/* * Copyright (C) 2012 Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "ComposedShadowTreeWalker.h" #include "ContentDistributor.h" #include "Element.h" #include "ElementShadow.h" #include "HTMLContentElement.h" #include "HTMLShadowElement.h" #include "InsertionPoint.h" namespace WebCore { static inline ElementShadow* shadowFor(const Node* node) { if (node && node->isElementNode()) return toElement(node)->shadow(); return 0; } static inline ElementShadow* shadowOfParent(const Node* node) { if (!node) return 0; if (Node* parent = node->parentNode()) if (parent->isElementNode()) return toElement(parent)->shadow(); return 0; } static inline bool nodeCanBeDistributed(const Node* node) { ASSERT(node); Node* parent = parentNodeForDistribution(node); if (!parent) return false; if (ShadowRoot* shadowRoot = parent->isShadowRoot() ? toShadowRoot(parent) : 0) return shadowRoot->assignedTo(); if (parent->isElementNode() && toElement(parent)->shadow()) return true; return false; } inline void ComposedShadowTreeWalker::ParentTraversalDetails::didTraverseInsertionPoint(InsertionPoint* insertionPoint) { if (!m_insertionPoint) m_insertionPoint = insertionPoint; } inline void ComposedShadowTreeWalker::ParentTraversalDetails::didTraverseShadowRoot(const ShadowRoot* root) { m_resetStyleInheritance = m_resetStyleInheritance || root->resetStyleInheritance(); } inline void ComposedShadowTreeWalker::ParentTraversalDetails::didFindNode(ContainerNode* node) { if (!m_outOfComposition) m_node = node; } ComposedShadowTreeWalker ComposedShadowTreeWalker::fromFirstChild(const Node* node, Policy policy) { ComposedShadowTreeWalker walker(node, policy); walker.firstChild(); return walker; } void ComposedShadowTreeWalker::findParent(const Node* node, ParentTraversalDetails* details) { ComposedShadowTreeWalker walker(node, CrossUpperBoundary, CanStartFromShadowBoundary); ContainerNode* found = toContainerNode(walker.traverseParent(walker.get(), details)); if (found) details->didFindNode(found); } void ComposedShadowTreeWalker::firstChild() { assertPrecondition(); m_node = traverseChild(m_node, TraversalDirectionForward); assertPostcondition(); } Node* ComposedShadowTreeWalker::traverseFirstChild(const Node* node) const { ASSERT(node); return traverseChild(node, TraversalDirectionForward); } void ComposedShadowTreeWalker::lastChild() { assertPrecondition(); m_node = traverseLastChild(m_node); assertPostcondition(); } Node* ComposedShadowTreeWalker::traverseLastChild(const Node* node) const { ASSERT(node); return traverseChild(node, TraversalDirectionBackward); } Node* ComposedShadowTreeWalker::traverseChild(const Node* node, TraversalDirection direction) const { ASSERT(node); if (canCrossUpperBoundary()) { ElementShadow* shadow = shadowFor(node); return shadow ? traverseLightChildren(shadow->youngestShadowRoot(), direction) : traverseLightChildren(node, direction); } if (isShadowHost(node)) return 0; return traverseLightChildren(node, direction); } Node* ComposedShadowTreeWalker::traverseLightChildren(const Node* node, TraversalDirection direction) { ASSERT(node); return traverseSiblings(direction == TraversalDirectionForward ? node->firstChild() : node->lastChild(), direction); } Node* ComposedShadowTreeWalker::traverseSiblings(const Node* node, TraversalDirection direction) { for (const Node* sibling = node; sibling; sibling = (direction == TraversalDirectionForward ? sibling->nextSibling() : sibling->previousSibling())) { if (Node* found = traverseNode(sibling, direction)) return found; } return 0; } Node* ComposedShadowTreeWalker::traverseNode(const Node* node, TraversalDirection direction) { ASSERT(node); if (!isActiveInsertionPoint(node)) return const_cast(node); const InsertionPoint* insertionPoint = toInsertionPoint(node); if (Node* found = traverseDistributedNodes(direction == TraversalDirectionForward ? insertionPoint->first() : insertionPoint->last(), insertionPoint, direction)) return found; return traverseLightChildren(node, direction); } void ComposedShadowTreeWalker::nextSibling() { assertPrecondition(); m_node = traverseSiblingOrBackToInsertionPoint(m_node, TraversalDirectionForward); assertPostcondition(); } void ComposedShadowTreeWalker::previousSibling() { assertPrecondition(); m_node = traverseSiblingOrBackToInsertionPoint(m_node, TraversalDirectionBackward); assertPostcondition(); } Node* ComposedShadowTreeWalker::traverseDistributedNodes(const Node* node, const InsertionPoint* insertionPoint, TraversalDirection direction) { for (const Node* next = node; next; next = (direction == TraversalDirectionForward ? insertionPoint->nextTo(next) : insertionPoint->previousTo(next))) { if (Node* found = traverseNode(next, direction)) return found; } return 0; } Node* ComposedShadowTreeWalker::traverseSiblingOrBackToInsertionPoint(const Node* node, TraversalDirection direction) { ASSERT(node); if (!nodeCanBeDistributed(node)) return traverseSiblingInCurrentTree(node, direction); InsertionPoint* insertionPoint = resolveReprojection(node); if (!insertionPoint) return traverseSiblingInCurrentTree(node, direction); if (Node* found = traverseDistributedNodes(direction == TraversalDirectionForward ? insertionPoint->nextTo(node) : insertionPoint->previousTo(node), insertionPoint, direction)) return found; return traverseSiblingOrBackToInsertionPoint(insertionPoint, direction); } Node* ComposedShadowTreeWalker::traverseSiblingInCurrentTree(const Node* node, TraversalDirection direction) { ASSERT(node); if (Node* found = traverseSiblings(direction == TraversalDirectionForward ? node->nextSibling() : node->previousSibling(), direction)) return found; if (Node* next = traverseBackToYoungerShadowRoot(node, direction)) return next; return escapeFallbackContentElement(node, direction); } Node* ComposedShadowTreeWalker::traverseBackToYoungerShadowRoot(const Node* node, TraversalDirection direction) { ASSERT(node); if (node->parentNode() && node->parentNode()->isShadowRoot()) { ShadowRoot* parentShadowRoot = toShadowRoot(node->parentNode()); if (!parentShadowRoot->isYoungest()) { InsertionPoint* assignedInsertionPoint = parentShadowRoot->assignedTo(); ASSERT(assignedInsertionPoint); return traverseSiblingInCurrentTree(assignedInsertionPoint, direction); } } return 0; } inline Node* ComposedShadowTreeWalker::escapeFallbackContentElement(const Node* node, TraversalDirection direction) { ASSERT(node); if (node->parentNode() && isActiveInsertionPoint(node->parentNode())) return traverseSiblingOrBackToInsertionPoint(node->parentNode(), direction); return 0; } inline Node* ComposedShadowTreeWalker::traverseNodeEscapingFallbackContents(const Node* node, ParentTraversalDetails* details) const { ASSERT(node); if (!node->isInsertionPoint()) return const_cast(node); const InsertionPoint* insertionPoint = toInsertionPoint(node); return insertionPoint->hasDistribution() ? 0 : insertionPoint->isActive() ? traverseParent(node, details) : const_cast(node); } void ComposedShadowTreeWalker::parent() { assertPrecondition(); m_node = traverseParent(m_node); assertPostcondition(); } // FIXME: Use an iterative algorithm so that it can be inlined. // https://bugs.webkit.org/show_bug.cgi?id=90415 Node* ComposedShadowTreeWalker::traverseParent(const Node* node, ParentTraversalDetails* details) const { if (!canCrossUpperBoundary() && node->isShadowRoot()) { ASSERT(toShadowRoot(node)->isYoungest()); return 0; } if (nodeCanBeDistributed(node)) { if (InsertionPoint* insertionPoint = resolveReprojection(node)) { if (details) details->didTraverseInsertionPoint(insertionPoint); return traverseParent(insertionPoint, details); } // The node is a non-distributed light child or older shadow's child. if (details) details->childWasOutOfComposition(); } return traverseParentInCurrentTree(node, details); } inline Node* ComposedShadowTreeWalker::traverseParentInCurrentTree(const Node* node, ParentTraversalDetails* details) const { if (Node* parent = node->parentNode()) return parent->isShadowRoot() ? traverseParentBackToYoungerShadowRootOrHost(toShadowRoot(parent), details) : traverseNodeEscapingFallbackContents(parent, details); return 0; } Node* ComposedShadowTreeWalker::traverseParentBackToYoungerShadowRootOrHost(const ShadowRoot* shadowRoot, ParentTraversalDetails* details) const { ASSERT(shadowRoot); ASSERT(!shadowRoot->assignedTo()); if (shadowRoot->isYoungest()) { if (canCrossUpperBoundary()) { if (details) details->didTraverseShadowRoot(shadowRoot); return shadowRoot->host(); } return const_cast(shadowRoot); } return 0; } Node* ComposedShadowTreeWalker::traverseNextSibling(const Node* node) { ASSERT(node); return traverseSiblingOrBackToInsertionPoint(node, TraversalDirectionForward); } Node* ComposedShadowTreeWalker::traversePreviousSibling(const Node* node) { ASSERT(node); return traverseSiblingOrBackToInsertionPoint(node, TraversalDirectionBackward); } void ComposedShadowTreeWalker::next() { assertPrecondition(); if (Node* next = traverseFirstChild(m_node)) m_node = next; else if (Node* next = traverseNextSibling(m_node)) m_node = next; else { const Node* n = m_node; while (n && !traverseNextSibling(n)) n = traverseParent(n); m_node = n ? traverseNextSibling(n) : 0; } assertPostcondition(); } void ComposedShadowTreeWalker::previous() { assertPrecondition(); if (Node* n = traversePreviousSibling(m_node)) { while (Node* child = traverseLastChild(n)) n = child; m_node = n; } else parent(); assertPostcondition(); } AncestorChainWalker::AncestorChainWalker(const Node* node) : m_node(node) , m_distributedNode(node) , m_isCrossingInsertionPoint(false) { ASSERT(node); } void AncestorChainWalker::parent() { ASSERT(m_node); ASSERT(m_distributedNode); if (ElementShadow* shadow = shadowOfParent(m_node)) { if (InsertionPoint* insertionPoint = shadow->distributor().findInsertionPointFor(m_distributedNode)) { m_node = insertionPoint; m_isCrossingInsertionPoint = true; return; } } if (!m_node->isShadowRoot()) { m_node = m_node->parentNode(); if (!(m_node && m_node->isShadowRoot() && toShadowRoot(m_node)->assignedTo())) m_distributedNode = m_node; m_isCrossingInsertionPoint = false; return; } const ShadowRoot* shadowRoot = toShadowRoot(m_node); if (InsertionPoint* insertionPoint = shadowRoot->assignedTo()) { m_node = insertionPoint; m_isCrossingInsertionPoint = true; return; } m_node = shadowRoot->host(); m_distributedNode = m_node; m_isCrossingInsertionPoint = false; } } // namespace