1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
%% The contents of this file are subject to the Mozilla Public License
%% Version 1.1 (the "License"); you may not use this file except in
%% compliance with the License. You may obtain a copy of the License
%% at http://www.mozilla.org/MPL/
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and
%% limitations under the License.
%%
%% The Original Code is RabbitMQ.
%%
%% The Initial Developer of the Original Code is GoPivotal, Inc.
%% Copyright (c) 2007-2014 GoPivotal, Inc. All rights reserved.
%%
%% Priority queues have essentially the same interface as ordinary
%% queues, except that a) there is an in/3 that takes a priority, and
%% b) we have only implemented the core API we need.
%%
%% Priorities should be integers - the higher the value the higher the
%% priority - but we don't actually check that.
%%
%% in/2 inserts items with priority 0.
%%
%% We optimise the case where a priority queue is being used just like
%% an ordinary queue. When that is the case we represent the priority
%% queue as an ordinary queue. We could just call into the 'queue'
%% module for that, but for efficiency we implement the relevant
%% functions directly in here, thus saving on inter-module calls and
%% eliminating a level of boxing.
%%
%% When the queue contains items with non-zero priorities, it is
%% represented as a sorted kv list with the inverted Priority as the
%% key and an ordinary queue as the value. Here again we use our own
%% ordinary queue implemention for efficiency, often making recursive
%% calls into the same function knowing that ordinary queues represent
%% a base case.
-module(priority_queue).
-export([new/0, is_queue/1, is_empty/1, len/1, to_list/1, from_list/1,
in/2, in/3, out/1, out_p/1, join/2, filter/2, fold/3, highest/1]).
%%----------------------------------------------------------------------------
-ifdef(use_specs).
-export_type([q/0]).
-type(q() :: pqueue()).
-type(priority() :: integer() | 'infinity').
-type(squeue() :: {queue, [any()], [any()], non_neg_integer()}).
-type(pqueue() :: squeue() | {pqueue, [{priority(), squeue()}]}).
-spec(new/0 :: () -> pqueue()).
-spec(is_queue/1 :: (any()) -> boolean()).
-spec(is_empty/1 :: (pqueue()) -> boolean()).
-spec(len/1 :: (pqueue()) -> non_neg_integer()).
-spec(to_list/1 :: (pqueue()) -> [{priority(), any()}]).
-spec(from_list/1 :: ([{priority(), any()}]) -> pqueue()).
-spec(in/2 :: (any(), pqueue()) -> pqueue()).
-spec(in/3 :: (any(), priority(), pqueue()) -> pqueue()).
-spec(out/1 :: (pqueue()) -> {empty | {value, any()}, pqueue()}).
-spec(out_p/1 :: (pqueue()) -> {empty | {value, any(), priority()}, pqueue()}).
-spec(join/2 :: (pqueue(), pqueue()) -> pqueue()).
-spec(filter/2 :: (fun ((any()) -> boolean()), pqueue()) -> pqueue()).
-spec(fold/3 ::
(fun ((any(), priority(), A) -> A), A, pqueue()) -> A).
-spec(highest/1 :: (pqueue()) -> priority() | 'empty').
-endif.
%%----------------------------------------------------------------------------
new() ->
{queue, [], [], 0}.
is_queue({queue, R, F, L}) when is_list(R), is_list(F), is_integer(L) ->
true;
is_queue({pqueue, Queues}) when is_list(Queues) ->
lists:all(fun ({infinity, Q}) -> is_queue(Q);
({P, Q}) -> is_integer(P) andalso is_queue(Q)
end, Queues);
is_queue(_) ->
false.
is_empty({queue, [], [], 0}) ->
true;
is_empty(_) ->
false.
len({queue, _R, _F, L}) ->
L;
len({pqueue, Queues}) ->
lists:sum([len(Q) || {_, Q} <- Queues]).
to_list({queue, In, Out, _Len}) when is_list(In), is_list(Out) ->
[{0, V} || V <- Out ++ lists:reverse(In, [])];
to_list({pqueue, Queues}) ->
[{maybe_negate_priority(P), V} || {P, Q} <- Queues,
{0, V} <- to_list(Q)].
from_list(L) ->
lists:foldl(fun ({P, E}, Q) -> in(E, P, Q) end, new(), L).
in(Item, Q) ->
in(Item, 0, Q).
in(X, 0, {queue, [_] = In, [], 1}) ->
{queue, [X], In, 2};
in(X, 0, {queue, In, Out, Len}) when is_list(In), is_list(Out) ->
{queue, [X|In], Out, Len + 1};
in(X, Priority, _Q = {queue, [], [], 0}) ->
in(X, Priority, {pqueue, []});
in(X, Priority, Q = {queue, _, _, _}) ->
in(X, Priority, {pqueue, [{0, Q}]});
in(X, Priority, {pqueue, Queues}) ->
P = maybe_negate_priority(Priority),
{pqueue, case lists:keysearch(P, 1, Queues) of
{value, {_, Q}} ->
lists:keyreplace(P, 1, Queues, {P, in(X, Q)});
false when P == infinity ->
[{P, {queue, [X], [], 1}} | Queues];
false ->
case Queues of
[{infinity, InfQueue} | Queues1] ->
[{infinity, InfQueue} |
lists:keysort(1, [{P, {queue, [X], [], 1}} | Queues1])];
_ ->
lists:keysort(1, [{P, {queue, [X], [], 1}} | Queues])
end
end}.
out({queue, [], [], 0} = Q) ->
{empty, Q};
out({queue, [V], [], 1}) ->
{{value, V}, {queue, [], [], 0}};
out({queue, [Y|In], [], Len}) ->
[V|Out] = lists:reverse(In, []),
{{value, V}, {queue, [Y], Out, Len - 1}};
out({queue, In, [V], Len}) when is_list(In) ->
{{value,V}, r2f(In, Len - 1)};
out({queue, In,[V|Out], Len}) when is_list(In) ->
{{value, V}, {queue, In, Out, Len - 1}};
out({pqueue, [{P, Q} | Queues]}) ->
{R, Q1} = out(Q),
NewQ = case is_empty(Q1) of
true -> case Queues of
[] -> {queue, [], [], 0};
[{0, OnlyQ}] -> OnlyQ;
[_|_] -> {pqueue, Queues}
end;
false -> {pqueue, [{P, Q1} | Queues]}
end,
{R, NewQ}.
out_p({queue, _, _, _} = Q) -> add_p(out(Q), 0);
out_p({pqueue, [{P, _} | _]} = Q) -> add_p(out(Q), maybe_negate_priority(P)).
add_p(R, P) -> case R of
{empty, Q} -> {empty, Q};
{{value, V}, Q} -> {{value, V, P}, Q}
end.
join(A, {queue, [], [], 0}) ->
A;
join({queue, [], [], 0}, B) ->
B;
join({queue, AIn, AOut, ALen}, {queue, BIn, BOut, BLen}) ->
{queue, BIn, AOut ++ lists:reverse(AIn, BOut), ALen + BLen};
join(A = {queue, _, _, _}, {pqueue, BPQ}) ->
{Pre, Post} =
lists:splitwith(fun ({P, _}) -> P < 0 orelse P == infinity end, BPQ),
Post1 = case Post of
[] -> [ {0, A} ];
[ {0, ZeroQueue} | Rest ] -> [ {0, join(A, ZeroQueue)} | Rest ];
_ -> [ {0, A} | Post ]
end,
{pqueue, Pre ++ Post1};
join({pqueue, APQ}, B = {queue, _, _, _}) ->
{Pre, Post} =
lists:splitwith(fun ({P, _}) -> P < 0 orelse P == infinity end, APQ),
Post1 = case Post of
[] -> [ {0, B} ];
[ {0, ZeroQueue} | Rest ] -> [ {0, join(ZeroQueue, B)} | Rest ];
_ -> [ {0, B} | Post ]
end,
{pqueue, Pre ++ Post1};
join({pqueue, APQ}, {pqueue, BPQ}) ->
{pqueue, merge(APQ, BPQ, [])}.
merge([], BPQ, Acc) ->
lists:reverse(Acc, BPQ);
merge(APQ, [], Acc) ->
lists:reverse(Acc, APQ);
merge([{P, A}|As], [{P, B}|Bs], Acc) ->
merge(As, Bs, [ {P, join(A, B)} | Acc ]);
merge([{PA, A}|As], Bs = [{PB, _}|_], Acc) when PA < PB orelse PA == infinity ->
merge(As, Bs, [ {PA, A} | Acc ]);
merge(As = [{_, _}|_], [{PB, B}|Bs], Acc) ->
merge(As, Bs, [ {PB, B} | Acc ]).
filter(Pred, Q) -> fold(fun(V, P, Acc) ->
case Pred(V) of
true -> in(V, P, Acc);
false -> Acc
end
end, new(), Q).
fold(Fun, Init, Q) -> case out_p(Q) of
{empty, _Q} -> Init;
{{value, V, P}, Q1} -> fold(Fun, Fun(V, P, Init), Q1)
end.
highest({queue, [], [], 0}) -> empty;
highest({queue, _, _, _}) -> 0;
highest({pqueue, [{P, _} | _]}) -> maybe_negate_priority(P).
r2f([], 0) -> {queue, [], [], 0};
r2f([_] = R, 1) -> {queue, [], R, 1};
r2f([X,Y], 2) -> {queue, [X], [Y], 2};
r2f([X,Y|R], L) -> {queue, [X,Y], lists:reverse(R, []), L}.
maybe_negate_priority(infinity) -> infinity;
maybe_negate_priority(P) -> -P.
|