/* * Copyright (C) 2007, 2009, 2010 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "TimeRanges.h" #include "ExceptionCode.h" #include "ExceptionCodePlaceholder.h" #include using namespace WebCore; using namespace std; TimeRanges::TimeRanges(double start, double end) { add(start, end); } PassRefPtr TimeRanges::copy() const { RefPtr newSession = TimeRanges::create(); unsigned size = m_ranges.size(); for (unsigned i = 0; i < size; i++) newSession->add(m_ranges[i].m_start, m_ranges[i].m_end); return newSession.release(); } void TimeRanges::invert() { RefPtr inverted = TimeRanges::create(); double posInf = std::numeric_limits::infinity(); double negInf = -std::numeric_limits::infinity(); if (!m_ranges.size()) inverted->add(negInf, posInf); else { if (double start = m_ranges.first().m_start != negInf) inverted->add(negInf, start); for (size_t index = 0; index + 1 < m_ranges.size(); ++index) inverted->add(m_ranges[index].m_end, m_ranges[index + 1].m_start); if (double end = m_ranges.last().m_end != posInf) inverted->add(end, posInf); } m_ranges.swap(inverted->m_ranges); } void TimeRanges::intersectWith(const TimeRanges* other) { ASSERT(other); RefPtr inverted = copy(); RefPtr invertedOther = other->copy(); inverted->unionWith(invertedOther.get()); inverted->invert(); m_ranges.swap(inverted->m_ranges); } void TimeRanges::unionWith(const TimeRanges* other) { ASSERT(other); RefPtr unioned = copy(); for (size_t index = 0; index < other->m_ranges.size(); ++index) { const Range& range = other->m_ranges[index]; unioned->add(range.m_start, range.m_end); } m_ranges.swap(unioned->m_ranges); } double TimeRanges::start(unsigned index, ExceptionCode& ec) const { if (index >= length()) { ec = INDEX_SIZE_ERR; return 0; } return m_ranges[index].m_start; } double TimeRanges::end(unsigned index, ExceptionCode& ec) const { if (index >= length()) { ec = INDEX_SIZE_ERR; return 0; } return m_ranges[index].m_end; } void TimeRanges::add(double start, double end) { ASSERT(start <= end); unsigned int overlappingArcIndex; Range addedRange(start, end); // For each present range check if we need to: // - merge with the added range, in case we are overlapping or contiguous // - Need to insert in place, we we are completely, not overlapping and not contiguous // in between two ranges. // // TODO: Given that we assume that ranges are correctly ordered, this could be optimized. for (overlappingArcIndex = 0; overlappingArcIndex < m_ranges.size(); overlappingArcIndex++) { if (addedRange.isOverlappingRange(m_ranges[overlappingArcIndex]) || addedRange.isContiguousWithRange(m_ranges[overlappingArcIndex])) { // We need to merge the addedRange and that range. addedRange = addedRange.unionWithOverlappingOrContiguousRange(m_ranges[overlappingArcIndex]); m_ranges.remove(overlappingArcIndex); overlappingArcIndex--; } else { // Check the case for which there is no more to do if (!overlappingArcIndex) { if (addedRange.isBeforeRange(m_ranges[0])) { // First index, and we are completely before that range (and not contiguous, nor overlapping). // We just need to be inserted here. break; } } else { if (m_ranges[overlappingArcIndex - 1].isBeforeRange(addedRange) && addedRange.isBeforeRange(m_ranges[overlappingArcIndex])) { // We are exactly after the current previous range, and before the current range, while // not overlapping with none of them. Insert here. break; } } } } // Now that we are sure we don't overlap with any range, just add it. m_ranges.insert(overlappingArcIndex, addedRange); } bool TimeRanges::contain(double time) const { for (unsigned n = 0; n < length(); n++) { if (time >= start(n, IGNORE_EXCEPTION) && time <= end(n, IGNORE_EXCEPTION)) return true; } return false; } double TimeRanges::nearest(double time) const { double closestDelta = std::numeric_limits::infinity(); double closestTime = 0; unsigned count = length(); for (unsigned ndx = 0; ndx < count; ndx++) { double startTime = start(ndx, IGNORE_EXCEPTION); double endTime = end(ndx, IGNORE_EXCEPTION); if (time >= startTime && time <= endTime) return time; if (fabs(startTime - time) < closestDelta) { closestTime = startTime; closestDelta = fabsf(startTime - time); } if (fabs(endTime - time) < closestDelta) { closestTime = endTime; closestDelta = fabsf(endTime - time); } } return closestTime; } double TimeRanges::totalDuration() const { double total = 0; for (unsigned n = 0; n < length(); n++) total += fabs(end(n, IGNORE_EXCEPTION) - start(n, IGNORE_EXCEPTION)); return total; }