%% The contents of this file are subject to the Mozilla Public License %% Version 1.1 (the "License"); you may not use this file except in %% compliance with the License. You may obtain a copy of the License %% at http://www.mozilla.org/MPL/ %% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and %% limitations under the License. %% %% The Original Code is RabbitMQ. %% %% The Initial Developer of the Original Code is VMware, Inc. %% Copyright (c) 2007-2012 VMware, Inc. All rights reserved. %% %% A dual-index tree. %% %% Entries have the following shape: %% %% +----+--------------------+---+ %% | PK | SK1, SK2, ..., SKN | V | %% +----+--------------------+---+ %% %% i.e. a primary key, set of secondary keys, and a value. %% %% There can be only one entry per primary key, but secondary keys may %% appear in multiple entries. %% %% The set of secondary keys must be non-empty. Or, to put it another %% way, entries only exist while their secondary key set is non-empty. -module(dtree). -export([empty/0, insert/4, take/3, take/2, take_all/2, is_defined/2, is_empty/1, smallest/1, size/1]). %%---------------------------------------------------------------------------- -ifdef(use_specs). -export_type([?MODULE/0]). -opaque(?MODULE() :: {gb_tree(), gb_tree()}). -type(pk() :: any()). -type(sk() :: any()). -type(val() :: any()). -type(kv() :: {pk(), val()}). -spec(empty/0 :: () -> ?MODULE()). -spec(insert/4 :: (pk(), [sk()], val(), ?MODULE()) -> ?MODULE()). -spec(take/3 :: ([pk()], sk(), ?MODULE()) -> {[kv()], ?MODULE()}). -spec(take/2 :: (sk(), ?MODULE()) -> {[kv()], ?MODULE()}). -spec(take_all/2 :: (sk(), ?MODULE()) -> {[kv()], ?MODULE()}). -spec(is_defined/2 :: (sk(), ?MODULE()) -> boolean()). -spec(is_empty/1 :: (?MODULE()) -> boolean()). -spec(smallest/1 :: (?MODULE()) -> kv()). -spec(size/1 :: (?MODULE()) -> non_neg_integer()). -endif. %%---------------------------------------------------------------------------- empty() -> {gb_trees:empty(), gb_trees:empty()}. %% Insert an entry. Fails if there already is an entry with the given %% primary key. insert(PK, [], V, {P, S}) -> %% dummy insert to force error if PK exists gb_trees:insert(PK, {gb_sets:empty(), V}, P), {P, S}; insert(PK, SKs, V, {P, S}) -> {gb_trees:insert(PK, {gb_sets:from_list(SKs), V}, P), lists:foldl(fun (SK, S0) -> case gb_trees:lookup(SK, S0) of {value, PKS} -> PKS1 = gb_sets:insert(PK, PKS), gb_trees:update(SK, PKS1, S0); none -> PKS = gb_sets:singleton(PK), gb_trees:insert(SK, PKS, S0) end end, S, SKs)}. %% Remove the given secondary key from the entries of the given %% primary keys, returning the primary-key/value pairs of any entries %% that were dropped as the result (i.e. due to their secondary key %% set becoming empty). It is ok for the given primary keys and/or %% secondary key to not exist. take(PKs, SK, {P, S}) -> case gb_trees:lookup(SK, S) of none -> {[], {P, S}}; {value, PKS} -> TakenPKS = gb_sets:from_list(PKs), PKSInter = gb_sets:intersection(PKS, TakenPKS), PKSDiff = gb_sets_difference (PKS, PKSInter), {KVs, P1} = take2(PKSInter, SK, P), {KVs, {P1, case gb_sets:is_empty(PKSDiff) of true -> gb_trees:delete(SK, S); false -> gb_trees:update(SK, PKSDiff, S) end}} end. %% Remove the given secondary key from all entries, returning the %% primary-key/value pairs of any entries that were dropped as the %% result (i.e. due to their secondary key set becoming empty). It is %% ok for the given secondary key to not exist. take(SK, {P, S}) -> case gb_trees:lookup(SK, S) of none -> {[], {P, S}}; {value, PKS} -> {KVs, P1} = take2(PKS, SK, P), {KVs, {P1, gb_trees:delete(SK, S)}} end. %% Drop all entries which contain the given secondary key, returning %% the primary-key/value pairs of these entries. It is ok for the %% given secondary key to not exist. take_all(SK, {P, S}) -> case gb_trees:lookup(SK, S) of none -> {[], {P, S}}; {value, PKS} -> {KVs, SKS, P1} = take_all2(PKS, P), {KVs, {P1, prune(SKS, PKS, S)}} end. is_defined(SK, {_P, S}) -> gb_trees:is_defined(SK, S). is_empty({P, _S}) -> gb_trees:is_empty(P). smallest({P, _S}) -> {K, {_SKS, V}} = gb_trees:smallest(P), {K, V}. size({P, _S}) -> gb_trees:size(P). %%---------------------------------------------------------------------------- take2(PKS, SK, P) -> gb_sets:fold(fun (PK, {KVs, P0}) -> {SKS, V} = gb_trees:get(PK, P0), SKS1 = gb_sets:delete(SK, SKS), case gb_sets:is_empty(SKS1) of true -> KVs1 = [{PK, V} | KVs], {KVs1, gb_trees:delete(PK, P0)}; false -> {KVs, gb_trees:update(PK, {SKS1, V}, P0)} end end, {[], P}, PKS). take_all2(PKS, P) -> gb_sets:fold(fun (PK, {KVs, SKS0, P0}) -> {SKS, V} = gb_trees:get(PK, P0), {[{PK, V} | KVs], gb_sets:union(SKS, SKS0), gb_trees:delete(PK, P0)} end, {[], gb_sets:empty(), P}, PKS). prune(SKS, PKS, S) -> gb_sets:fold(fun (SK0, S0) -> PKS1 = gb_trees:get(SK0, S0), PKS2 = gb_sets_difference(PKS1, PKS), case gb_sets:is_empty(PKS2) of true -> gb_trees:delete(SK0, S0); false -> gb_trees:update(SK0, PKS2, S0) end end, S, SKS). gb_sets_difference(S1, S2) -> gb_sets:fold(fun gb_sets:delete_any/2, S1, S2).