summaryrefslogtreecommitdiff
path: root/src/rabbit_mirror_queue_master.erl
blob: 0e7f32f05b4589e5c04e030905fa876f47e2ec79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
%% The contents of this file are subject to the Mozilla Public License
%% Version 1.1 (the "License"); you may not use this file except in
%% compliance with the License. You may obtain a copy of the License at
%% http://www.mozilla.org/MPL/
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
%% License for the specific language governing rights and limitations
%% under the License.
%%
%% The Original Code is RabbitMQ.
%%
%% The Initial Developer of the Original Code is VMware, Inc.
%% Copyright (c) 2007-2010 VMware, Inc.  All rights reserved.
%%

-module(rabbit_mirror_queue_master).

-export([init/4, terminate/1, delete_and_terminate/1,
         purge/1, publish/4, publish_delivered/5, fetch/2, ack/2,
         tx_publish/5, tx_ack/3, tx_rollback/2, tx_commit/4,
         requeue/3, len/1, is_empty/1, drain_confirmed/1, dropwhile/2,
         set_ram_duration_target/2, ram_duration/1,
         needs_timeout/1, timeout/1, handle_pre_hibernate/1,
         status/1, invoke/3, is_duplicate/3, discard/3]).

-export([start/1, stop/0]).

-export([promote_backing_queue_state/6, sender_death_fun/0]).

-behaviour(rabbit_backing_queue).

-include("rabbit.hrl").

-record(state, { gm,
                 coordinator,
                 backing_queue,
                 backing_queue_state,
                 set_delivered,
                 seen_status,
                 confirmed,
                 ack_msg_id,
                 known_senders
               }).

%% For general documentation of HA design, see
%% rabbit_mirror_queue_coordinator

%% ---------------------------------------------------------------------------
%% Backing queue
%% ---------------------------------------------------------------------------

start(_DurableQueues) ->
    %% This will never get called as this module will never be
    %% installed as the default BQ implementation.
    exit({not_valid_for_generic_backing_queue, ?MODULE}).

stop() ->
    %% Same as start/1.
    exit({not_valid_for_generic_backing_queue, ?MODULE}).

sender_death_fun() ->
    Self = self(),
    fun (DeadPid) ->
            %% Purposefully set the priority to 0 here so that we
            %% don't overtake any messages from DeadPid that are
            %% already in the queue.
            rabbit_amqqueue:run_backing_queue_async(
              Self, ?MODULE,
              fun (?MODULE, State = #state { gm = GM, known_senders = KS }) ->
                      rabbit_log:info("Master saw death of sender ~p~n", [DeadPid]),
                      case sets:is_element(DeadPid, KS) of
                          false ->
                              State;
                          true ->
                              ok = gm:broadcast(GM, {sender_death, DeadPid}),
                              KS1 = sets:del_element(DeadPid, KS),
                              State #state { known_senders = KS1 }
                      end
              end, 0)
    end.

init(#amqqueue { arguments = Args, name = QName } = Q, Recover,
     AsyncCallback, SyncCallback) ->
    {ok, CPid} = rabbit_mirror_queue_coordinator:start_link(
                   Q, undefined, sender_death_fun()),
    GM = rabbit_mirror_queue_coordinator:get_gm(CPid),
    {_Type, Nodes} = rabbit_misc:table_lookup(Args, <<"x-mirror">>),
    Nodes1 = case Nodes of
                 [] -> nodes();
                 _  -> [list_to_atom(binary_to_list(Node)) ||
                           {longstr, Node} <- Nodes]
             end,
    [rabbit_mirror_queue_misc:add_slave(QName, Node) || Node <- Nodes1],
    {ok, BQ} = application:get_env(backing_queue_module),
    BQS = BQ:init(Q, Recover, AsyncCallback, SyncCallback),
    #state { gm                  = GM,
             coordinator         = CPid,
             backing_queue       = BQ,
             backing_queue_state = BQS,
             set_delivered       = 0,
             seen_status         = dict:new(),
             confirmed           = [],
             ack_msg_id          = dict:new(),
             known_senders       = sets:new() }.

promote_backing_queue_state(CPid, BQ, BQS, GM, SeenStatus, KS) ->
    #state { gm                  = GM,
             coordinator         = CPid,
             backing_queue       = BQ,
             backing_queue_state = BQS,
             set_delivered       = BQ:len(BQS),
             seen_status         = SeenStatus,
             confirmed           = [],
             ack_msg_id          = dict:new(),
             known_senders       = sets:from_list(KS) }.

terminate(State = #state { backing_queue = BQ, backing_queue_state = BQS }) ->
    %% Backing queue termination. The queue is going down but
    %% shouldn't be deleted. Most likely safe shutdown of this
    %% node. Thus just let some other slave take over.
    State #state { backing_queue_state = BQ:terminate(BQS) }.

delete_and_terminate(State = #state { gm                  = GM,
                                      backing_queue       = BQ,
                                      backing_queue_state = BQS }) ->
    ok = gm:broadcast(GM, delete_and_terminate),
    State #state { backing_queue_state = BQ:delete_and_terminate(BQS),
                   set_delivered       = 0 }.

purge(State = #state { gm                  = GM,
                       backing_queue       = BQ,
                       backing_queue_state = BQS }) ->
    ok = gm:broadcast(GM, {set_length, 0}),
    {Count, BQS1} = BQ:purge(BQS),
    {Count, State #state { backing_queue_state = BQS1,
                           set_delivered       = 0 }}.

publish(Msg = #basic_message { id = MsgId }, MsgProps, ChPid,
        State = #state { gm                  = GM,
                         seen_status         = SS,
                         backing_queue       = BQ,
                         backing_queue_state = BQS }) ->
    false = dict:is_key(MsgId, SS), %% ASSERTION
    ok = gm:broadcast(GM, {publish, false, ChPid, MsgProps, Msg}),
    BQS1 = BQ:publish(Msg, MsgProps, ChPid, BQS),
    ensure_monitoring(ChPid, State #state { backing_queue_state = BQS1 }).

publish_delivered(AckRequired, Msg = #basic_message { id = MsgId }, MsgProps,
                  ChPid, State = #state { gm                  = GM,
                                          seen_status         = SS,
                                          backing_queue       = BQ,
                                          backing_queue_state = BQS,
                                          ack_msg_id          = AM }) ->
    false = dict:is_key(MsgId, SS), %% ASSERTION
    %% Must use confirmed_broadcast here in order to guarantee that
    %% all slaves are forced to interpret this publish_delivered at
    %% the same point, especially if we die and a slave is promoted.
    ok = gm:confirmed_broadcast(
           GM, {publish, {true, AckRequired}, ChPid, MsgProps, Msg}),
    {AckTag, BQS1} =
        BQ:publish_delivered(AckRequired, Msg, MsgProps, ChPid, BQS),
    AM1 = maybe_store_acktag(AckTag, MsgId, AM),
    {AckTag,
     ensure_monitoring(ChPid, State #state { backing_queue_state = BQS1,
                                             ack_msg_id          = AM1 })}.

dropwhile(Fun, State = #state { gm                  = GM,
                                backing_queue       = BQ,
                                backing_queue_state = BQS,
                                set_delivered       = SetDelivered }) ->
    Len = BQ:len(BQS),
    BQS1 = BQ:dropwhile(Fun, BQS),
    Dropped = Len - BQ:len(BQS1),
    SetDelivered1 = lists:max([0, SetDelivered - Dropped]),
    ok = gm:broadcast(GM, {set_length, BQ:len(BQS1)}),
    State #state { backing_queue_state = BQS1,
                   set_delivered       = SetDelivered1 }.

drain_confirmed(State = #state { backing_queue       = BQ,
                                 backing_queue_state = BQS,
                                 seen_status         = SS,
                                 confirmed           = Confirmed }) ->
    {MsgIds, BQS1} = BQ:drain_confirmed(BQS),
    {MsgIds1, SS1} =
        lists:foldl(
          fun (MsgId, {MsgIdsN, SSN}) ->
                  %% We will never see 'discarded' here
                  case dict:find(MsgId, SSN) of
                      error ->
                          {[MsgId | MsgIdsN], SSN};
                      {ok, published} ->
                          %% It was published when we were a slave,
                          %% and we were promoted before we saw the
                          %% publish from the channel. We still
                          %% haven't seen the channel publish, and
                          %% consequently we need to filter out the
                          %% confirm here. We will issue the confirm
                          %% when we see the publish from the channel.
                          {MsgIdsN, dict:store(MsgId, confirmed, SSN)};
                      {ok, confirmed} ->
                          %% Well, confirms are racy by definition.
                          {[MsgId | MsgIdsN], SSN}
                  end
          end, {[], SS}, MsgIds),
    {Confirmed ++ MsgIds1, State #state { backing_queue_state = BQS1,
                                          seen_status         = SS1,
                                          confirmed           = [] }}.

fetch(AckRequired, State = #state { gm                  = GM,
                                    backing_queue       = BQ,
                                    backing_queue_state = BQS,
                                    set_delivered       = SetDelivered,
                                    ack_msg_id          = AM }) ->
    {Result, BQS1} = BQ:fetch(AckRequired, BQS),
    State1 = State #state { backing_queue_state = BQS1 },
    case Result of
        empty ->
            {Result, State1};
        {#basic_message { id = MsgId } = Message, IsDelivered, AckTag,
         Remaining} ->
            ok = gm:broadcast(GM, {fetch, AckRequired, MsgId, Remaining}),
            IsDelivered1 = IsDelivered orelse SetDelivered > 0,
            SetDelivered1 = lists:max([0, SetDelivered - 1]),
            AM1 = maybe_store_acktag(AckTag, MsgId, AM),
            {{Message, IsDelivered1, AckTag, Remaining},
             State1 #state { set_delivered = SetDelivered1,
                             ack_msg_id    = AM1 }}
    end.

ack(AckTags, State = #state { gm                  = GM,
                              backing_queue       = BQ,
                              backing_queue_state = BQS,
                              ack_msg_id          = AM }) ->
    {MsgIds, BQS1} = BQ:ack(AckTags, BQS),
    AM1 = lists:foldl(fun dict:erase/2, AM, AckTags),
    case MsgIds of
        [] -> ok;
        _  -> ok = gm:broadcast(GM, {ack, MsgIds})
    end,
    {MsgIds, State #state { backing_queue_state = BQS1,
                            ack_msg_id          = AM1 }}.

tx_publish(_Txn, _Msg, _MsgProps, _ChPid, State) ->
    %% We don't support txns in mirror queues
    State.

tx_ack(_Txn, _AckTags, State) ->
    %% We don't support txns in mirror queues
    State.

tx_rollback(_Txn, State) ->
    {[], State}.

tx_commit(_Txn, PostCommitFun, _MsgPropsFun, State) ->
    PostCommitFun(), %% Probably must run it to avoid deadlocks
    {[], State}.

requeue(AckTags, MsgPropsFun, State = #state { gm                  = GM,
                                               backing_queue       = BQ,
                                               backing_queue_state = BQS }) ->
    {MsgIds, BQS1} = BQ:requeue(AckTags, MsgPropsFun, BQS),
    ok = gm:broadcast(GM, {requeue, MsgPropsFun, MsgIds}),
    {MsgIds, State #state { backing_queue_state = BQS1 }}.

len(#state { backing_queue = BQ, backing_queue_state = BQS}) ->
    BQ:len(BQS).

is_empty(#state { backing_queue = BQ, backing_queue_state = BQS}) ->
    BQ:is_empty(BQS).

set_ram_duration_target(Target, State = #state { backing_queue       = BQ,
                                                 backing_queue_state = BQS}) ->
    State #state { backing_queue_state =
                       BQ:set_ram_duration_target(Target, BQS) }.

ram_duration(State = #state { backing_queue = BQ, backing_queue_state = BQS}) ->
    {Result, BQS1} = BQ:ram_duration(BQS),
    {Result, State #state { backing_queue_state = BQS1 }}.

needs_timeout(#state { backing_queue = BQ, backing_queue_state = BQS}) ->
    BQ:needs_timeout(BQS).

timeout(State = #state { backing_queue = BQ, backing_queue_state = BQS}) ->
    State #state { backing_queue_state = BQ:timeout(BQS) }.

handle_pre_hibernate(State = #state { backing_queue       = BQ,
                                      backing_queue_state = BQS}) ->
    State #state { backing_queue_state = BQ:handle_pre_hibernate(BQS) }.

status(#state { backing_queue = BQ, backing_queue_state = BQS}) ->
    BQ:status(BQS).

invoke(?MODULE, Fun, State) ->
    Fun(?MODULE, State);
invoke(Mod, Fun, State = #state { backing_queue       = BQ,
                                  backing_queue_state = BQS }) ->
    State #state { backing_queue_state = BQ:invoke(Mod, Fun, BQS) }.

is_duplicate(none, Message = #basic_message { id = MsgId },
             State = #state { seen_status         = SS,
                              backing_queue       = BQ,
                              backing_queue_state = BQS,
                              confirmed           = Confirmed }) ->
    %% Here, we need to deal with the possibility that we're about to
    %% receive a message that we've already seen when we were a slave
    %% (we received it via gm). Thus if we do receive such message now
    %% via the channel, there may be a confirm waiting to issue for
    %% it.

    %% We will never see {published, ChPid, MsgSeqNo} here.
    case dict:find(MsgId, SS) of
        error ->
            %% We permit the underlying BQ to have a peek at it, but
            %% only if we ourselves are not filtering out the msg.
            {Result, BQS1} = BQ:is_duplicate(none, Message, BQS),
            {Result, State #state { backing_queue_state = BQS1 }};
        {ok, published} ->
            %% It already got published when we were a slave and no
            %% confirmation is waiting. amqqueue_process will have, in
            %% its msg_id_to_channel mapping, the entry for dealing
            %% with the confirm when that comes back in (it's added
            %% immediately after calling is_duplicate). The msg is
            %% invalid. We will not see this again, nor will we be
            %% further involved in confirming this message, so erase.
            {published, State #state { seen_status = dict:erase(MsgId, SS) }};
        {ok, confirmed} ->
            %% It got published when we were a slave via gm, and
            %% confirmed some time after that (maybe even after
            %% promotion), but before we received the publish from the
            %% channel, so couldn't previously know what the
            %% msg_seq_no was (and thus confirm as a slave). So we
            %% need to confirm now. As above, amqqueue_process will
            %% have the entry for the msg_id_to_channel mapping added
            %% immediately after calling is_duplicate/2.
            {published, State #state { seen_status = dict:erase(MsgId, SS),
                                       confirmed = [MsgId | Confirmed] }};
        {ok, discarded} ->
            %% Don't erase from SS here because discard/2 is about to
            %% be called and we need to be able to detect this case
            {discarded, State}
    end;
is_duplicate(_Txn, _Msg, State) ->
    %% In a transaction. We don't support txns in mirror queues. But
    %% it's probably not a duplicate...
    {false, State}.

discard(Msg = #basic_message { id = MsgId }, ChPid,
        State = #state { gm                  = GM,
                         backing_queue       = BQ,
                         backing_queue_state = BQS,
                         seen_status         = SS }) ->
    %% It's a massive error if we get told to discard something that's
    %% already been published or published-and-confirmed. To do that
    %% would require non FIFO access. Hence we should not find
    %% 'published' or 'confirmed' in this dict:find.
    case dict:find(MsgId, SS) of
        error ->
            ok = gm:broadcast(GM, {discard, ChPid, Msg}),
            State #state { backing_queue_state = BQ:discard(Msg, ChPid, BQS),
                           seen_status         = dict:erase(MsgId, SS) };
        {ok, discarded} ->
            State
    end.

maybe_store_acktag(undefined, _MsgId, AM) ->
    AM;
maybe_store_acktag(AckTag, MsgId, AM) ->
    dict:store(AckTag, MsgId, AM).

ensure_monitoring(ChPid, State = #state { coordinator = CPid,
                                          known_senders = KS }) ->
    case sets:is_element(ChPid, KS) of
        true  -> State;
        false -> ok = rabbit_mirror_queue_coordinator:ensure_monitoring(
                        CPid, [ChPid]),
                 State #state { known_senders = sets:add_element(ChPid, KS) }
    end.