses); } dataLogF("%d rehashes\n", numRehashes); dataLogF("%d reinserts\n", numReinserts); } }; #endif HashTable(); ~HashTable() { invalidateIterators(); if (m_table) deallocateTable(m_table, m_tableSize); #if CHECK_HASHTABLE_USE_AFTER_DESTRUCTION m_table = (ValueType*)(uintptr_t)0xbbadbeef; #endif } HashTable(const HashTable&); void swap(HashTable&); HashTable& operator=(const HashTable&); HashTable(HashTable&&); HashTable& operator=(HashTable&&); // When the hash table is empty, just return the same iterator for end as for begin. // This is more efficient because we don't have to skip all the empty and deleted // buckets, and iterating an empty table is a common case that's worth optimizing. iterator begin() { return isEmpty() ? end() : makeIterator(m_table); } iterator end() { return makeKnownGoodIterator(m_table + m_tableSize); } const_iterator begin() const { return isEmpty() ? end() : makeConstIterator(m_table); } const_iterator end() const { return makeKnownGoodConstIterator(m_table + m_tableSize); } unsigned size() const { return m_keyCount; } unsigned capacity() const { return m_tableSize; } bool isEmpty() const { return !m_keyCount; } AddResult add(const ValueType& value) { return add(Extractor::extract(value), value); } AddResult add(ValueType&& value) { return add(Extractor::extract(value), WTFMove(value)); } // A special version of add() that finds the object by hashing and comparing // with some other type, to avoid the cost of type conversion if the object is already // in the table. template AddResult add(T&& key, Extra&&); template AddResult addPassingHashCode(T&& key, Extra&&); iterator find(const KeyType& key) { return find(key); } const_iterator find(const KeyType& key) const { return find(key); } bool contains(const KeyType& key) const { return contains(key); } template iterator find(const T&); template const_iterator find(const T&) const; template bool contains(const T&) const; void remove(const KeyType&); void remove(iterator); void removeWithoutEntryConsistencyCheck(iterator); void removeWithoutEntryConsistencyCheck(const_iterator); template void removeIf(const Functor&); void clear(); static bool isEmptyBucket(const ValueType& value) { return isHashTraitsEmptyValue(Extractor::extract(value)); } static bool isDeletedBucket(const ValueType& value) { return KeyTraits::isDeletedValue(Extractor::extract(value)); } static bool isEmptyOrDeletedBucket(const ValueType& value) { return isEmptyBucket(value) || isDeletedBucket(value); } ValueType* lookup(const Key& key) { return lookup(key); } template ValueType* lookup(const T&); template ValueType* inlineLookup(const T&); #if !ASSERT_DISABLED void checkTableConsistency() const; #else static void checkTableConsistency() { } #endif #if CHECK_HASHTABLE_CONSISTENCY void internalCheckTableConsistency() const { checkTableConsistency(); } void internalCheckTableConsistencyExceptSize() const { checkTableConsistencyExceptSize(); } #else static void internalCheckTableConsistencyExceptSize() { } static void internalCheckTableConsistency() { } #endif private: static ValueType* allocateTable(unsigned size); static void deallocateTable(ValueType* table, unsigned size); typedef std::pair LookupType; typedef std::pair FullLookupType; LookupType lookupForWriting(const Key& key) { return lookupForWriting(key); }; template FullLookupType fullLookupForWriting(const T&); template LookupType lookupForWriting(const T&); template void addUniqueForInitialization(T&& key, Extra&&); template void checkKey(const T&); void removeAndInvalidateWithoutEntryConsistencyCheck(ValueType*); void removeAndInvalidate(ValueType*); void remove(ValueType*); bool shouldExpand() const { return (m_keyCount + m_deletedCount) * m_maxLoad >= m_tableSize; } bool mustRehashInPlace() const { return m_keyCount * m_minLoad < m_tableSize * 2; } bool shouldShrink() const { return m_keyCount * m_minLoad < m_tableSize && m_tableSize > KeyTraits::minimumTableSize; } ValueType* expand(ValueType* entry = nullptr); void shrink() { rehash(m_tableSize / 2, nullptr); } ValueType* rehash(unsigned newTableSize, ValueType* entry); ValueType* reinsert(ValueType&&); static void initializeBucket(ValueType& bucket); static void deleteBucket(ValueType& bucket) { hashTraitsDeleteBucket(bucket); } FullLookupType makeLookupResult(ValueType* position, bool found, unsigned hash) { return FullLookupType(LookupType(position, found), hash); } iterator makeIterator(ValueType* pos) { return iterator(this, pos, m_table + m_tableSize); } const_iterator makeConstIterator(ValueType* pos) const { return const_iterator(this, pos, m_table + m_tableSize); } iterator makeKnownGoodIterator(ValueType* pos) { return iterator(this, pos, m_table + m_tableSize, HashItemKnownGood); } const_iterator makeKnownGoodConstIterator(ValueType* pos) const { return const_iterator(this, pos, m_table + m_tableSize, HashItemKnownGood); } #if !ASSERT_DISABLED void checkTableConsistencyExceptSize() const; #else static void checkTableConsistencyExceptSize() { } #endif #if CHECK_HASHTABLE_ITERATORS void invalidateIterators(); #else static void invalidateIterators() { } #endif static const unsigned m_maxLoad = 2; static const unsigned m_minLoad = 6; ValueType* m_table; unsigned m_tableSize; unsigned m_tableSizeMask; unsigned m_keyCount; unsigned m_deletedCount; #if CHECK_HASHTABLE_ITERATORS public: // All access to m_iterators should be guarded with m_mutex. mutable const_iterator* m_iterators; // Use std::unique_ptr so HashTable can still be memmove'd or memcpy'ed. mutable std::unique_ptr m_mutex; #endif #if DUMP_HASHTABLE_STATS_PER_TABLE public: mutable std::unique_ptr m_stats; #endif }; // Set all the bits to one after the most significant bit: 00110101010 -> 00111111111. template struct OneifyLowBits; template<> struct OneifyLowBits<0> { static const unsigned value = 0; }; template struct OneifyLowBits { static const unsigned value = number | OneifyLowBits<(number >> 1)>::value; }; // Compute the first power of two integer that is an upper bound of the parameter 'number'. template struct UpperPowerOfTwoBound { static const unsigned value = (OneifyLowBits::value + 1) * 2; }; // Because power of two numbers are the limit of maxLoad, their capacity is twice the // UpperPowerOfTwoBound, or 4 times their values. template struct HashTableCapacityForSizeSplitter; template struct HashTableCapacityForSizeSplitter { static const unsigned value = size * 4; }; template struct HashTableCapacityForSizeSplitter { static const unsigned value = UpperPowerOfTwoBound::value; }; // HashTableCapacityForSize computes the upper power of two capacity to hold the size parameter. // This is done at compile time to initialize the HashTraits. template struct HashTableCapacityForSize { static const unsigned value = HashTableCapacityForSizeSplitter::value; COMPILE_ASSERT(size > 0, HashTableNonZeroMinimumCapacity); COMPILE_ASSERT(!static_cast(value >> 31), HashTableNoCapacityOverflow); COMPILE_ASSERT(value > (2 * size), HashTableCapacityHoldsContentSize); }; template inline HashTable::HashTable() : m_table(0) , m_tableSize(0) , m_tableSizeMask(0) , m_keyCount(0) , m_deletedCount(0) #if CHECK_HASHTABLE_ITERATORS , m_iterators(0) , m_mutex(std::make_unique()) #endif #if DUMP_HASHTABLE_STATS_PER_TABLE , m_stats(std::make_unique()) #endif { } inline unsigned doubleHash(unsigned key) { key = ~key + (key >> 23); key ^= (key << 12); key ^= (key >> 7); key ^= (key << 2); key ^= (key >> 20); return key; } #if ASSERT_DISABLED template template inline void HashTable::checkKey(const T&) { } #else template template void HashTable::checkKey(const T& key) { if (!HashFunctions::safeToCompareToEmptyOrDeleted) return; ASSERT(!HashTranslator::equal(KeyTraits::emptyValue(), key)); typename std::aligned_storage::value>::type deletedValueBuffer; ValueType* deletedValuePtr = reinterpret_cast_ptr(&deletedValueBuffer); ValueType& deletedValue = *deletedValuePtr; Traits::constructDeletedValue(deletedValue); ASSERT(!HashTranslator::equal(Extractor::extract(deletedValue), key)); } #endif template template inline auto HashTable::lookup(const T& key) -> ValueType* { return inlineLookup(key); } template template ALWAYS_INLINE auto HashTable::inlineLookup(const T& key) -> ValueType* { checkKey(key); unsigned k = 0; unsigned sizeMask = m_tableSizeMask; ValueType* table = m_table; unsigned h = HashTranslator::hash(key); unsigned i = h & sizeMask; if (!table) return 0; #if DUMP_HASHTABLE_STATS ++HashTableStats::numAccesses; unsigned probeCount = 0; #endif #if DUMP_HASHTABLE_STATS_PER_TABLE ++m_stats->numAccesses; #endif while (1) { ValueType* entry = table + i; // we count on the compiler to optimize out this branch if (HashFunctions::safeToCompareToEmptyOrDeleted) { if (HashTranslator::equal(Extractor::extract(*entry), key)) return entry; if (isEmptyBucket(*entry)) return 0; } else { if (isEmptyBucket(*entry)) return 0; if (!isDeletedBucket(*entry) && HashTranslator::equal(Extractor::extract(*entry), key)) return entry; } #if DUMP_HASHTABLE_STATS ++probeCount; HashTableStats::recordCollisionAtCount(probeCount); #endif #if DUMP_HASHTABLE_STATS_PER_TABLE m_stats->recordCollisionAtCount(probeCount); #endif if (k == 0) k = 1 | doubleHash(h); i = (i + k) & sizeMask; } } template template inline auto HashTable::lookupForWriting(const T& key) -> LookupType { ASSERT(m_table); checkKey(key); unsigned k = 0; ValueType* table = m_table; unsigned sizeMask = m_tableSizeMask; unsigned h = HashTranslator::hash(key); unsigned i = h & sizeMask; #if DUMP_HASHTABLE_STATS ++HashTableStats::numAccesses; unsigned probeCount = 0; #endif #if DUMP_HASHTABLE_STATS_PER_TABLE ++m_stats->numAccesses; #endif ValueType* deletedEntry = 0; while (1) { ValueType* entry = table + i; // we count on the compiler to optimize out this branch if (HashFunctions::safeToCompareToEmptyOrDeleted) { if (isEmptyBucket(*entry)) return LookupType(deletedEntry ? deletedEntry : entry, false); if (HashTranslator::equal(Extractor::extract(*entry), key)) return LookupType(entry, true); if (isDeletedBucket(*entry)) deletedEntry = entry; } else { if (isEmptyBucket(*entry)) return LookupType(deletedEntry ? deletedEntry : entry, false); if (isDeletedBucket(*entry)) deletedEntry = entry; else if (HashTranslator::equal(Extractor::extract(*entry), key)) return LookupType(entry, true); } #if DUMP_HASHTABLE_STATS ++probeCount; HashTableStats::recordCollisionAtCount(probeCount); #endif #if DUMP_HASHTABLE_STATS_PER_TABLE m_stats->recordCollisionAtCount(probeCount); #endif if (k == 0) k = 1 | doubleHash(h); i = (i + k) & sizeMask; } } template template inline auto HashTable::fullLookupForWriting(const T& key) -> FullLookupType { ASSERT(m_table); checkKey(key); unsigned k = 0; ValueType* table = m_table; unsigned sizeMask = m_tableSizeMask; unsigned h = HashTranslator::hash(key); unsigned i = h & sizeMask; #if DUMP_HASHTABLE_STATS ++HashTableStats::numAccesses; unsigned probeCount = 0; #endif #if DUMP_HASHTABLE_STATS_PER_TABLE ++m_stats->numAccesses; #endif ValueType* deletedEntry = 0; while (1) { ValueType* entry = table + i; // we count on the compiler to optimize out this branch if (HashFunctions::safeToCompareToEmptyOrDeleted) { if (isEmptyBucket(*entry)) return makeLookupResult(deletedEntry ? deletedEntry : entry, false, h); if (HashTranslator::equal(Extractor::extract(*entry), key)) return makeLookupResult(entry, true, h); if (isDeletedBucket(*entry)) deletedEntry = entry; } else { if (isEmptyBucket(*entry)) return makeLookupResult(deletedEntry ? deletedEntry : entry, false, h); if (isDeletedBucket(*entry)) deletedEntry = entry; else if (HashTranslator::equal(Extractor::extract(*entry), key)) return makeLookupResult(entry, true, h); } #if DUMP_HASHTABLE_STATS ++probeCount; HashTableStats::recordCollisionAtCount(probeCount); #endif #if DUMP_HASHTABLE_STATS_PER_TABLE m_stats->recordCollisionAtCount(probeCount); #endif if (k == 0) k = 1 | doubleHash(h); i = (i + k) & sizeMask; } } template template ALWAYS_INLINE void HashTable::addUniqueForInitialization(T&& key, Extra&& extra) { ASSERT(m_table); checkKey(key); invalidateIterators(); internalCheckTableConsistency(); unsigned k = 0; ValueType* table = m_table; unsigned sizeMask = m_tableSizeMask; unsigned h = HashTranslator::hash(key); unsigned i = h & sizeMask; #if DUMP_HASHTABLE_STATS ++HashTableStats::numAccesses; unsigned probeCount = 0; #endif #if DUMP_HASHTABLE_STATS_PER_TABLE ++m_stats->numAccesses; #endif ValueType* entry; while (1) { entry = table + i; if (isEmptyBucket(*entry)) break; #if DUMP_HASHTABLE_STATS ++probeCount; HashTableStats::recordCollisionAtCount(probeCount); #endif #if DUMP_HASHTABLE_STATS_PER_TABLE m_stats->recordCollisionAtCount(probeCount); #endif if (k == 0) k = 1 | doubleHash(h); i = (i + k) & sizeMask; } HashTranslator::translate(*entry, std::forward(key), std::forward(extra)); internalCheckTableConsistency(); } template struct HashTableBucketInitializer; template<> struct HashTableBucketInitializer { template static void initialize(Value& bucket) { new (NotNull, std::addressof(bucket)) Value(Traits::emptyValue()); } }; template<> struct HashTableBucketInitializer { template static void initialize(Value& bucket) { // This initializes the bucket without copying the empty value. // That makes it possible to use this with types that don't support copying. // The memset to 0 looks like a slow operation but is optimized by the compilers. memset(static_cast(std::addressof(bucket)), 0, sizeof(bucket)); } }; template inline void HashTable::initializeBucket(ValueType& bucket) { HashTableBucketInitializer::template initialize(bucket); } template template ALWAYS_INLINE auto HashTable::add(T&& key, Extra&& extra) -> AddResult { checkKey(key); invalidateIterators(); if (!m_table) expand(nullptr); internalCheckTableConsistency(); ASSERT(m_table); unsigned k = 0; ValueType* table = m_table; unsigned sizeMask = m_tableSizeMask; unsigned h = HashTranslator::hash(key); unsigned i = h & sizeMask; #if DUMP_HASHTABLE_STATS ++HashTableStats::numAccesses; unsigned probeCount = 0; #endif #if DUMP_HASHTABLE_STATS_PER_TABLE ++m_stats->numAccesses; #endif ValueType* deletedEntry = 0; ValueType* entry; while (1) { entry = table + i; // we count on the compiler to optimize out this branch if (HashFunctions::safeToCompareToEmptyOrDeleted) { if (isEmptyBucket(*entry)) break; if (HashTranslator::equal(Extractor::extract(*entry), key)) return AddResult(makeKnownGoodIterator(entry), false); if (isDeletedBucket(*entry)) deletedEntry = entry; } else { if (isEmptyBucket(*entry)) break; if (isDeletedBucket(*entry)) deletedEntry = entry; else if (HashTranslator::equal(Extractor::extract(*entry), key)) return AddResult(makeKnownGoodIterator(entry), false); } #if DUMP_HASHTABLE_STATS ++probeCount; HashTableStats::recordCollisionAtCount(probeCount); #endif #if DUMP_HASHTABLE_STATS_PER_TABLE m_stats->recordCollisionAtCount(probeCount); #endif if (k == 0) k = 1 | doubleHash(h); i = (i + k) & sizeMask; } if (deletedEntry) { initializeBucket(*deletedEntry); entry = deletedEntry; --m_deletedCount; } HashTranslator::translate(*entry, std::forward(key), std::forward(extra)); ++m_keyCount; if (shouldExpand()) entry = expand(entry); internalCheckTableConsistency(); return AddResult(makeKnownGoodIterator(entry), true); } template template inline auto HashTable::addPassingHashCode(T&& key, Extra&& extra) -> AddResult { checkKey(key); invalidateIterators(); if (!m_table) expand(); internalCheckTableConsistency(); FullLookupType lookupResult = fullLookupForWriting(key); ValueType* entry = lookupResult.first.first; bool found = lookupResult.first.second; unsigned h = lookupResult.second; if (found) return AddResult(makeKnownGoodIterator(entry), false); if (isDeletedBucket(*entry)) { initializeBucket(*entry); --m_deletedCount; } HashTranslator::translate(*entry, std::forward(key), std::forward(extra), h); ++m_keyCount; if (shouldExpand()) entry = expand(entry); internalCheckTableConsistency(); return AddResult(makeKnownGoodIterator(entry), true); } template inline auto HashTable::reinsert(ValueType&& entry) -> ValueType* { ASSERT(m_table); ASSERT(!lookupForWriting(Extractor::extract(entry)).second); ASSERT(!isDeletedBucket(*(lookupForWriting(Extractor::extract(entry)).first))); #if DUMP_HASHTABLE_STATS ++HashTableStats::numReinserts; #endif #if DUMP_HASHTABLE_STATS_PER_TABLE ++m_stats->numReinserts; #endif Value* newEntry = lookupForWriting(Extractor::extract(entry)).first; newEntry->~Value(); new (NotNull, newEntry) ValueType(WTFMove(entry)); return newEntry; } template template auto HashTable::find(const T& key) -> iterator { if (!m_table) return end(); ValueType* entry = lookup(key); if (!entry) return end(); return makeKnownGoodIterator(entry); } template template auto HashTable::find(const T& key) const -> const_iterator { if (!m_table) return end(); ValueType* entry = const_cast(this)->lookup(key); if (!entry) return end(); return makeKnownGoodConstIterator(entry); } template template bool HashTable::contains(const T& key) const { if (!m_table) return false; return const_cast(this)->lookup(key); } template void HashTable::removeAndInvalidateWithoutEntryConsistencyCheck(ValueType* pos) { invalidateIterators(); remove(pos); } template void HashTable::removeAndInvalidate(ValueType* pos) { invalidateIterators(); internalCheckTableConsistency(); remove(pos); } template void HashTable::remove(ValueType* pos) { #if DUMP_HASHTABLE_STATS ++HashTableStats::numRemoves; #endif #if DUMP_HASHTABLE_STATS_PER_TABLE ++m_stats->numRemoves; #endif deleteBucket(*pos); ++m_deletedCount; --m_keyCount; if (shouldShrink()) shrink(); internalCheckTableConsistency(); } template inline void HashTable::remove(iterator it) { if (it == end()) return; removeAndInvalidate(const_cast(it.m_iterator.m_position)); } template inline void HashTable::removeWithoutEntryConsistencyCheck(iterator it) { if (it == end()) return; removeAndInvalidateWithoutEntryConsistencyCheck(const_cast(it.m_iterator.m_position)); } template inline void HashTable::removeWithoutEntryConsistencyCheck(const_iterator it) { if (it == end()) return; removeAndInvalidateWithoutEntryConsistencyCheck(const_cast(it.m_position)); } template inline void HashTable::remove(const KeyType& key) { remove(find(key)); } template template inline void HashTable::removeIf(const Functor& functor) { // We must use local copies in case "functor" or "deleteBucket" // make a function call, which prevents the compiler from keeping // the values in register. unsigned removedBucketCount = 0; ValueType* table = m_table; for (unsigned i = m_tableSize; i--;) { ValueType& bucket = table[i]; if (isEmptyOrDeletedBucket(bucket)) continue; if (!functor(bucket)) continue; deleteBucket(bucket); ++removedBucketCount; } m_deletedCount += removedBucketCount; m_keyCount -= removedBucketCount; if (shouldShrink()) shrink(); internalCheckTableConsistency(); } template auto HashTable::allocateTable(unsigned size) -> ValueType* { // would use a template member function with explicit specializations here, but // gcc doesn't appear to support that if (Traits::emptyValueIsZero) return static_cast(fastZeroedMalloc(size * sizeof(ValueType))); ValueType* result = static_cast(fastMalloc(size * sizeof(ValueType))); for (unsigned i = 0; i < size; i++) initializeBucket(result[i]); return result; } template void HashTable::deallocateTable(ValueType* table, unsigned size) { for (unsigned i = 0; i < size; ++i) { if (!isDeletedBucket(table[i])) table[i].~ValueType(); } fastFree(table); } template auto HashTable::expand(ValueType* entry) -> ValueType* { unsigned newSize; if (m_tableSize == 0) newSize = KeyTraits::minimumTableSize; else if (mustRehashInPlace()) newSize = m_tableSize; else newSize = m_tableSize * 2; return rehash(newSize, entry); } template auto HashTable::rehash(unsigned newTableSize, ValueType* entry) -> ValueType* { internalCheckTableConsistencyExceptSize(); unsigned oldTableSize = m_tableSize; ValueType* oldTable = m_table; #if DUMP_HASHTABLE_STATS if (oldTableSize != 0) ++HashTableStats::numRehashes; #endif #if DUMP_HASHTABLE_STATS_PER_TABLE if (oldTableSize != 0) ++m_stats->numRehashes; #endif m_tableSize = newTableSize; m_tableSizeMask = newTableSize - 1; m_table = allocateTable(newTableSize); Value* newEntry = nullptr; for (unsigned i = 0; i != oldTableSize; ++i) { if (isEmptyOrDeletedBucket(oldTable[i])) { ASSERT(&oldTable[i] != entry); continue; } Value* reinsertedEntry = reinsert(WTFMove(oldTable[i])); if (&oldTable[i] == entry) { ASSERT(!newEntry); newEntry = reinsertedEntry; } } m_deletedCount = 0; deallocateTable(oldTable, oldTableSize); internalCheckTableConsistency(); return newEntry; } template void HashTable::clear() { invalidateIterators(); if (!m_table) return; deallocateTable(m_table, m_tableSize); m_table = 0; m_tableSize = 0; m_tableSizeMask = 0; m_keyCount = 0; m_deletedCount = 0; } template HashTable::HashTable(const HashTable& other) : m_table(nullptr) , m_tableSize(0) , m_tableSizeMask(0) , m_keyCount(0) , m_deletedCount(0) #if CHECK_HASHTABLE_ITERATORS , m_iterators(nullptr) , m_mutex(std::make_unique()) #endif #if DUMP_HASHTABLE_STATS_PER_TABLE , m_stats(std::make_unique(*other.m_stats)) #endif { unsigned otherKeyCount = other.size(); if (!otherKeyCount) return; unsigned bestTableSize = WTF::roundUpToPowerOfTwo(otherKeyCount) * 2; // With maxLoad at 1/2 and minLoad at 1/6, our average load is 2/6. // If we are getting halfway between 2/6 and 1/2 (past 5/12), we double the size to avoid being too close to // loadMax and bring the ratio close to 2/6. This give us a load in the bounds [3/12, 5/12). bool aboveThreeQuarterLoad = otherKeyCount * 12 >= bestTableSize * 5; if (aboveThreeQuarterLoad) bestTableSize *= 2; unsigned minimumTableSize = KeyTraits::minimumTableSize; m_tableSize = std::max(bestTableSize, minimumTableSize); m_tableSizeMask = m_tableSize - 1; m_keyCount = otherKeyCount; m_table = allocateTable(m_tableSize); for (const auto& otherValue : other) addUniqueForInitialization(Extractor::extract(otherValue), otherValue); } template void HashTable::swap(HashTable& other) { invalidateIterators(); other.invalidateIterators(); std::swap(m_table, other.m_table); std::swap(m_tableSize, other.m_tableSize); std::swap(m_tableSizeMask, other.m_tableSizeMask); std::swap(m_keyCount, other.m_keyCount); std::swap(m_deletedCount, other.m_deletedCount); #if DUMP_HASHTABLE_STATS_PER_TABLE m_stats.swap(other.m_stats); #endif } template auto HashTable::operator=(const HashTable& other) -> HashTable& { HashTable tmp(other); swap(tmp); return *this; } template inline HashTable::HashTable(HashTable&& other) #if CHECK_HASHTABLE_ITERATORS : m_iterators(nullptr) , m_mutex(std::make_unique()) #endif { other.invalidateIterators(); m_table = other.m_table; m_tableSize = other.m_tableSize; m_tableSizeMask = other.m_tableSizeMask; m_keyCount = other.m_keyCount; m_deletedCount = other.m_deletedCount; other.m_table = nullptr; other.m_tableSize = 0; other.m_tableSizeMask = 0; other.m_keyCount = 0; other.m_deletedCount = 0; #if DUMP_HASHTABLE_STATS_PER_TABLE m_stats = WTFMove(other.m_stats); other.m_stats = nullptr; #endif } template inline auto HashTable::operator=(HashTable&& other) -> HashTable& { HashTable temp = WTFMove(other); swap(temp); return *this; } #if !ASSERT_DISABLED template void HashTable::checkTableConsistency() const { checkTableConsistencyExceptSize(); ASSERT(!m_table || !shouldExpand()); ASSERT(!shouldShrink()); } template void HashTable::checkTableConsistencyExceptSize() const { if (!m_table) return; unsigned count = 0; unsigned deletedCount = 0; for (unsigned j = 0; j < m_tableSize; ++j) { ValueType* entry = m_table + j; if (isEmptyBucket(*entry)) continue; if (isDeletedBucket(*entry)) { ++deletedCount; continue; } const_iterator it = find(Extractor::extract(*entry)); ASSERT(entry == it.m_position); ++count; ValueCheck::checkConsistency(it->key); } ASSERT(count == m_keyCount); ASSERT(deletedCount == m_deletedCount); ASSERT(m_tableSize >= KeyTraits::minimumTableSize); ASSERT(m_tableSizeMask); ASSERT(m_tableSize == m_tableSizeMask + 1); } #endif // ASSERT_DISABLED #if CHECK_HASHTABLE_ITERATORS template void HashTable::invalidateIterators() { std::lock_guard lock(*m_mutex); const_iterator* next; for (const_iterator* p = m_iterators; p; p = next) { next = p->m_next; p->m_table = 0; p->m_next = 0; p->m_previous = 0; } m_iterators = 0; } template void addIterator(const HashTable* table, HashTableConstIterator* it) { it->m_table = table; it->m_previous = 0; // Insert iterator at head of doubly-linked list of iterators. if (!table) { it->m_next = 0; } else { std::lock_guard lock(*table->m_mutex); ASSERT(table->m_iterators != it); it->m_next = table->m_iterators; table->m_iterators = it; if (it->m_next) { ASSERT(!it->m_next->m_previous); it->m_next->m_previous = it; } } } template void removeIterator(HashTableConstIterator* it) { // Delete iterator from doubly-linked list of iterators. if (!it->m_table) { ASSERT(!it->m_next); ASSERT(!it->m_previous); } else { std::lock_guard lock(*it->m_table->m_mutex); if (it->m_next) { ASSERT(it->m_next->m_previous == it); it->m_next->m_previous = it->m_previous; } if (it->m_previous) { ASSERT(it->m_table->m_iterators != it); ASSERT(it->m_previous->m_next == it); it->m_previous->m_next = it->m_next; } else { ASSERT(it->m_table->m_iterators == it); it->m_table->m_iterators = it->m_next; } } it->m_table = 0; it->m_next = 0; it->m_previous = 0; } #endif // CHECK_HASHTABLE_ITERATORS // iterator adapters template struct HashTableConstIteratorAdapter : public std::iterator { HashTableConstIteratorAdapter() {} HashTableConstIteratorAdapter(const typename HashTableType::const_iterator& impl) : m_impl(impl) {} const ValueType* get() const { return (const ValueType*)m_impl.get(); } const ValueType& operator*() const { return *get(); } const ValueType* operator->() const { return get(); } HashTableConstIteratorAdapter& operator++() { ++m_impl; return *this; } // postfix ++ intentionally omitted typename HashTableType::const_iterator m_impl; }; template struct HashTableIteratorAdapter : public std::iterator { HashTableIteratorAdapter() {} HashTableIteratorAdapter(const typename HashTableType::iterator& impl) : m_impl(impl) {} ValueType* get() const { return (ValueType*)m_impl.get(); } ValueType& operator*() const { return *get(); } ValueType* operator->() const { return get(); } HashTableIteratorAdapter& operator++() { ++m_impl; return *this; } // postfix ++ intentionally omitted operator HashTableConstIteratorAdapter() { typename HashTableType::const_iterator i = m_impl; return i; } typename HashTableType::iterator m_impl; }; template inline bool operator==(const HashTableConstIteratorAdapter& a, const HashTableConstIteratorAdapter& b) { return a.m_impl == b.m_impl; } template inline bool operator!=(const HashTableConstIteratorAdapter& a, const HashTableConstIteratorAdapter& b) { return a.m_impl != b.m_impl; } template inline bool operator==(const HashTableIteratorAdapter& a, const HashTableIteratorAdapter& b) { return a.m_impl == b.m_impl; } template inline bool operator!=(const HashTableIteratorAdapter& a, const HashTableIteratorAdapter& b) { return a.m_impl != b.m_impl; } // All 4 combinations of ==, != and Const,non const. template inline bool operator==(const HashTableConstIteratorAdapter& a, const HashTableIteratorAdapter& b) { return a.m_impl == b.m_impl; } template inline bool operator!=(const HashTableConstIteratorAdapter& a, const HashTableIteratorAdapter& b) { return a.m_impl != b.m_impl; } template inline bool operator==(const HashTableIteratorAdapter& a, const HashTableConstIteratorAdapter& b) { return a.m_impl == b.m_impl; } template inline bool operator!=(const HashTableIteratorAdapter& a, const HashTableConstIteratorAdapter& b) { return a.m_impl != b.m_impl; } } // namespace WTF #include #endif // WTF_HashTable_h