/* * Copyright (C) 1999 Lars Knoll (knoll@kde.org) * (C) 1999 Antti Koivisto (koivisto@kde.org) * (C) 2001 Dirk Mueller (mueller@kde.org) * Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Apple Inc. All rights reserved. * Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies) * Copyright (C) 2009 Torch Mobile Inc. All rights reserved. (http://www.torchmobile.com/) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "config.h" #include "Node.h" #include "AXObjectCache.h" #include "Attr.h" #include "Attribute.h" #include "ChildListMutationScope.h" #include "Chrome.h" #include "ChromeClient.h" #include "CSSParser.h" #include "CSSRule.h" #include "CSSRuleList.h" #include "CSSSelector.h" #include "CSSSelectorList.h" #include "CSSStyleRule.h" #include "CSSStyleSelector.h" #include "CSSStyleSheet.h" #include "ChildNodeList.h" #include "ClassNodeList.h" #include "ContextMenuController.h" #include "DOMImplementation.h" #include "DOMSettableTokenList.h" #include "Document.h" #include "DocumentType.h" #include "DynamicNodeList.h" #include "Element.h" #include "Event.h" #include "EventContext.h" #include "EventDispatchMediator.h" #include "EventDispatcher.h" #include "EventException.h" #include "EventHandler.h" #include "EventListener.h" #include "EventNames.h" #include "ExceptionCode.h" #include "Frame.h" #include "FrameView.h" #include "HTMLElement.h" #include "HTMLFrameOwnerElement.h" #include "HTMLNames.h" #include "InspectorInstrumentation.h" #include "KeyboardEvent.h" #include "LabelsNodeList.h" #include "Logging.h" #include "MouseEvent.h" #include "MutationEvent.h" #include "NameNodeList.h" #include "NamedNodeMap.h" #include "NodeRareData.h" #include "NodeRenderingContext.h" #include "Page.h" #include "PlatformMouseEvent.h" #include "PlatformWheelEvent.h" #include "ProcessingInstruction.h" #include "ProgressEvent.h" #include "RegisteredEventListener.h" #include "RenderBlock.h" #include "RenderBox.h" #include "RenderTextControl.h" #include "RenderView.h" #include "ScopedEventQueue.h" #include "SelectorQuery.h" #include "ShadowRoot.h" #include "StaticNodeList.h" #include "StorageEvent.h" #include "TagNodeList.h" #include "Text.h" #include "TextEvent.h" #include "TreeScopeAdopter.h" #include "UIEvent.h" #include "UIEventWithKeyState.h" #include "WebKitAnimationEvent.h" #include "WebKitTransitionEvent.h" #include "WheelEvent.h" #include "WindowEventContext.h" #include "XMLNames.h" #include "htmlediting.h" #include #include #include #include #include #include #include #if ENABLE(SVG) #include "SVGElementInstance.h" #include "SVGUseElement.h" #endif #if USE(JSC) #include #endif #if ENABLE(MICRODATA) #include "HTMLPropertiesCollection.h" #endif #define DUMP_NODE_STATISTICS 0 using namespace std; namespace WebCore { using namespace HTMLNames; bool Node::isSupported(const String& feature, const String& version) { return DOMImplementation::hasFeature(feature, version); } #if DUMP_NODE_STATISTICS static HashSet liveNodeSet; #endif void Node::dumpStatistics() { #if DUMP_NODE_STATISTICS size_t nodesWithRareData = 0; size_t elementNodes = 0; size_t attrNodes = 0; size_t textNodes = 0; size_t cdataNodes = 0; size_t commentNodes = 0; size_t entityReferenceNodes = 0; size_t entityNodes = 0; size_t piNodes = 0; size_t documentNodes = 0; size_t docTypeNodes = 0; size_t fragmentNodes = 0; size_t notationNodes = 0; size_t xpathNSNodes = 0; size_t shadowRootNodes = 0; HashMap perTagCount; size_t attributes = 0; size_t mappedAttributes = 0; size_t mappedAttributesWithStyleDecl = 0; size_t attributesWithAttr = 0; size_t attrMaps = 0; for (HashSet::iterator it = liveNodeSet.begin(); it != liveNodeSet.end(); ++it) { Node* node = *it; if (node->hasRareData()) ++nodesWithRareData; switch (node->nodeType()) { case ELEMENT_NODE: { ++elementNodes; // Tag stats Element* element = static_cast(node); pair::iterator, bool> result = perTagCount.add(element->tagName(), 1); if (!result.second) result.first->second++; // AttributeMap stats if (NamedNodeMap* attrMap = element->attributes(true)) { attributes += attrMap->length(); ++attrMaps; for (unsigned i = 0; i < attrMap->length(); ++i) { Attribute* attr = attrMap->attributeItem(i); if (attr->attr()) ++attributesWithAttr; if (attr->isMappedAttribute()) { ++mappedAttributes; if (attr->style()) ++mappedAttributesWithStyleDecl; } } } break; } case ATTRIBUTE_NODE: { ++attrNodes; break; } case TEXT_NODE: { ++textNodes; break; } case CDATA_SECTION_NODE: { ++cdataNodes; break; } case COMMENT_NODE: { ++commentNodes; break; } case ENTITY_REFERENCE_NODE: { ++entityReferenceNodes; break; } case ENTITY_NODE: { ++entityNodes; break; } case PROCESSING_INSTRUCTION_NODE: { ++piNodes; break; } case DOCUMENT_NODE: { ++documentNodes; break; } case DOCUMENT_TYPE_NODE: { ++docTypeNodes; break; } case DOCUMENT_FRAGMENT_NODE: { ++fragmentNodes; break; } case NOTATION_NODE: { ++notationNodes; break; } case XPATH_NAMESPACE_NODE: { ++xpathNSNodes; break; } case SHADOW_ROOT_NODE: { ++shadowRootNodes; break; } } } printf("Number of Nodes: %d\n\n", liveNodeSet.size()); printf("Number of Nodes with RareData: %zu\n\n", nodesWithRareData); printf("NodeType distrubution:\n"); printf(" Number of Element nodes: %zu\n", elementNodes); printf(" Number of Attribute nodes: %zu\n", attrNodes); printf(" Number of Text nodes: %zu\n", textNodes); printf(" Number of CDATASection nodes: %zu\n", cdataNodes); printf(" Number of Comment nodes: %zu\n", commentNodes); printf(" Number of EntityReference nodes: %zu\n", entityReferenceNodes); printf(" Number of Entity nodes: %zu\n", entityNodes); printf(" Number of ProcessingInstruction nodes: %zu\n", piNodes); printf(" Number of Document nodes: %zu\n", documentNodes); printf(" Number of DocumentType nodes: %zu\n", docTypeNodes); printf(" Number of DocumentFragment nodes: %zu\n", fragmentNodes); printf(" Number of Notation nodes: %zu\n", notationNodes); printf(" Number of XPathNS nodes: %zu\n", xpathNSNodes); printf(" Number of ShadowRoot nodes: %zu\n", shadowRootNodes); printf("Element tag name distibution:\n"); for (HashMap::iterator it = perTagCount.begin(); it != perTagCount.end(); ++it) printf(" Number of <%s> tags: %zu\n", it->first.utf8().data(), it->second); printf("Attribute Maps:\n"); printf(" Number of Attributes (non-Node and Node): %zu [%zu]\n", attributes, sizeof(Attribute)); printf(" Number of Attributes that are mapped: %zu\n", mappedAttributes); printf(" Number of Attributes with a StyleDeclaration: %zu\n", mappedAttributesWithStyleDecl); printf(" Number of Attributes with an Attr: %zu\n", attributesWithAttr); printf(" Number of NamedNodeMaps: %zu [%zu]\n", attrMaps, sizeof(NamedNodeMap)); #endif } DEFINE_DEBUG_ONLY_GLOBAL(WTF::RefCountedLeakCounter, nodeCounter, ("WebCoreNode")); DEFINE_DEBUG_ONLY_GLOBAL(HashSet, ignoreSet, ); #ifndef NDEBUG static bool shouldIgnoreLeaks = false; #endif void Node::startIgnoringLeaks() { #ifndef NDEBUG shouldIgnoreLeaks = true; #endif } void Node::stopIgnoringLeaks() { #ifndef NDEBUG shouldIgnoreLeaks = false; #endif } Node::StyleChange Node::diff(const RenderStyle* s1, const RenderStyle* s2) { StyleChange ch = NoInherit; EDisplay display1 = s1 ? s1->display() : NONE; bool fl1 = s1 && s1->hasPseudoStyle(FIRST_LETTER); EDisplay display2 = s2 ? s2->display() : NONE; bool fl2 = s2 && s2->hasPseudoStyle(FIRST_LETTER); // We just detach if a renderer acquires or loses a column-span, since spanning elements // typically won't contain much content. bool colSpan1 = s1 && s1->columnSpan(); bool colSpan2 = s2 && s2->columnSpan(); if (display1 != display2 || fl1 != fl2 || colSpan1 != colSpan2 || (s1 && s2 && !s1->contentDataEquivalent(s2))) ch = Detach; else if (!s1 || !s2) ch = Inherit; else if (*s1 == *s2) ch = NoChange; else if (s1->inheritedNotEqual(s2)) ch = Inherit; else if (s1->hasExplicitlyInheritedProperties() || s2->hasExplicitlyInheritedProperties()) ch = Inherit; // For nth-child and other positional rules, treat styles as different if they have // changed positionally in the DOM. This way subsequent sibling resolutions won't be confused // by the wrong child index and evaluate to incorrect results. if (ch == NoChange && s1->childIndex() != s2->childIndex()) ch = NoInherit; // If the pseudoStyles have changed, we want any StyleChange that is not NoChange // because setStyle will do the right thing with anything else. if (ch == NoChange && s1->hasAnyPublicPseudoStyles()) { for (PseudoId pseudoId = FIRST_PUBLIC_PSEUDOID; ch == NoChange && pseudoId < FIRST_INTERNAL_PSEUDOID; pseudoId = static_cast(pseudoId + 1)) { if (s1->hasPseudoStyle(pseudoId)) { RenderStyle* ps2 = s2->getCachedPseudoStyle(pseudoId); if (!ps2) ch = NoInherit; else { RenderStyle* ps1 = s1->getCachedPseudoStyle(pseudoId); ch = ps1 && *ps1 == *ps2 ? NoChange : NoInherit; } } } } // When text-combine property has been changed, we need to prepare a separate renderer object. // When text-combine is on, we use RenderCombineText, otherwise RenderText. // https://bugs.webkit.org/show_bug.cgi?id=55069 if ((s1 && s2) && (s1->hasTextCombine() != s2->hasTextCombine())) ch = Detach; // We need to reattach the node, so that it is moved to the correct RenderFlowThread. if ((s1 && s2) && (s1->flowThread() != s2->flowThread())) ch = Detach; // When either the region thread or the region index has changed, // we need to prepare a separate render region object. if ((s1 && s2) && (s1->regionThread() != s2->regionThread())) ch = Detach; return ch; } void Node::trackForDebugging() { #ifndef NDEBUG if (shouldIgnoreLeaks) ignoreSet.add(this); else nodeCounter.increment(); #endif #if DUMP_NODE_STATISTICS liveNodeSet.add(this); #endif } Node::~Node() { #ifndef NDEBUG HashSet::iterator it = ignoreSet.find(this); if (it != ignoreSet.end()) ignoreSet.remove(it); else nodeCounter.decrement(); #endif #if DUMP_NODE_STATISTICS liveNodeSet.remove(this); #endif ASSERT(hasRareData() == NodeRareData::rareDataMap().contains(this)); if (hasRareData()) clearRareData(); if (renderer()) detach(); Document* doc = m_document; if (AXObjectCache::accessibilityEnabled() && doc && doc->axObjectCacheExists()) doc->axObjectCache()->removeNodeForUse(this); if (m_previous) m_previous->setNextSibling(0); if (m_next) m_next->setPreviousSibling(0); if (doc) doc->guardDeref(); } void Node::setDocument(Document* document) { ASSERT(!inDocument() || m_document == document); if (inDocument() || m_document == document) return; m_document = document; } NodeRareData* Node::setTreeScope(TreeScope* scope) { if (!scope) { if (hasRareData()) { NodeRareData* data = rareData(); data->setTreeScope(0); return data; } return 0; } NodeRareData* data = ensureRareData(); data->setTreeScope(scope); return data; } TreeScope* Node::treeScope() const { // FIXME: Using m_document directly is not good -> see comment with document() in the header file. if (!hasRareData()) return m_document; TreeScope* scope = rareData()->treeScope(); return scope ? scope : m_document; } NodeRareData* Node::rareData() const { ASSERT(hasRareData()); return NodeRareData::rareDataFromMap(this); } NodeRareData* Node::ensureRareData() { if (hasRareData()) return rareData(); ASSERT(!NodeRareData::rareDataMap().contains(this)); NodeRareData* data = createRareData().leakPtr(); NodeRareData::rareDataMap().set(this, data); setFlag(HasRareDataFlag); return data; } OwnPtr Node::createRareData() { return adoptPtr(new NodeRareData); } void Node::clearRareData() { ASSERT(hasRareData()); if (treeScope() && rareData()->nodeLists()) treeScope()->removeNodeListCache(); #if ENABLE(MUTATION_OBSERVERS) ASSERT(!transientMutationObserverRegistry() || transientMutationObserverRegistry()->isEmpty()); #endif NodeRareData::NodeRareDataMap& dataMap = NodeRareData::rareDataMap(); NodeRareData::NodeRareDataMap::iterator it = dataMap.find(this); ASSERT(it != dataMap.end()); delete it->second; dataMap.remove(it); clearFlag(HasRareDataFlag); } Element* Node::shadowHost() const { return toElement(isShadowRoot() ? parent() : 0); } void Node::setShadowHost(Element* host) { ASSERT(!parentNode() && isShadowRoot()); setParent(host); } Node* Node::toNode() { return this; } HTMLInputElement* Node::toInputElement() { // If one of the below ASSERTs trigger, you are calling this function // directly or indirectly from a constructor or destructor of this object. // Don't do this! ASSERT(!(isHTMLElement() && hasTagName(inputTag))); return 0; } short Node::tabIndex() const { return hasRareData() ? rareData()->tabIndex() : 0; } void Node::setTabIndexExplicitly(short i) { ensureRareData()->setTabIndexExplicitly(i); } void Node::clearTabIndexExplicitly() { ensureRareData()->clearTabIndexExplicitly(); } String Node::nodeValue() const { return String(); } void Node::setNodeValue(const String& /*nodeValue*/, ExceptionCode& ec) { // NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly if (isReadOnlyNode()) { ec = NO_MODIFICATION_ALLOWED_ERR; return; } // By default, setting nodeValue has no effect. } PassRefPtr Node::childNodes() { return ChildNodeList::create(this, ensureRareData()->ensureChildNodeListCache()); } Node *Node::lastDescendant() const { Node *n = const_cast(this); while (n && n->lastChild()) n = n->lastChild(); return n; } Node* Node::firstDescendant() const { Node *n = const_cast(this); while (n && n->firstChild()) n = n->firstChild(); return n; } bool Node::insertBefore(PassRefPtr newChild, Node* refChild, ExceptionCode& ec, bool shouldLazyAttach) { if (!isContainerNode()) { ec = HIERARCHY_REQUEST_ERR; return false; } return toContainerNode(this)->insertBefore(newChild, refChild, ec, shouldLazyAttach); } bool Node::replaceChild(PassRefPtr newChild, Node* oldChild, ExceptionCode& ec, bool shouldLazyAttach) { if (!isContainerNode()) { ec = HIERARCHY_REQUEST_ERR; return false; } return toContainerNode(this)->replaceChild(newChild, oldChild, ec, shouldLazyAttach); } bool Node::removeChild(Node* oldChild, ExceptionCode& ec) { if (!isContainerNode()) { ec = NOT_FOUND_ERR; return false; } return toContainerNode(this)->removeChild(oldChild, ec); } bool Node::appendChild(PassRefPtr newChild, ExceptionCode& ec, bool shouldLazyAttach) { if (!isContainerNode()) { ec = HIERARCHY_REQUEST_ERR; return false; } return toContainerNode(this)->appendChild(newChild, ec, shouldLazyAttach); } void Node::remove(ExceptionCode& ec) { if (ContainerNode* parent = parentNode()) parent->removeChild(this, ec); else ec = HIERARCHY_REQUEST_ERR; } void Node::normalize() { // Go through the subtree beneath us, normalizing all nodes. This means that // any two adjacent text nodes are merged and any empty text nodes are removed. RefPtr node = this; while (Node* firstChild = node->firstChild()) node = firstChild; while (node) { NodeType type = node->nodeType(); if (type == ELEMENT_NODE) static_cast(node.get())->normalizeAttributes(); if (node == this) break; if (type != TEXT_NODE) { node = node->traverseNextNodePostOrder(); continue; } Text* text = static_cast(node.get()); // Remove empty text nodes. if (!text->length()) { // Care must be taken to get the next node before removing the current node. node = node->traverseNextNodePostOrder(); ExceptionCode ec; text->remove(ec); continue; } // Merge text nodes. while (Node* nextSibling = node->nextSibling()) { if (nextSibling->nodeType() != TEXT_NODE) break; RefPtr nextText = static_cast(nextSibling); // Remove empty text nodes. if (!nextText->length()) { ExceptionCode ec; nextText->remove(ec); continue; } // Both non-empty text nodes. Merge them. unsigned offset = text->length(); ExceptionCode ec; text->appendData(nextText->data(), ec); document()->textNodesMerged(nextText.get(), offset); nextText->remove(ec); } node = node->traverseNextNodePostOrder(); } } const AtomicString& Node::virtualPrefix() const { // For nodes other than elements and attributes, the prefix is always null return nullAtom; } void Node::setPrefix(const AtomicString& /*prefix*/, ExceptionCode& ec) { // The spec says that for nodes other than elements and attributes, prefix is always null. // It does not say what to do when the user tries to set the prefix on another type of // node, however Mozilla throws a NAMESPACE_ERR exception. ec = NAMESPACE_ERR; } const AtomicString& Node::virtualLocalName() const { return nullAtom; } const AtomicString& Node::virtualNamespaceURI() const { return nullAtom; } bool Node::isContentEditable() { document()->updateLayoutIgnorePendingStylesheets(); return rendererIsEditable(Editable); } bool Node::isContentRichlyEditable() { document()->updateLayoutIgnorePendingStylesheets(); return rendererIsEditable(RichlyEditable); } bool Node::rendererIsEditable(EditableLevel editableLevel) const { if (document()->frame() && document()->frame()->page() && document()->frame()->page()->isEditable() && !shadowTreeRootNode()) return true; // Ideally we'd call ASSERT(!needsStyleRecalc()) here, but // ContainerNode::setFocus() calls setNeedsStyleRecalc(), so the assertion // would fire in the middle of Document::setFocusedNode(). for (const Node* node = this; node; node = node->parentNode()) { if ((node->isHTMLElement() || node->isDocumentNode()) && node->renderer()) { switch (node->renderer()->style()->userModify()) { case READ_ONLY: return false; case READ_WRITE: return true; case READ_WRITE_PLAINTEXT_ONLY: return editableLevel != RichlyEditable; } ASSERT_NOT_REACHED(); return false; } } return false; } bool Node::isEditableToAccessibility(EditableLevel editableLevel) const { if (rendererIsEditable(editableLevel)) return true; // FIXME: Respect editableLevel for ARIA editable elements. if (editableLevel == RichlyEditable) return false; ASSERT(document()); ASSERT(AXObjectCache::accessibilityEnabled()); ASSERT(document()->axObjectCacheExists()); if (document() && AXObjectCache::accessibilityEnabled() && document()->axObjectCacheExists()) return document()->axObjectCache()->rootAXEditableElement(this); return false; } bool Node::shouldUseInputMethod() { return isContentEditable(); } RenderBox* Node::renderBox() const { return m_renderer && m_renderer->isBox() ? toRenderBox(m_renderer) : 0; } RenderBoxModelObject* Node::renderBoxModelObject() const { return m_renderer && m_renderer->isBoxModelObject() ? toRenderBoxModelObject(m_renderer) : 0; } LayoutRect Node::getRect() const { if (renderer()) return renderer()->absoluteBoundingBoxRect(); return LayoutRect(); } LayoutRect Node::renderRect(bool* isReplaced) { RenderObject* hitRenderer = this->renderer(); ASSERT(hitRenderer); RenderObject* renderer = hitRenderer; while (renderer && !renderer->isBody() && !renderer->isRoot()) { if (renderer->isRenderBlock() || renderer->isInlineBlockOrInlineTable() || renderer->isReplaced()) { *isReplaced = renderer->isReplaced(); return renderer->absoluteBoundingBoxRect(); } renderer = renderer->parent(); } return LayoutRect(); } bool Node::hasNonEmptyBoundingBox() const { // Before calling absoluteRects, check for the common case where the renderer // is non-empty, since this is a faster check and almost always returns true. RenderBoxModelObject* box = renderBoxModelObject(); if (!box) return false; if (!box->borderBoundingBox().isEmpty()) return true; Vector rects; FloatPoint absPos = renderer()->localToAbsolute(); renderer()->absoluteRects(rects, flooredLayoutPoint(absPos)); size_t n = rects.size(); for (size_t i = 0; i < n; ++i) if (!rects[i].isEmpty()) return true; return false; } inline static ShadowRoot* shadowRoot(Node* node) { return node->isElementNode() ? toElement(node)->shadowRoot() : 0; } inline void Node::setStyleChange(StyleChangeType changeType) { m_nodeFlags = (m_nodeFlags & ~StyleChangeMask) | changeType; } inline void Node::markAncestorsWithChildNeedsStyleRecalc() { for (ContainerNode* p = parentOrHostNode(); p && !p->childNeedsStyleRecalc(); p = p->parentOrHostNode()) p->setChildNeedsStyleRecalc(); if (document()->childNeedsStyleRecalc()) document()->scheduleStyleRecalc(); } void Node::refEventTarget() { ref(); } void Node::derefEventTarget() { deref(); } void Node::setNeedsStyleRecalc(StyleChangeType changeType) { ASSERT(changeType != NoStyleChange); if (!attached()) // changed compared to what? return; StyleChangeType existingChangeType = styleChangeType(); if (changeType > existingChangeType) setStyleChange(changeType); if (existingChangeType == NoStyleChange) markAncestorsWithChildNeedsStyleRecalc(); } void Node::lazyAttach(ShouldSetAttached shouldSetAttached) { for (Node* n = this; n; n = n->traverseNextNode(this)) { if (n->hasChildNodes()) n->setChildNeedsStyleRecalc(); n->setStyleChange(FullStyleChange); if (shouldSetAttached == SetAttached) n->setAttached(); } markAncestorsWithChildNeedsStyleRecalc(); } void Node::setFocus(bool b) { if (b || hasRareData()) ensureRareData()->setFocused(b); } bool Node::rareDataFocused() const { ASSERT(hasRareData()); return rareData()->isFocused(); } bool Node::supportsFocus() const { return hasRareData() && rareData()->tabIndexSetExplicitly(); } bool Node::isFocusable() const { if (!inDocument() || !supportsFocus()) return false; if (renderer()) ASSERT(!renderer()->needsLayout()); else // If the node is in a display:none tree it might say it needs style recalc but // the whole document is actually up to date. ASSERT(!document()->childNeedsStyleRecalc()); // FIXME: Even if we are not visible, we might have a child that is visible. // Hyatt wants to fix that some day with a "has visible content" flag or the like. if (!renderer() || renderer()->style()->visibility() != VISIBLE) return false; return true; } bool Node::isKeyboardFocusable(KeyboardEvent*) const { return isFocusable() && tabIndex() >= 0; } bool Node::isMouseFocusable() const { return isFocusable(); } Node* Node::focusDelegate() { return this; } unsigned Node::nodeIndex() const { Node *_tempNode = previousSibling(); unsigned count=0; for ( count=0; _tempNode; count++ ) _tempNode = _tempNode->previousSibling(); return count; } static void removeNodeListCacheIfPossible(Node* node, NodeRareData* data) { if (!data->nodeLists()->isEmpty()) return; data->clearNodeLists(); node->treeScope()->removeNodeListCache(); } void Node::registerDynamicSubtreeNodeList(DynamicSubtreeNodeList* list) { NodeRareData* data = ensureRareData(); // We haven't been receiving notifications while there were no registered lists, so the cache is invalid now. if (data->nodeLists() && (!treeScope() || !treeScope()->hasNodeListCaches())) data->nodeLists()->invalidateCaches(); data->ensureNodeLists(this)->m_listsWithCaches.add(list); } void Node::unregisterDynamicSubtreeNodeList(DynamicSubtreeNodeList* list) { ASSERT(hasRareData()); ASSERT(rareData()->nodeLists()); NodeRareData* data = rareData(); data->nodeLists()->m_listsWithCaches.remove(list); removeNodeListCacheIfPossible(this, data); } void Node::invalidateNodeListsCacheAfterAttributeChanged(const QualifiedName& attrName) { if (hasRareData() && isAttributeNode()) { NodeRareData* data = rareData(); ASSERT(!data->nodeLists()); data->clearChildNodeListCache(); } // This list should be sync'ed with NodeListsNodeData. if (attrName != classAttr #if ENABLE(MICRODATA) && attrName != itemscopeAttr && attrName != itempropAttr #endif && attrName != nameAttr) return; if (!treeScope()->hasNodeListCaches()) return; for (Node* node = this; node; node = node->parentNode()) { ASSERT(this == node || !node->isAttributeNode()); if (!node->hasRareData()) continue; NodeRareData* data = node->rareData(); if (!data->nodeLists()) continue; data->nodeLists()->invalidateCachesThatDependOnAttributes(); removeNodeListCacheIfPossible(node, data); } } void Node::invalidateNodeListsCacheAfterChildrenChanged() { if (hasRareData()) rareData()->clearChildNodeListCache(); if (!treeScope()->hasNodeListCaches()) return; for (Node* node = this; node; node = node->parentNode()) { if (!node->hasRareData()) continue; NodeRareData* data = node->rareData(); if (!data->nodeLists()) continue; data->nodeLists()->invalidateCaches(); NodeListsNodeData::NodeListSet::iterator end = data->nodeLists()->m_listsWithCaches.end(); for (NodeListsNodeData::NodeListSet::iterator it = data->nodeLists()->m_listsWithCaches.begin(); it != end; ++it) (*it)->invalidateCache(); removeNodeListCacheIfPossible(node, data); } } void Node::notifyLocalNodeListsLabelChanged() { if (!hasRareData()) return; NodeRareData* data = rareData(); if (!data->nodeLists()) return; if (data->nodeLists()->m_labelsNodeListCache) data->nodeLists()->m_labelsNodeListCache->invalidateCache(); } void Node::removeCachedClassNodeList(ClassNodeList* list, const String& className) { ASSERT(rareData()); ASSERT(rareData()->nodeLists()); NodeListsNodeData* data = rareData()->nodeLists(); ASSERT_UNUSED(list, list == data->m_classNodeListCache.get(className)); data->m_classNodeListCache.remove(className); } void Node::removeCachedNameNodeList(NameNodeList* list, const String& nodeName) { ASSERT(rareData()); ASSERT(rareData()->nodeLists()); NodeListsNodeData* data = rareData()->nodeLists(); ASSERT_UNUSED(list, list == data->m_nameNodeListCache.get(nodeName)); data->m_nameNodeListCache.remove(nodeName); } void Node::removeCachedTagNodeList(TagNodeList* list, const AtomicString& name) { ASSERT(rareData()); ASSERT(rareData()->nodeLists()); NodeListsNodeData* data = rareData()->nodeLists(); ASSERT_UNUSED(list, list == data->m_tagNodeListCache.get(name.impl())); data->m_tagNodeListCache.remove(name.impl()); } void Node::removeCachedTagNodeList(TagNodeList* list, const QualifiedName& name) { ASSERT(rareData()); ASSERT(rareData()->nodeLists()); NodeListsNodeData* data = rareData()->nodeLists(); ASSERT_UNUSED(list, list == data->m_tagNodeListCacheNS.get(name.impl())); data->m_tagNodeListCacheNS.remove(name.impl()); } void Node::removeCachedLabelsNodeList(DynamicSubtreeNodeList* list) { ASSERT(rareData()); ASSERT(rareData()->nodeLists()); NodeListsNodeData* data = rareData()->nodeLists(); ASSERT_UNUSED(list, list == data->m_labelsNodeListCache); data->m_labelsNodeListCache = 0; } Node* Node::traverseNextNode(const Node* stayWithin) const { if (firstChild()) return firstChild(); if (this == stayWithin) return 0; if (nextSibling()) return nextSibling(); const Node *n = this; while (n && !n->nextSibling() && (!stayWithin || n->parentNode() != stayWithin)) n = n->parentNode(); if (n) return n->nextSibling(); return 0; } Node* Node::traverseNextSibling(const Node* stayWithin) const { if (this == stayWithin) return 0; if (nextSibling()) return nextSibling(); const Node *n = this; while (n && !n->nextSibling() && (!stayWithin || n->parentNode() != stayWithin)) n = n->parentNode(); if (n) return n->nextSibling(); return 0; } Node* Node::traverseNextNodePostOrder() const { Node* next = nextSibling(); if (!next) return parentNode(); while (Node* firstChild = next->firstChild()) next = firstChild; return next; } Node* Node::traversePreviousNode(const Node* stayWithin) const { if (this == stayWithin) return 0; if (previousSibling()) { Node *n = previousSibling(); while (n->lastChild()) n = n->lastChild(); return n; } return parentNode(); } Node* Node::traversePreviousSibling(const Node* stayWithin) const { if (this == stayWithin) return 0; if (previousSibling()) return previousSibling(); const Node *n = this; while (n && !n->previousSibling() && (!stayWithin || n->parentNode() != stayWithin)) n = n->parentNode(); if (n) return n->previousSibling(); return 0; } Node* Node::traversePreviousNodePostOrder(const Node* stayWithin) const { if (lastChild()) return lastChild(); if (this == stayWithin) return 0; if (previousSibling()) return previousSibling(); const Node *n = this; while (n && !n->previousSibling() && (!stayWithin || n->parentNode() != stayWithin)) n = n->parentNode(); if (n) return n->previousSibling(); return 0; } Node* Node::traversePreviousSiblingPostOrder(const Node* stayWithin) const { if (this == stayWithin) return 0; if (previousSibling()) return previousSibling(); const Node *n = this; while (n && !n->previousSibling() && (!stayWithin || n->parentNode() != stayWithin)) n = n->parentNode(); if (n) return n->previousSibling(); return 0; } void Node::checkSetPrefix(const AtomicString& prefix, ExceptionCode& ec) { // Perform error checking as required by spec for setting Node.prefix. Used by // Element::setPrefix() and Attr::setPrefix() // FIXME: Implement support for INVALID_CHARACTER_ERR: Raised if the specified prefix contains an illegal character. if (isReadOnlyNode()) { ec = NO_MODIFICATION_ALLOWED_ERR; return; } // FIXME: Raise NAMESPACE_ERR if prefix is malformed per the Namespaces in XML specification. const AtomicString& nodeNamespaceURI = namespaceURI(); if ((nodeNamespaceURI.isEmpty() && !prefix.isEmpty()) || (prefix == xmlAtom && nodeNamespaceURI != XMLNames::xmlNamespaceURI)) { ec = NAMESPACE_ERR; return; } // Attribute-specific checks are in Attr::setPrefix(). } static bool isChildTypeAllowed(Node* newParent, Node* child) { if (child->nodeType() != Node::DOCUMENT_FRAGMENT_NODE) { if (!newParent->childTypeAllowed(child->nodeType())) return false; return true; } for (Node *n = child->firstChild(); n; n = n->nextSibling()) { if (!newParent->childTypeAllowed(n->nodeType())) return false; } return true; } bool Node::canReplaceChild(Node* newChild, Node*) { return isChildTypeAllowed(this, newChild); } static void checkAcceptChild(Node* newParent, Node* newChild, ExceptionCode& ec) { // Not mentioned in spec: throw NOT_FOUND_ERR if newChild is null if (!newChild) { ec = NOT_FOUND_ERR; return; } if (newParent->isReadOnlyNode()) { ec = NO_MODIFICATION_ALLOWED_ERR; return; } if (newChild->inDocument() && newChild->nodeType() == Node::DOCUMENT_TYPE_NODE) { ec = HIERARCHY_REQUEST_ERR; return; } // HIERARCHY_REQUEST_ERR: Raised if this node is of a type that does not allow children of the type of the // newChild node, or if the node to append is one of this node's ancestors. if (newChild == newParent || newParent->isDescendantOf(newChild)) { ec = HIERARCHY_REQUEST_ERR; return; } } void Node::checkReplaceChild(Node* newChild, Node* oldChild, ExceptionCode& ec) { if (!oldChild) { ec = NOT_FOUND_ERR; return; } checkAcceptChild(this, newChild, ec); if (ec) return; if (!canReplaceChild(newChild, oldChild)) { ec = HIERARCHY_REQUEST_ERR; return; } } void Node::checkAddChild(Node *newChild, ExceptionCode& ec) { checkAcceptChild(this, newChild, ec); if (ec) return; if (!isChildTypeAllowed(this, newChild)) { ec = HIERARCHY_REQUEST_ERR; return; } } bool Node::isDescendantOf(const Node *other) const { // Return true if other is an ancestor of this, otherwise false if (!other || !other->hasChildNodes() || inDocument() != other->inDocument()) return false; if (other == other->document()) return document() == other && this != document() && inDocument(); for (const ContainerNode* n = parentNode(); n; n = n->parentNode()) { if (n == other) return true; } return false; } bool Node::contains(const Node* node) const { if (!node) return false; return this == node || node->isDescendantOf(this); } bool Node::containsIncludingShadowDOM(Node* node) { if (!node) return false; for (Node* n = node; n; n = n->parentOrHostNode()) { if (n == this) return true; } return false; } void Node::attach() { ASSERT(!attached()); ASSERT(!renderer() || (renderer()->style() && renderer()->parent())); // FIXME: This is O(N^2) for the innerHTML case, where all children are replaced at once (and not attached). // If this node got a renderer it may be the previousRenderer() of sibling text nodes and thus affect the // result of Text::rendererIsNeeded() for those nodes. if (renderer()) { for (Node* next = nextSibling(); next; next = next->nextSibling()) { if (next->renderer()) break; if (!next->attached()) break; // Assume this means none of the following siblings are attached. if (next->isTextNode()) next->createRendererIfNeeded(); } } setAttached(); clearNeedsStyleRecalc(); } void Node::willRemove() { } void Node::detach() { setFlag(InDetachFlag); if (renderer()) renderer()->destroy(); setRenderer(0); Document* doc = document(); if (hovered()) doc->hoveredNodeDetached(this); if (inActiveChain()) doc->activeChainNodeDetached(this); clearFlag(IsActiveFlag); clearFlag(IsHoveredFlag); clearFlag(InActiveChainFlag); clearFlag(IsAttachedFlag); clearFlag(InDetachFlag); } // FIXME: This code is used by editing. Seems like it could move over there and not pollute Node. Node *Node::previousNodeConsideringAtomicNodes() const { if (previousSibling()) { Node *n = previousSibling(); while (!isAtomicNode(n) && n->lastChild()) n = n->lastChild(); return n; } else if (parentNode()) { return parentNode(); } else { return 0; } } Node *Node::nextNodeConsideringAtomicNodes() const { if (!isAtomicNode(this) && firstChild()) return firstChild(); if (nextSibling()) return nextSibling(); const Node *n = this; while (n && !n->nextSibling()) n = n->parentNode(); if (n) return n->nextSibling(); return 0; } Node *Node::previousLeafNode() const { Node *node = previousNodeConsideringAtomicNodes(); while (node) { if (isAtomicNode(node)) return node; node = node->previousNodeConsideringAtomicNodes(); } return 0; } Node *Node::nextLeafNode() const { Node *node = nextNodeConsideringAtomicNodes(); while (node) { if (isAtomicNode(node)) return node; node = node->nextNodeConsideringAtomicNodes(); } return 0; } ContainerNode* Node::parentNodeForRenderingAndStyle() { return NodeRenderingContext(this).parentNodeForRenderingAndStyle(); } void Node::createRendererIfNeeded() { NodeRendererFactory(this).createRendererIfNeeded(); } bool Node::rendererIsNeeded(const NodeRenderingContext& context) { return (document()->documentElement() == this) || (context.style()->display() != NONE); } RenderObject* Node::createRenderer(RenderArena*, RenderStyle*) { ASSERT(false); return 0; } RenderStyle* Node::nonRendererRenderStyle() const { return 0; } void Node::setRenderStyle(PassRefPtr s) { if (m_renderer) m_renderer->setAnimatableStyle(s); } RenderStyle* Node::virtualComputedStyle(PseudoId pseudoElementSpecifier) { return parentOrHostNode() ? parentOrHostNode()->computedStyle(pseudoElementSpecifier) : 0; } int Node::maxCharacterOffset() const { ASSERT_NOT_REACHED(); return 0; } // FIXME: Shouldn't these functions be in the editing code? Code that asks questions about HTML in the core DOM class // is obviously misplaced. bool Node::canStartSelection() const { if (rendererIsEditable()) return true; if (renderer()) { RenderStyle* style = renderer()->style(); // We allow selections to begin within an element that has -webkit-user-select: none set, // but if the element is draggable then dragging should take priority over selection. if (style->userDrag() == DRAG_ELEMENT && style->userSelect() == SELECT_NONE) return false; } return parentOrHostNode() ? parentOrHostNode()->canStartSelection() : true; } #if ENABLE(SVG) SVGUseElement* Node::svgShadowHost() const { return isSVGShadowRoot() ? static_cast(parent()) : 0; } #endif Node* Node::shadowAncestorNode() const { #if ENABLE(SVG) // SVG elements living in a shadow tree only occur when created them. // For these cases we do NOT want to return the shadowParentNode() here // but the actual shadow tree element - as main difference to the HTML forms // shadow tree concept. (This function _could_ be made virtual - opinions?) if (isSVGElement()) return const_cast(this); #endif Node* root = shadowTreeRootNode(); if (root) return root->shadowHost(); return const_cast(this); } Node* Node::shadowTreeRootNode() const { Node* root = const_cast(this); while (root) { if (root->isShadowRoot() || root->isSVGShadowRoot()) return root; root = root->parentNodeGuaranteedHostFree(); } return 0; } Node* Node::nonBoundaryShadowTreeRootNode() { ASSERT(!isShadowRoot()); Node* root = this; while (root) { if (root->isShadowRoot() || root->isSVGShadowRoot()) return root; Node* parent = root->parentNodeGuaranteedHostFree(); if (parent && parent->isShadowRoot()) return root; root = parent; } return 0; } ContainerNode* Node::nonShadowBoundaryParentNode() const { ContainerNode* parent = parentNode(); return parent && !parent->isShadowRoot() ? parent : 0; } bool Node::isInShadowTree() { return treeScope() != document(); } Element* Node::parentOrHostElement() const { ContainerNode* parent = parentOrHostNode(); if (!parent) return 0; if (parent->isShadowRoot()) parent = parent->shadowHost(); if (!parent->isElementNode()) return 0; return toElement(parent); } bool Node::isBlockFlow() const { return renderer() && renderer()->isBlockFlow(); } bool Node::isBlockFlowOrBlockTable() const { return renderer() && (renderer()->isBlockFlow() || (renderer()->isTable() && !renderer()->isInline())); } Element *Node::enclosingBlockFlowElement() const { Node *n = const_cast(this); if (isBlockFlow()) return static_cast(n); while (1) { n = n->parentNode(); if (!n) break; if (n->isBlockFlow() || n->hasTagName(bodyTag)) return static_cast(n); } return 0; } Element* Node::rootEditableElement(EditableType editableType) const { if (editableType == HasEditableAXRole) return const_cast(document()->axObjectCache()->rootAXEditableElement(this)); return rootEditableElement(); } Element* Node::rootEditableElement() const { Element* result = 0; for (Node* n = const_cast(this); n && n->rendererIsEditable(); n = n->parentNode()) { if (n->isElementNode()) result = static_cast(n); if (n->hasTagName(bodyTag)) break; } return result; } bool Node::inSameContainingBlockFlowElement(Node *n) { return n ? enclosingBlockFlowElement() == n->enclosingBlockFlowElement() : false; } // FIXME: End of obviously misplaced HTML editing functions. Try to move these out of Node. PassRefPtr Node::getElementsByTagName(const AtomicString& localName) { if (localName.isNull()) return 0; String name = localName; if (document()->isHTMLDocument()) name = localName.lower(); AtomicString localNameAtom = name; pair result = ensureRareData()->ensureNodeLists(this)->m_tagNodeListCache.add(localNameAtom, 0); if (!result.second) return PassRefPtr(result.first->second); RefPtr list = TagNodeList::create(this, starAtom, localNameAtom); result.first->second = list.get(); return list.release(); } PassRefPtr Node::getElementsByTagNameNS(const AtomicString& namespaceURI, const AtomicString& localName) { if (localName.isNull()) return 0; if (namespaceURI == starAtom) return getElementsByTagName(localName); String name = localName; if (document()->isHTMLDocument()) name = localName.lower(); AtomicString localNameAtom = name; pair result = ensureRareData()->ensureNodeLists(this)->m_tagNodeListCacheNS.add(QualifiedName(nullAtom, localNameAtom, namespaceURI).impl(), 0); if (!result.second) return PassRefPtr(result.first->second); RefPtr list = TagNodeList::create(this, namespaceURI.isEmpty() ? nullAtom : namespaceURI, localNameAtom); result.first->second = list.get(); return list.release(); } PassRefPtr Node::getElementsByName(const String& elementName) { pair result = ensureRareData()->ensureNodeLists(this)->m_nameNodeListCache.add(elementName, 0); if (!result.second) return PassRefPtr(result.first->second); RefPtr list = NameNodeList::create(this, elementName); result.first->second = list.get(); return list.release(); } PassRefPtr Node::getElementsByClassName(const String& classNames) { pair result = ensureRareData()->ensureNodeLists(this)->m_classNodeListCache.add(classNames, 0); if (!result.second) return PassRefPtr(result.first->second); RefPtr list = ClassNodeList::create(this, classNames); result.first->second = list.get(); return list.release(); } PassRefPtr Node::querySelector(const String& selectors, ExceptionCode& ec) { if (selectors.isEmpty()) { ec = SYNTAX_ERR; return 0; } bool strictParsing = !document()->inQuirksMode(); CSSParser p(strictParsing); CSSSelectorList querySelectorList; p.parseSelector(selectors, document(), querySelectorList); if (!querySelectorList.first() || querySelectorList.hasUnknownPseudoElements()) { ec = SYNTAX_ERR; return 0; } // throw a NAMESPACE_ERR if the selector includes any namespace prefixes. if (querySelectorList.selectorsNeedNamespaceResolution()) { ec = NAMESPACE_ERR; return 0; } SelectorQuery selectorQuery(this, querySelectorList); return selectorQuery.queryFirst(); } PassRefPtr Node::querySelectorAll(const String& selectors, ExceptionCode& ec) { if (selectors.isEmpty()) { ec = SYNTAX_ERR; return 0; } bool strictParsing = !document()->inQuirksMode(); CSSParser p(strictParsing); CSSSelectorList querySelectorList; p.parseSelector(selectors, document(), querySelectorList); if (!querySelectorList.first() || querySelectorList.hasUnknownPseudoElements()) { ec = SYNTAX_ERR; return 0; } // Throw a NAMESPACE_ERR if the selector includes any namespace prefixes. if (querySelectorList.selectorsNeedNamespaceResolution()) { ec = NAMESPACE_ERR; return 0; } SelectorQuery selectorQuery(this, querySelectorList); return selectorQuery.queryAll(); } Document *Node::ownerDocument() const { Document *doc = document(); return doc == this ? 0 : doc; } KURL Node::baseURI() const { return parentNode() ? parentNode()->baseURI() : KURL(); } bool Node::isEqualNode(Node* other) const { if (!other) return false; NodeType nodeType = this->nodeType(); if (nodeType != other->nodeType()) return false; if (nodeName() != other->nodeName()) return false; if (localName() != other->localName()) return false; if (namespaceURI() != other->namespaceURI()) return false; if (prefix() != other->prefix()) return false; if (nodeValue() != other->nodeValue()) return false; NamedNodeMap* attributes = this->attributes(); NamedNodeMap* otherAttributes = other->attributes(); if (!attributes && otherAttributes) return false; if (attributes && !attributes->mapsEquivalent(otherAttributes)) return false; Node* child = firstChild(); Node* otherChild = other->firstChild(); while (child) { if (!child->isEqualNode(otherChild)) return false; child = child->nextSibling(); otherChild = otherChild->nextSibling(); } if (otherChild) return false; if (nodeType == DOCUMENT_TYPE_NODE) { const DocumentType* documentTypeThis = static_cast(this); const DocumentType* documentTypeOther = static_cast(other); if (documentTypeThis->publicId() != documentTypeOther->publicId()) return false; if (documentTypeThis->systemId() != documentTypeOther->systemId()) return false; if (documentTypeThis->internalSubset() != documentTypeOther->internalSubset()) return false; NamedNodeMap* entities = documentTypeThis->entities(); NamedNodeMap* otherEntities = documentTypeOther->entities(); if (!entities && otherEntities) return false; if (entities && !entities->mapsEquivalent(otherEntities)) return false; NamedNodeMap* notations = documentTypeThis->notations(); NamedNodeMap* otherNotations = documentTypeOther->notations(); if (!notations && otherNotations) return false; if (notations && !notations->mapsEquivalent(otherNotations)) return false; } return true; } bool Node::isDefaultNamespace(const AtomicString& namespaceURIMaybeEmpty) const { const AtomicString& namespaceURI = namespaceURIMaybeEmpty.isEmpty() ? nullAtom : namespaceURIMaybeEmpty; switch (nodeType()) { case ELEMENT_NODE: { const Element* elem = static_cast(this); if (elem->prefix().isNull()) return elem->namespaceURI() == namespaceURI; if (elem->hasAttributes()) { NamedNodeMap* attrs = elem->attributes(); for (unsigned i = 0; i < attrs->length(); i++) { Attribute* attr = attrs->attributeItem(i); if (attr->localName() == xmlnsAtom) return attr->value() == namespaceURI; } } if (Element* ancestor = ancestorElement()) return ancestor->isDefaultNamespace(namespaceURI); return false; } case DOCUMENT_NODE: if (Element* de = static_cast(this)->documentElement()) return de->isDefaultNamespace(namespaceURI); return false; case ENTITY_NODE: case NOTATION_NODE: case DOCUMENT_TYPE_NODE: case DOCUMENT_FRAGMENT_NODE: case SHADOW_ROOT_NODE: return false; case ATTRIBUTE_NODE: { const Attr* attr = static_cast(this); if (attr->ownerElement()) return attr->ownerElement()->isDefaultNamespace(namespaceURI); return false; } default: if (Element* ancestor = ancestorElement()) return ancestor->isDefaultNamespace(namespaceURI); return false; } } String Node::lookupPrefix(const AtomicString &namespaceURI) const { // Implemented according to // http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/namespaces-algorithms.html#lookupNamespacePrefixAlgo if (namespaceURI.isEmpty()) return String(); switch (nodeType()) { case ELEMENT_NODE: return lookupNamespacePrefix(namespaceURI, static_cast(this)); case DOCUMENT_NODE: if (Element* de = static_cast(this)->documentElement()) return de->lookupPrefix(namespaceURI); return String(); case ENTITY_NODE: case NOTATION_NODE: case DOCUMENT_FRAGMENT_NODE: case DOCUMENT_TYPE_NODE: case SHADOW_ROOT_NODE: return String(); case ATTRIBUTE_NODE: { const Attr *attr = static_cast(this); if (attr->ownerElement()) return attr->ownerElement()->lookupPrefix(namespaceURI); return String(); } default: if (Element* ancestor = ancestorElement()) return ancestor->lookupPrefix(namespaceURI); return String(); } } String Node::lookupNamespaceURI(const String &prefix) const { // Implemented according to // http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/namespaces-algorithms.html#lookupNamespaceURIAlgo if (!prefix.isNull() && prefix.isEmpty()) return String(); switch (nodeType()) { case ELEMENT_NODE: { const Element *elem = static_cast(this); if (!elem->namespaceURI().isNull() && elem->prefix() == prefix) return elem->namespaceURI(); if (elem->hasAttributes()) { NamedNodeMap *attrs = elem->attributes(); for (unsigned i = 0; i < attrs->length(); i++) { Attribute *attr = attrs->attributeItem(i); if (attr->prefix() == xmlnsAtom && attr->localName() == prefix) { if (!attr->value().isEmpty()) return attr->value(); return String(); } else if (attr->localName() == xmlnsAtom && prefix.isNull()) { if (!attr->value().isEmpty()) return attr->value(); return String(); } } } if (Element* ancestor = ancestorElement()) return ancestor->lookupNamespaceURI(prefix); return String(); } case DOCUMENT_NODE: if (Element* de = static_cast(this)->documentElement()) return de->lookupNamespaceURI(prefix); return String(); case ENTITY_NODE: case NOTATION_NODE: case DOCUMENT_TYPE_NODE: case DOCUMENT_FRAGMENT_NODE: case SHADOW_ROOT_NODE: return String(); case ATTRIBUTE_NODE: { const Attr *attr = static_cast(this); if (attr->ownerElement()) return attr->ownerElement()->lookupNamespaceURI(prefix); else return String(); } default: if (Element* ancestor = ancestorElement()) return ancestor->lookupNamespaceURI(prefix); return String(); } } String Node::lookupNamespacePrefix(const AtomicString &_namespaceURI, const Element *originalElement) const { if (_namespaceURI.isNull()) return String(); if (originalElement->lookupNamespaceURI(prefix()) == _namespaceURI) return prefix(); if (hasAttributes()) { NamedNodeMap *attrs = attributes(); for (unsigned i = 0; i < attrs->length(); i++) { Attribute *attr = attrs->attributeItem(i); if (attr->prefix() == xmlnsAtom && attr->value() == _namespaceURI && originalElement->lookupNamespaceURI(attr->localName()) == _namespaceURI) return attr->localName(); } } if (Element* ancestor = ancestorElement()) return ancestor->lookupNamespacePrefix(_namespaceURI, originalElement); return String(); } static void appendTextContent(const Node* node, bool convertBRsToNewlines, bool& isNullString, StringBuilder& content) { switch (node->nodeType()) { case Node::TEXT_NODE: case Node::CDATA_SECTION_NODE: case Node::COMMENT_NODE: isNullString = false; content.append(static_cast(node)->data()); break; case Node::PROCESSING_INSTRUCTION_NODE: isNullString = false; content.append(static_cast(node)->data()); break; case Node::ELEMENT_NODE: if (node->hasTagName(brTag) && convertBRsToNewlines) { isNullString = false; content.append('\n'); break; } // Fall through. case Node::ATTRIBUTE_NODE: case Node::ENTITY_NODE: case Node::ENTITY_REFERENCE_NODE: case Node::DOCUMENT_FRAGMENT_NODE: case Node::SHADOW_ROOT_NODE: isNullString = false; for (Node* child = node->firstChild(); child; child = child->nextSibling()) { if (child->nodeType() == Node::COMMENT_NODE || child->nodeType() == Node::PROCESSING_INSTRUCTION_NODE) continue; appendTextContent(child, convertBRsToNewlines, isNullString, content); } break; case Node::DOCUMENT_NODE: case Node::DOCUMENT_TYPE_NODE: case Node::NOTATION_NODE: case Node::XPATH_NAMESPACE_NODE: break; } } String Node::textContent(bool convertBRsToNewlines) const { StringBuilder content; bool isNullString = true; appendTextContent(this, convertBRsToNewlines, isNullString, content); return isNullString ? String() : content.toString(); } void Node::setTextContent(const String& text, ExceptionCode& ec) { switch (nodeType()) { case TEXT_NODE: case CDATA_SECTION_NODE: case COMMENT_NODE: case PROCESSING_INSTRUCTION_NODE: setNodeValue(text, ec); return; case ELEMENT_NODE: case ATTRIBUTE_NODE: case ENTITY_NODE: case ENTITY_REFERENCE_NODE: case DOCUMENT_FRAGMENT_NODE: case SHADOW_ROOT_NODE: { ContainerNode* container = toContainerNode(this); #if ENABLE(MUTATION_OBSERVERS) ChildListMutationScope mutation(this); #endif container->removeChildren(); if (!text.isEmpty()) container->appendChild(document()->createTextNode(text), ec); return; } case DOCUMENT_NODE: case DOCUMENT_TYPE_NODE: case NOTATION_NODE: case XPATH_NAMESPACE_NODE: // Do nothing. return; } ASSERT_NOT_REACHED(); } Element* Node::ancestorElement() const { // In theory, there can be EntityReference nodes between elements, but this is currently not supported. for (ContainerNode* n = parentNode(); n; n = n->parentNode()) { if (n->isElementNode()) return static_cast(n); } return 0; } bool Node::offsetInCharacters() const { return false; } unsigned short Node::compareDocumentPosition(Node* otherNode) { // It is not clear what should be done if |otherNode| is 0. if (!otherNode) return DOCUMENT_POSITION_DISCONNECTED; if (otherNode == this) return DOCUMENT_POSITION_EQUIVALENT; Attr* attr1 = nodeType() == ATTRIBUTE_NODE ? static_cast(this) : 0; Attr* attr2 = otherNode->nodeType() == ATTRIBUTE_NODE ? static_cast(otherNode) : 0; Node* start1 = attr1 ? attr1->ownerElement() : this; Node* start2 = attr2 ? attr2->ownerElement() : otherNode; // If either of start1 or start2 is null, then we are disconnected, since one of the nodes is // an orphaned attribute node. if (!start1 || !start2) return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC; Vector chain1; Vector chain2; if (attr1) chain1.append(attr1); if (attr2) chain2.append(attr2); if (attr1 && attr2 && start1 == start2 && start1) { // We are comparing two attributes on the same node. Crawl our attribute map // and see which one we hit first. NamedNodeMap* map = attr1->ownerElement()->attributes(true); unsigned length = map->length(); for (unsigned i = 0; i < length; ++i) { // If neither of the two determining nodes is a child node and nodeType is the same for both determining nodes, then an // implementation-dependent order between the determining nodes is returned. This order is stable as long as no nodes of // the same nodeType are inserted into or removed from the direct container. This would be the case, for example, // when comparing two attributes of the same element, and inserting or removing additional attributes might change // the order between existing attributes. Attribute* attr = map->attributeItem(i); if (attr1->attr() == attr) return DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | DOCUMENT_POSITION_FOLLOWING; if (attr2->attr() == attr) return DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | DOCUMENT_POSITION_PRECEDING; } ASSERT_NOT_REACHED(); return DOCUMENT_POSITION_DISCONNECTED; } // If one node is in the document and the other is not, we must be disconnected. // If the nodes have different owning documents, they must be disconnected. Note that we avoid // comparing Attr nodes here, since they return false from inDocument() all the time (which seems like a bug). if (start1->inDocument() != start2->inDocument() || start1->document() != start2->document()) return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC; // We need to find a common ancestor container, and then compare the indices of the two immediate children. Node* current; for (current = start1; current; current = current->parentNode()) chain1.append(current); for (current = start2; current; current = current->parentNode()) chain2.append(current); // Walk the two chains backwards and look for the first difference. unsigned index1 = chain1.size(); unsigned index2 = chain2.size(); for (unsigned i = min(index1, index2); i; --i) { Node* child1 = chain1[--index1]; Node* child2 = chain2[--index2]; if (child1 != child2) { // If one of the children is an attribute, it wins. if (child1->nodeType() == ATTRIBUTE_NODE) return DOCUMENT_POSITION_FOLLOWING; if (child2->nodeType() == ATTRIBUTE_NODE) return DOCUMENT_POSITION_PRECEDING; if (!child2->nextSibling()) return DOCUMENT_POSITION_FOLLOWING; if (!child1->nextSibling()) return DOCUMENT_POSITION_PRECEDING; // Otherwise we need to see which node occurs first. Crawl backwards from child2 looking for child1. for (Node* child = child2->previousSibling(); child; child = child->previousSibling()) { if (child == child1) return DOCUMENT_POSITION_FOLLOWING; } return DOCUMENT_POSITION_PRECEDING; } } // There was no difference between the two parent chains, i.e., one was a subset of the other. The shorter // chain is the ancestor. return index1 < index2 ? DOCUMENT_POSITION_FOLLOWING | DOCUMENT_POSITION_CONTAINED_BY : DOCUMENT_POSITION_PRECEDING | DOCUMENT_POSITION_CONTAINS; } FloatPoint Node::convertToPage(const FloatPoint& p) const { // If there is a renderer, just ask it to do the conversion if (renderer()) return renderer()->localToAbsolute(p, false, true); // Otherwise go up the tree looking for a renderer Element *parent = ancestorElement(); if (parent) return parent->convertToPage(p); // No parent - no conversion needed return p; } FloatPoint Node::convertFromPage(const FloatPoint& p) const { // If there is a renderer, just ask it to do the conversion if (renderer()) return renderer()->absoluteToLocal(p, false, true); // Otherwise go up the tree looking for a renderer Element *parent = ancestorElement(); if (parent) return parent->convertFromPage(p); // No parent - no conversion needed return p; } #if ENABLE(MICRODATA) void Node::itemTypeAttributeChanged() { Node * rootNode = document(); if (!rootNode->hasRareData()) return; NodeRareData* data = rootNode->rareData(); if (!data->nodeLists()) return; data->nodeLists()->invalidateMicrodataItemListCaches(); } #endif #ifndef NDEBUG static void appendAttributeDesc(const Node* node, String& string, const QualifiedName& name, const char* attrDesc) { if (node->isElementNode()) { String attr = static_cast(node)->getAttribute(name); if (!attr.isEmpty()) { string += attrDesc; string += attr; } } } void Node::showNode(const char* prefix) const { if (!prefix) prefix = ""; if (isTextNode()) { String value = nodeValue(); value.replace('\\', "\\\\"); value.replace('\n', "\\n"); fprintf(stderr, "%s%s\t%p \"%s\"\n", prefix, nodeName().utf8().data(), this, value.utf8().data()); } else { String attrs = ""; appendAttributeDesc(this, attrs, classAttr, " CLASS="); appendAttributeDesc(this, attrs, styleAttr, " STYLE="); fprintf(stderr, "%s%s\t%p%s\n", prefix, nodeName().utf8().data(), this, attrs.utf8().data()); } } void Node::showTreeForThis() const { showTreeAndMark(this, "*"); } static void traverseTreeAndMark(const String& baseIndent, const Node* rootNode, const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2) { for (const Node* node = rootNode; node; node = node->traverseNextNode()) { if (node == markedNode1) fprintf(stderr, "%s", markedLabel1); if (node == markedNode2) fprintf(stderr, "%s", markedLabel2); String indent = baseIndent; for (const Node* tmpNode = node; tmpNode && tmpNode != rootNode; tmpNode = tmpNode->parentOrHostNode()) indent += "\t"; fprintf(stderr, "%s", indent.utf8().data()); node->showNode(); ContainerNode* rootNode = shadowRoot(const_cast(node)); if (rootNode) { indent += "\t"; traverseTreeAndMark(indent, rootNode, markedNode1, markedLabel1, markedNode2, markedLabel2); } } } void Node::showTreeAndMark(const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2) const { const Node* rootNode; const Node* node = this; while (node->parentOrHostNode() && !node->hasTagName(bodyTag)) node = node->parentOrHostNode(); rootNode = node; String startingIndent; traverseTreeAndMark(startingIndent, rootNode, markedNode1, markedLabel1, markedNode2, markedLabel2); } void Node::formatForDebugger(char* buffer, unsigned length) const { String result; String s; s = nodeName(); if (s.length() == 0) result += ""; else result += s; strncpy(buffer, result.utf8().data(), length - 1); } static ContainerNode* parentOrHostOrFrameOwner(Node* node) { ContainerNode* parent = node->parentOrHostNode(); if (!parent && node->document() && node->document()->frame()) parent = node->document()->frame()->ownerElement(); return parent; } static void showSubTreeAcrossFrame(Node* node, const Node* markedNode, const String& indent) { if (node == markedNode) fputs("*", stderr); fputs(indent.utf8().data(), stderr); node->showNode(); if (node->isFrameOwnerElement()) showSubTreeAcrossFrame(static_cast(node)->contentDocument(), markedNode, indent + "\t"); if (ShadowRoot* shadow = shadowRoot(node)) showSubTreeAcrossFrame(shadow, markedNode, indent + "\t"); for (Node* child = node->firstChild(); child; child = child->nextSibling()) showSubTreeAcrossFrame(child, markedNode, indent + "\t"); } void Node::showTreeForThisAcrossFrame() const { Node* rootNode = const_cast(this); while (parentOrHostOrFrameOwner(rootNode)) rootNode = parentOrHostOrFrameOwner(rootNode); showSubTreeAcrossFrame(rootNode, this, ""); } #endif // -------- void NodeListsNodeData::invalidateCaches() { if (m_labelsNodeListCache) m_labelsNodeListCache->invalidateCache(); TagNodeListCache::const_iterator tagCacheEnd = m_tagNodeListCache.end(); for (TagNodeListCache::const_iterator it = m_tagNodeListCache.begin(); it != tagCacheEnd; ++it) it->second->invalidateCache(); TagNodeListCacheNS::const_iterator tagCacheNSEnd = m_tagNodeListCacheNS.end(); for (TagNodeListCacheNS::const_iterator it = m_tagNodeListCacheNS.begin(); it != tagCacheNSEnd; ++it) it->second->invalidateCache(); invalidateCachesThatDependOnAttributes(); } void NodeListsNodeData::invalidateCachesThatDependOnAttributes() { ClassNodeListCache::iterator classCacheEnd = m_classNodeListCache.end(); for (ClassNodeListCache::iterator it = m_classNodeListCache.begin(); it != classCacheEnd; ++it) it->second->invalidateCache(); NameNodeListCache::iterator nameCacheEnd = m_nameNodeListCache.end(); for (NameNodeListCache::iterator it = m_nameNodeListCache.begin(); it != nameCacheEnd; ++it) it->second->invalidateCache(); if (m_labelsNodeListCache) m_labelsNodeListCache->invalidateCache(); #if ENABLE(MICRODATA) invalidateMicrodataItemListCaches(); #endif } #if ENABLE(MICRODATA) void NodeListsNodeData::invalidateMicrodataItemListCaches() { MicroDataItemListCache::iterator itemListCacheEnd = m_microDataItemListCache.end(); for (MicroDataItemListCache::iterator it = m_microDataItemListCache.begin(); it != itemListCacheEnd; ++it) it->second->invalidateCache(); } #endif bool NodeListsNodeData::isEmpty() const { if (!m_listsWithCaches.isEmpty()) return false; if (!m_tagNodeListCache.isEmpty()) return false; if (!m_tagNodeListCacheNS.isEmpty()) return false; if (!m_classNodeListCache.isEmpty()) return false; if (!m_nameNodeListCache.isEmpty()) return false; #if ENABLE(MICRODATA) if (!m_microDataItemListCache.isEmpty()) return false; #endif if (m_labelsNodeListCache) return false; return true; } void Node::getSubresourceURLs(ListHashSet& urls) const { addSubresourceAttributeURLs(urls); } Node* Node::enclosingLinkEventParentOrSelf() { for (Node* node = this; node; node = node->parentOrHostNode()) { // For imagemaps, the enclosing link node is the associated area element not the image itself. // So we don't let images be the enclosingLinkNode, even though isLink sometimes returns true // for them. if (node->isLink() && !node->hasTagName(imgTag)) return node; } return 0; } const AtomicString& Node::interfaceName() const { return eventNames().interfaceForNode; } ScriptExecutionContext* Node::scriptExecutionContext() const { return document(); } void Node::insertedIntoDocument() { setInDocument(); } void Node::removedFromDocument() { clearInDocument(); } void Node::didMoveToNewDocument(Document* oldDocument) { TreeScopeAdopter::ensureDidMoveToNewDocumentWasCalled(oldDocument); // FIXME: Event listener types for this node should be set on the new owner document here. #if ENABLE(MUTATION_OBSERVERS) if (Vector >* registry = mutationObserverRegistry()) { for (size_t i = 0; i < registry->size(); ++i) { document()->addMutationObserverTypes(registry->at(i)->mutationTypes()); } } if (HashSet* transientRegistry = transientMutationObserverRegistry()) { for (HashSet::iterator iter = transientRegistry->begin(); iter != transientRegistry->end(); ++iter) { document()->addMutationObserverTypes((*iter)->mutationTypes()); } } #endif } #if ENABLE(SVG) static inline HashSet instancesForSVGElement(Node* node) { HashSet instances; ASSERT(node); if (!node->isSVGElement() || node->shadowTreeRootNode()) return HashSet(); SVGElement* element = static_cast(node); if (!element->isStyled()) return HashSet(); SVGStyledElement* styledElement = static_cast(element); ASSERT(!styledElement->instanceUpdatesBlocked()); return styledElement->instancesForElement(); } #endif static inline bool tryAddEventListener(Node* targetNode, const AtomicString& eventType, PassRefPtr listener, bool useCapture) { if (!targetNode->EventTarget::addEventListener(eventType, listener, useCapture)) return false; if (Document* document = targetNode->document()) { document->addListenerTypeIfNeeded(eventType); if (eventType == eventNames().mousewheelEvent) document->didAddWheelEventHandler(); } return true; } bool Node::addEventListener(const AtomicString& eventType, PassRefPtr listener, bool useCapture) { #if !ENABLE(SVG) return tryAddEventListener(this, eventType, listener, useCapture); #else if (!isSVGElement()) return tryAddEventListener(this, eventType, listener, useCapture); HashSet instances = instancesForSVGElement(this); if (instances.isEmpty()) return tryAddEventListener(this, eventType, listener, useCapture); RefPtr listenerForRegularTree = listener; RefPtr listenerForShadowTree = listenerForRegularTree; // Add event listener to regular DOM element if (!tryAddEventListener(this, eventType, listenerForRegularTree.release(), useCapture)) return false; // Add event listener to all shadow tree DOM element instances const HashSet::const_iterator end = instances.end(); for (HashSet::const_iterator it = instances.begin(); it != end; ++it) { ASSERT((*it)->shadowTreeElement()); ASSERT((*it)->correspondingElement() == this); RefPtr listenerForCurrentShadowTreeElement = listenerForShadowTree; bool result = tryAddEventListener((*it)->shadowTreeElement(), eventType, listenerForCurrentShadowTreeElement.release(), useCapture); ASSERT_UNUSED(result, result); } return true; #endif } static inline bool tryRemoveEventListener(Node* targetNode, const AtomicString& eventType, EventListener* listener, bool useCapture) { if (!targetNode->EventTarget::removeEventListener(eventType, listener, useCapture)) return false; // FIXME: Notify Document that the listener has vanished. We need to keep track of a number of // listeners for each type, not just a bool - see https://bugs.webkit.org/show_bug.cgi?id=33861 if (Document* document = targetNode->document()) { if (eventType == eventNames().mousewheelEvent) document->didRemoveWheelEventHandler(); } return true; } bool Node::removeEventListener(const AtomicString& eventType, EventListener* listener, bool useCapture) { #if !ENABLE(SVG) return tryRemoveEventListener(this, eventType, listener, useCapture); #else if (!isSVGElement()) return tryRemoveEventListener(this, eventType, listener, useCapture); HashSet instances = instancesForSVGElement(this); if (instances.isEmpty()) return tryRemoveEventListener(this, eventType, listener, useCapture); // EventTarget::removeEventListener creates a PassRefPtr around the given EventListener // object when creating a temporary RegisteredEventListener object used to look up the // event listener in a cache. If we want to be able to call removeEventListener() multiple // times on different nodes, we have to delay its immediate destruction, which would happen // after the first call below. RefPtr protector(listener); // Remove event listener from regular DOM element if (!tryRemoveEventListener(this, eventType, listener, useCapture)) return false; // Remove event listener from all shadow tree DOM element instances const HashSet::const_iterator end = instances.end(); for (HashSet::const_iterator it = instances.begin(); it != end; ++it) { ASSERT((*it)->correspondingElement() == this); SVGElement* shadowTreeElement = (*it)->shadowTreeElement(); ASSERT(shadowTreeElement); if (tryRemoveEventListener(shadowTreeElement, eventType, listener, useCapture)) continue; // This case can only be hit for event listeners created from markup ASSERT(listener->wasCreatedFromMarkup()); // If the event listener 'listener' has been created from markup and has been fired before // then JSLazyEventListener::parseCode() has been called and m_jsFunction of that listener // has been created (read: it's not 0 anymore). During shadow tree creation, the event // listener DOM attribute has been cloned, and another event listener has been setup in // the shadow tree. If that event listener has not been used yet, m_jsFunction is still 0, // and tryRemoveEventListener() above will fail. Work around that very seldom problem. EventTargetData* data = shadowTreeElement->eventTargetData(); ASSERT(data); data->eventListenerMap.removeFirstEventListenerCreatedFromMarkup(eventType); } return true; #endif } EventTargetData* Node::eventTargetData() { return hasRareData() ? rareData()->eventTargetData() : 0; } EventTargetData* Node::ensureEventTargetData() { return ensureRareData()->ensureEventTargetData(); } #if ENABLE(MUTATION_OBSERVERS) Vector >* Node::mutationObserverRegistry() { return hasRareData() ? rareData()->mutationObserverRegistry() : 0; } HashSet* Node::transientMutationObserverRegistry() { return hasRareData() ? rareData()->transientMutationObserverRegistry() : 0; } void Node::collectMatchingObserversForMutation(HashMap& observers, Node* fromNode, WebKitMutationObserver::MutationType type, const AtomicString& attributeName) { if (Vector >* registry = fromNode->mutationObserverRegistry()) { const size_t size = registry->size(); for (size_t i = 0; i < size; ++i) { MutationObserverRegistration* registration = registry->at(i).get(); if (registration->shouldReceiveMutationFrom(this, type, attributeName)) { MutationRecordDeliveryOptions deliveryOptions = registration->deliveryOptions(); pair::iterator, bool> result = observers.add(registration->observer(), deliveryOptions); if (!result.second) result.first->second |= deliveryOptions; } } } if (HashSet* transientRegistry = fromNode->transientMutationObserverRegistry()) { for (HashSet::iterator iter = transientRegistry->begin(); iter != transientRegistry->end(); ++iter) { MutationObserverRegistration* registration = *iter; if (registration->shouldReceiveMutationFrom(this, type, attributeName)) { MutationRecordDeliveryOptions deliveryOptions = registration->deliveryOptions(); pair::iterator, bool> result = observers.add(registration->observer(), deliveryOptions); if (!result.second) result.first->second |= deliveryOptions; } } } } void Node::getRegisteredMutationObserversOfType(HashMap& observers, WebKitMutationObserver::MutationType type, const AtomicString& attributeName) { collectMatchingObserversForMutation(observers, this, type, attributeName); for (Node* node = parentNode(); node; node = node->parentNode()) collectMatchingObserversForMutation(observers, node, type, attributeName); } MutationObserverRegistration* Node::registerMutationObserver(PassRefPtr observer) { Vector >* registry = ensureRareData()->ensureMutationObserverRegistry(); for (size_t i = 0; i < registry->size(); ++i) { if (registry->at(i)->observer() == observer) return registry->at(i).get(); } OwnPtr registration = MutationObserverRegistration::create(observer, this); MutationObserverRegistration* registrationPtr = registration.get(); registry->append(registration.release()); return registrationPtr; } void Node::unregisterMutationObserver(MutationObserverRegistration* registration) { Vector >* registry = mutationObserverRegistry(); ASSERT(registry); if (!registry) return; size_t index = registry->find(registration); ASSERT(index != notFound); if (index == notFound) return; registry->remove(index); } void Node::registerTransientMutationObserver(MutationObserverRegistration* registration) { ensureRareData()->ensureTransientMutationObserverRegistry()->add(registration); } void Node::unregisterTransientMutationObserver(MutationObserverRegistration* registration) { HashSet* transientRegistry = transientMutationObserverRegistry(); ASSERT(transientRegistry); if (!transientRegistry) return; ASSERT(transientRegistry->contains(registration)); transientRegistry->remove(registration); } void Node::notifyMutationObserversNodeWillDetach() { if (!document()->hasMutationObservers()) return; for (Node* node = parentNode(); node; node = node->parentNode()) { if (Vector >* registry = node->mutationObserverRegistry()) { const size_t size = registry->size(); for (size_t i = 0; i < size; ++i) registry->at(i)->observedSubtreeNodeWillDetach(this); } if (HashSet* transientRegistry = node->transientMutationObserverRegistry()) { for (HashSet::iterator iter = transientRegistry->begin(); iter != transientRegistry->end(); ++iter) (*iter)->observedSubtreeNodeWillDetach(this); } } } #endif // ENABLE(MUTATION_OBSERVERS) void Node::handleLocalEvents(Event* event) { if (!hasRareData() || !rareData()->eventTargetData()) return; if (disabled() && event->isMouseEvent()) return; fireEventListeners(event); } void Node::dispatchScopedEvent(PassRefPtr event) { dispatchScopedEventDispatchMediator(EventDispatchMediator::create(event)); } void Node::dispatchScopedEventDispatchMediator(PassRefPtr eventDispatchMediator) { EventDispatcher::dispatchScopedEvent(this, eventDispatchMediator); } bool Node::dispatchEvent(PassRefPtr event) { return EventDispatcher::dispatchEvent(this, EventDispatchMediator::create(event)); } void Node::dispatchSubtreeModifiedEvent() { ASSERT(!eventDispatchForbidden()); document()->incDOMTreeVersion(); if (!document()->hasListenerType(Document::DOMSUBTREEMODIFIED_LISTENER)) return; dispatchScopedEvent(MutationEvent::create(eventNames().DOMSubtreeModifiedEvent, true)); } void Node::dispatchFocusInEvent(const AtomicString& eventType, PassRefPtr oldFocusedNode) { ASSERT(!eventDispatchForbidden()); ASSERT(eventType == eventNames().focusinEvent || eventType == eventNames().DOMFocusInEvent); dispatchScopedEventDispatchMediator(FocusInEventDispatchMediator::create(UIEvent::create(eventType, true, false, document()->defaultView(), 0), oldFocusedNode)); } void Node::dispatchFocusOutEvent(const AtomicString& eventType, PassRefPtr newFocusedNode) { ASSERT(!eventDispatchForbidden()); ASSERT(eventType == eventNames().focusoutEvent || eventType == eventNames().DOMFocusOutEvent); dispatchScopedEventDispatchMediator(FocusOutEventDispatchMediator::create(UIEvent::create(eventType, true, false, document()->defaultView(), 0), newFocusedNode)); } void Node::dispatchDOMActivateEvent(int detail, PassRefPtr underlyingEvent) { ASSERT(!eventDispatchForbidden()); RefPtr event = UIEvent::create(eventNames().DOMActivateEvent, true, true, document()->defaultView(), detail); event->setUnderlyingEvent(underlyingEvent); dispatchScopedEvent(event.release()); } bool Node::dispatchKeyEvent(const PlatformKeyboardEvent& event) { return EventDispatcher::dispatchEvent(this, KeyboardEventDispatchMediator::create(KeyboardEvent::create(event, document()->defaultView()))); } bool Node::dispatchMouseEvent(const PlatformMouseEvent& event, const AtomicString& eventType, int detail, Node* relatedTarget) { return EventDispatcher::dispatchEvent(this, MouseEventDispatchMediator::create(MouseEvent::create(eventType, document()->defaultView(), event, detail, relatedTarget))); } void Node::dispatchSimulatedClick(PassRefPtr event, bool sendMouseEvents, bool showPressedLook) { EventDispatcher::dispatchSimulatedClick(this, event, sendMouseEvents, showPressedLook); } bool Node::dispatchWheelEvent(const PlatformWheelEvent& event) { return EventDispatcher::dispatchEvent(this, WheelEventDispatchMediator::create(event, document()->defaultView())); } void Node::dispatchFocusEvent(PassRefPtr oldFocusedNode) { if (document()->page()) document()->page()->chrome()->client()->elementDidFocus(this); EventDispatcher::dispatchEvent(this, FocusEventDispatchMediator::create(oldFocusedNode)); } void Node::dispatchBlurEvent(PassRefPtr newFocusedNode) { if (document()->page()) document()->page()->chrome()->client()->elementDidBlur(this); EventDispatcher::dispatchEvent(this, BlurEventDispatchMediator::create(newFocusedNode)); } void Node::dispatchChangeEvent() { dispatchEvent(Event::create(eventNames().changeEvent, true, false)); } void Node::dispatchInputEvent() { dispatchEvent(Event::create(eventNames().inputEvent, true, false)); } bool Node::disabled() const { return false; } void Node::defaultEventHandler(Event* event) { if (event->target() != this) return; const AtomicString& eventType = event->type(); if (eventType == eventNames().keydownEvent || eventType == eventNames().keypressEvent) { if (event->isKeyboardEvent()) if (Frame* frame = document()->frame()) frame->eventHandler()->defaultKeyboardEventHandler(static_cast(event)); } else if (eventType == eventNames().clickEvent) { int detail = event->isUIEvent() ? static_cast(event)->detail() : 0; dispatchDOMActivateEvent(detail, event); #if ENABLE(CONTEXT_MENUS) } else if (eventType == eventNames().contextmenuEvent) { if (Frame* frame = document()->frame()) if (Page* page = frame->page()) page->contextMenuController()->handleContextMenuEvent(event); #endif } else if (eventType == eventNames().textInputEvent) { if (event->hasInterface(eventNames().interfaceForTextEvent)) if (Frame* frame = document()->frame()) frame->eventHandler()->defaultTextInputEventHandler(static_cast(event)); #if ENABLE(PAN_SCROLLING) } else if (eventType == eventNames().mousedownEvent && event->isMouseEvent()) { MouseEvent* mouseEvent = static_cast(event); if (mouseEvent->button() == MiddleButton) { if (enclosingLinkEventParentOrSelf()) return; RenderObject* renderer = this->renderer(); while (renderer && (!renderer->isBox() || !toRenderBox(renderer)->canBeScrolledAndHasScrollableArea())) renderer = renderer->parent(); if (renderer) { if (Frame* frame = document()->frame()) frame->eventHandler()->startPanScrolling(renderer); } } #endif } else if (eventType == eventNames().mousewheelEvent && event->hasInterface(eventNames().interfaceForWheelEvent)) { WheelEvent* wheelEvent = static_cast(event); // If we don't have a renderer, send the wheel event to the first node we find with a renderer. // This is needed for elements so that