1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
%% The contents of this file are subject to the Mozilla Public License
%% Version 1.1 (the "License"); you may not use this file except in
%% compliance with the License. You may obtain a copy of the License
%% at http://www.mozilla.org/MPL/
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and
%% limitations under the License.
%%
%% The Original Code is RabbitMQ.
%%
%% The Initial Developer of the Original Code is VMware, Inc.
%% Copyright (c) 2007-2012 VMware, Inc. All rights reserved.
%%
%% A dual-index tree.
%%
%% Entries have the following shape:
%%
%% +----+--------------------+---+
%% | PK | SK1, SK2, ..., SKN | V |
%% +----+--------------------+---+
%%
%% i.e. a primary key, set of secondary keys, and a value.
%%
%% There can be only one entry per primary key, but secondary keys may
%% appear in multiple entries.
%%
%% The set of secondary keys must be non-empty. Or, to put it another
%% way, entries only exist while their secondary key set is non-empty.
-module(dtree).
-export([empty/0, insert/4, take/3, take/2, take_all/2,
is_defined/2, is_empty/1, smallest/1, size/1]).
%%----------------------------------------------------------------------------
-ifdef(use_specs).
-export_type([?MODULE/0]).
-opaque(?MODULE() :: {gb_tree(), gb_tree()}).
-type(pk() :: any()).
-type(sk() :: any()).
-type(val() :: any()).
-type(kv() :: {pk(), val()}).
-spec(empty/0 :: () -> ?MODULE()).
-spec(insert/4 :: (pk(), [sk()], val(), ?MODULE()) -> ?MODULE()).
-spec(take/3 :: ([pk()], sk(), ?MODULE()) -> {[kv()], ?MODULE()}).
-spec(take/2 :: (sk(), ?MODULE()) -> {[kv()], ?MODULE()}).
-spec(take_all/2 :: (sk(), ?MODULE()) -> {[kv()], ?MODULE()}).
-spec(is_defined/2 :: (sk(), ?MODULE()) -> boolean()).
-spec(is_empty/1 :: (?MODULE()) -> boolean()).
-spec(smallest/1 :: (?MODULE()) -> kv()).
-spec(size/1 :: (?MODULE()) -> non_neg_integer()).
-endif.
%%----------------------------------------------------------------------------
empty() -> {gb_trees:empty(), gb_trees:empty()}.
%% Insert an entry. Fails if there already is an entry with the given
%% primary key.
insert(PK, [], V, {P, S}) ->
%% dummy insert to force error if PK exists
gb_trees:insert(PK, {gb_sets:empty(), V}, P),
{P, S};
insert(PK, SKs, V, {P, S}) ->
{gb_trees:insert(PK, {gb_sets:from_list(SKs), V}, P),
lists:foldl(fun (SK, S0) ->
case gb_trees:lookup(SK, S0) of
{value, PKS} -> PKS1 = gb_sets:insert(PK, PKS),
gb_trees:update(SK, PKS1, S0);
none -> PKS = gb_sets:singleton(PK),
gb_trees:insert(SK, PKS, S0)
end
end, S, SKs)}.
%% Remove the given secondary key from the entries of the given
%% primary keys, returning the primary-key/value pairs of any entries
%% that were dropped as the result (i.e. due to their secondary key
%% set becoming empty). It is ok for the given primary keys and/or
%% secondary key to not exist.
take(PKs, SK, {P, S}) ->
case gb_trees:lookup(SK, S) of
none -> {[], {P, S}};
{value, PKS} -> TakenPKS = gb_sets:from_list(PKs),
PKSInter = gb_sets:intersection(PKS, TakenPKS),
PKSDiff = gb_sets_difference (PKS, PKSInter),
{KVs, P1} = take2(PKSInter, SK, P),
{KVs, {P1, case gb_sets:is_empty(PKSDiff) of
true -> gb_trees:delete(SK, S);
false -> gb_trees:update(SK, PKSDiff, S)
end}}
end.
%% Remove the given secondary key from all entries, returning the
%% primary-key/value pairs of any entries that were dropped as the
%% result (i.e. due to their secondary key set becoming empty). It is
%% ok for the given secondary key to not exist.
take(SK, {P, S}) ->
case gb_trees:lookup(SK, S) of
none -> {[], {P, S}};
{value, PKS} -> {KVs, P1} = take2(PKS, SK, P),
{KVs, {P1, gb_trees:delete(SK, S)}}
end.
%% Drop all entries which contain the given secondary key, returning
%% the primary-key/value pairs of these entries. It is ok for the
%% given secondary key to not exist.
take_all(SK, {P, S}) ->
case gb_trees:lookup(SK, S) of
none -> {[], {P, S}};
{value, PKS} -> {KVs, SKS, P1} = take_all2(PKS, P),
{KVs, {P1, prune(SKS, PKS, S)}}
end.
is_defined(SK, {_P, S}) -> gb_trees:is_defined(SK, S).
is_empty({P, _S}) -> gb_trees:is_empty(P).
smallest({P, _S}) -> {K, {_SKS, V}} = gb_trees:smallest(P),
{K, V}.
size({P, _S}) -> gb_trees:size(P).
%%----------------------------------------------------------------------------
take2(PKS, SK, P) ->
gb_sets:fold(fun (PK, {KVs, P0}) ->
{SKS, V} = gb_trees:get(PK, P0),
SKS1 = gb_sets:delete(SK, SKS),
case gb_sets:is_empty(SKS1) of
true -> KVs1 = [{PK, V} | KVs],
{KVs1, gb_trees:delete(PK, P0)};
false -> {KVs, gb_trees:update(PK, {SKS1, V}, P0)}
end
end, {[], P}, PKS).
take_all2(PKS, P) ->
gb_sets:fold(fun (PK, {KVs, SKS0, P0}) ->
{SKS, V} = gb_trees:get(PK, P0),
{[{PK, V} | KVs], gb_sets:union(SKS, SKS0),
gb_trees:delete(PK, P0)}
end, {[], gb_sets:empty(), P}, PKS).
prune(SKS, PKS, S) ->
gb_sets:fold(fun (SK0, S0) ->
PKS1 = gb_trees:get(SK0, S0),
PKS2 = gb_sets_difference(PKS1, PKS),
case gb_sets:is_empty(PKS2) of
true -> gb_trees:delete(SK0, S0);
false -> gb_trees:update(SK0, PKS2, S0)
end
end, S, SKS).
gb_sets_difference(S1, S2) ->
gb_sets:fold(fun gb_sets:delete_any/2, S1, S2).
|