1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
|
%% The contents of this file are subject to the Mozilla Public License
%% Version 1.1 (the "License"); you may not use this file except in
%% compliance with the License. You may obtain a copy of the License
%% at http://www.mozilla.org/MPL/
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and
%% limitations under the License.
%%
%% The Original Code is RabbitMQ.
%%
%% The Initial Developer of the Original Code is VMware, Inc.
%% Copyright (c) 2007-2012 VMware, Inc. All rights reserved.
%%
-module(rabbit_variable_queue).
-export([init/3, terminate/2, delete_and_terminate/2,
purge/1, publish/4, publish_delivered/5, drain_confirmed/1,
dropwhile/3, fetch/2, ack/2, requeue/2, len/1, is_empty/1,
set_ram_duration_target/2, ram_duration/1,
needs_timeout/1, timeout/1, handle_pre_hibernate/1,
status/1, invoke/3, is_duplicate/2, discard/3,
multiple_routing_keys/0, fold/3]).
-export([start/1, stop/0]).
%% exported for testing only
-export([start_msg_store/2, stop_msg_store/0, init/5]).
%%----------------------------------------------------------------------------
%% Definitions:
%% alpha: this is a message where both the message itself, and its
%% position within the queue are held in RAM
%%
%% beta: this is a message where the message itself is only held on
%% disk, but its position within the queue is held in RAM.
%%
%% gamma: this is a message where the message itself is only held on
%% disk, but its position is both in RAM and on disk.
%%
%% delta: this is a collection of messages, represented by a single
%% term, where the messages and their position are only held on
%% disk.
%%
%% Note that for persistent messages, the message and its position
%% within the queue are always held on disk, *in addition* to being in
%% one of the above classifications.
%%
%% Also note that within this code, the term gamma seldom
%% appears. It's frequently the case that gammas are defined by betas
%% who have had their queue position recorded on disk.
%%
%% In general, messages move q1 -> q2 -> delta -> q3 -> q4, though
%% many of these steps are frequently skipped. q1 and q4 only hold
%% alphas, q2 and q3 hold both betas and gammas. When a message
%% arrives, its classification is determined. It is then added to the
%% rightmost appropriate queue.
%%
%% If a new message is determined to be a beta or gamma, q1 is
%% empty. If a new message is determined to be a delta, q1 and q2 are
%% empty (and actually q4 too).
%%
%% When removing messages from a queue, if q4 is empty then q3 is read
%% directly. If q3 becomes empty then the next segment's worth of
%% messages from delta are read into q3, reducing the size of
%% delta. If the queue is non empty, either q4 or q3 contain
%% entries. It is never permitted for delta to hold all the messages
%% in the queue.
%%
%% The duration indicated to us by the memory_monitor is used to
%% calculate, given our current ingress and egress rates, how many
%% messages we should hold in RAM (i.e. as alphas). We track the
%% ingress and egress rates for both messages and pending acks and
%% rates for both are considered when calculating the number of
%% messages to hold in RAM. When we need to push alphas to betas or
%% betas to gammas, we favour writing out messages that are further
%% from the head of the queue. This minimises writes to disk, as the
%% messages closer to the tail of the queue stay in the queue for
%% longer, thus do not need to be replaced as quickly by sending other
%% messages to disk.
%%
%% Whilst messages are pushed to disk and forgotten from RAM as soon
%% as requested by a new setting of the queue RAM duration, the
%% inverse is not true: we only load messages back into RAM as
%% demanded as the queue is read from. Thus only publishes to the
%% queue will take up available spare capacity.
%%
%% When we report our duration to the memory monitor, we calculate
%% average ingress and egress rates over the last two samples, and
%% then calculate our duration based on the sum of the ingress and
%% egress rates. More than two samples could be used, but it's a
%% balance between responding quickly enough to changes in
%% producers/consumers versus ignoring temporary blips. The problem
%% with temporary blips is that with just a few queues, they can have
%% substantial impact on the calculation of the average duration and
%% hence cause unnecessary I/O. Another alternative is to increase the
%% amqqueue_process:RAM_DURATION_UPDATE_PERIOD to beyond 5
%% seconds. However, that then runs the risk of being too slow to
%% inform the memory monitor of changes. Thus a 5 second interval,
%% plus a rolling average over the last two samples seems to work
%% well in practice.
%%
%% The sum of the ingress and egress rates is used because the egress
%% rate alone is not sufficient. Adding in the ingress rate means that
%% queues which are being flooded by messages are given more memory,
%% resulting in them being able to process the messages faster (by
%% doing less I/O, or at least deferring it) and thus helping keep
%% their mailboxes empty and thus the queue as a whole is more
%% responsive. If such a queue also has fast but previously idle
%% consumers, the consumer can then start to be driven as fast as it
%% can go, whereas if only egress rate was being used, the incoming
%% messages may have to be written to disk and then read back in,
%% resulting in the hard disk being a bottleneck in driving the
%% consumers. Generally, we want to give Rabbit every chance of
%% getting rid of messages as fast as possible and remaining
%% responsive, and using only the egress rate impacts that goal.
%%
%% Once the queue has more alphas than the target_ram_count, the
%% surplus must be converted to betas, if not gammas, if not rolled
%% into delta. The conditions under which these transitions occur
%% reflect the conflicting goals of minimising RAM cost per msg, and
%% minimising CPU cost per msg. Once the msg has become a beta, its
%% payload is no longer in RAM, thus a read from the msg_store must
%% occur before the msg can be delivered, but the RAM cost of a beta
%% is the same as a gamma, so converting a beta to gamma will not free
%% up any further RAM. To reduce the RAM cost further, the gamma must
%% be rolled into delta. Whilst recovering a beta or a gamma to an
%% alpha requires only one disk read (from the msg_store), recovering
%% a msg from within delta will require two reads (queue_index and
%% then msg_store). But delta has a near-0 per-msg RAM cost. So the
%% conflict is between using delta more, which will free up more
%% memory, but require additional CPU and disk ops, versus using delta
%% less and gammas and betas more, which will cost more memory, but
%% require fewer disk ops and less CPU overhead.
%%
%% In the case of a persistent msg published to a durable queue, the
%% msg is immediately written to the msg_store and queue_index. If
%% then additionally converted from an alpha, it'll immediately go to
%% a gamma (as it's already in queue_index), and cannot exist as a
%% beta. Thus a durable queue with a mixture of persistent and
%% transient msgs in it which has more messages than permitted by the
%% target_ram_count may contain an interspersed mixture of betas and
%% gammas in q2 and q3.
%%
%% There is then a ratio that controls how many betas and gammas there
%% can be. This is based on the target_ram_count and thus expresses
%% the fact that as the number of permitted alphas in the queue falls,
%% so should the number of betas and gammas fall (i.e. delta
%% grows). If q2 and q3 contain more than the permitted number of
%% betas and gammas, then the surplus are forcibly converted to gammas
%% (as necessary) and then rolled into delta. The ratio is that
%% delta/(betas+gammas+delta) equals
%% (betas+gammas+delta)/(target_ram_count+betas+gammas+delta). I.e. as
%% the target_ram_count shrinks to 0, so must betas and gammas.
%%
%% The conversion of betas to gammas is done in batches of exactly
%% ?IO_BATCH_SIZE. This value should not be too small, otherwise the
%% frequent operations on the queues of q2 and q3 will not be
%% effectively amortised (switching the direction of queue access
%% defeats amortisation), nor should it be too big, otherwise
%% converting a batch stalls the queue for too long. Therefore, it
%% must be just right.
%%
%% The conversion from alphas to betas is also chunked, but only to
%% ensure no more than ?IO_BATCH_SIZE alphas are converted to betas at
%% any one time. This further smooths the effects of changes to the
%% target_ram_count and ensures the queue remains responsive
%% even when there is a large amount of IO work to do. The
%% timeout callback is utilised to ensure that conversions are
%% done as promptly as possible whilst ensuring the queue remains
%% responsive.
%%
%% In the queue we keep track of both messages that are pending
%% delivery and messages that are pending acks. In the event of a
%% queue purge, we only need to load qi segments if the queue has
%% elements in deltas (i.e. it came under significant memory
%% pressure). In the event of a queue deletion, in addition to the
%% preceding, by keeping track of pending acks in RAM, we do not need
%% to search through qi segments looking for messages that are yet to
%% be acknowledged.
%%
%% Pending acks are recorded in memory by storing the message itself.
%% If the message has been sent to disk, we do not store the message
%% content. During memory reduction, pending acks containing message
%% content have that content removed and the corresponding messages
%% are pushed out to disk.
%%
%% Messages from pending acks are returned to q4, q3 and delta during
%% requeue, based on the limits of seq_id contained in each. Requeued
%% messages retain their original seq_id, maintaining order
%% when requeued.
%%
%% The order in which alphas are pushed to betas and pending acks
%% are pushed to disk is determined dynamically. We always prefer to
%% push messages for the source (alphas or acks) that is growing the
%% fastest (with growth measured as avg. ingress - avg. egress). In
%% each round of memory reduction a chunk of messages at most
%% ?IO_BATCH_SIZE in size is allocated to be pushed to disk. The
%% fastest growing source will be reduced by as much of this chunk as
%% possible. If there is any remaining allocation in the chunk after
%% the first source has been reduced to zero, the second source will
%% be reduced by as much of the remaining chunk as possible.
%%
%% Notes on Clean Shutdown
%% (This documents behaviour in variable_queue, queue_index and
%% msg_store.)
%%
%% In order to try to achieve as fast a start-up as possible, if a
%% clean shutdown occurs, we try to save out state to disk to reduce
%% work on startup. In the msg_store this takes the form of the
%% index_module's state, plus the file_summary ets table, and client
%% refs. In the VQ, this takes the form of the count of persistent
%% messages in the queue and references into the msg_stores. The
%% queue_index adds to these terms the details of its segments and
%% stores the terms in the queue directory.
%%
%% Two message stores are used. One is created for persistent messages
%% to durable queues that must survive restarts, and the other is used
%% for all other messages that just happen to need to be written to
%% disk. On start up we can therefore nuke the transient message
%% store, and be sure that the messages in the persistent store are
%% all that we need.
%%
%% The references to the msg_stores are there so that the msg_store
%% knows to only trust its saved state if all of the queues it was
%% previously talking to come up cleanly. Likewise, the queues
%% themselves (esp queue_index) skips work in init if all the queues
%% and msg_store were shutdown cleanly. This gives both good speed
%% improvements and also robustness so that if anything possibly went
%% wrong in shutdown (or there was subsequent manual tampering), all
%% messages and queues that can be recovered are recovered, safely.
%%
%% To delete transient messages lazily, the variable_queue, on
%% startup, stores the next_seq_id reported by the queue_index as the
%% transient_threshold. From that point on, whenever it's reading a
%% message off disk via the queue_index, if the seq_id is below this
%% threshold and the message is transient then it drops the message
%% (the message itself won't exist on disk because it would have been
%% stored in the transient msg_store which would have had its saved
%% state nuked on startup). This avoids the expensive operation of
%% scanning the entire queue on startup in order to delete transient
%% messages that were only pushed to disk to save memory.
%%
%%----------------------------------------------------------------------------
-behaviour(rabbit_backing_queue).
-record(vqstate,
{ q1,
q2,
delta,
q3,
q4,
next_seq_id,
pending_ack,
pending_ack_index,
ram_ack_index,
index_state,
msg_store_clients,
durable,
transient_threshold,
async_callback,
len,
persistent_count,
target_ram_count,
ram_msg_count,
ram_msg_count_prev,
ram_ack_count_prev,
out_counter,
in_counter,
rates,
msgs_on_disk,
msg_indices_on_disk,
unconfirmed,
confirmed,
ack_out_counter,
ack_in_counter,
ack_rates
}).
-record(rates, { egress, ingress, avg_egress, avg_ingress, timestamp }).
-record(msg_status,
{ seq_id,
msg_id,
msg,
is_persistent,
is_delivered,
msg_on_disk,
index_on_disk,
msg_props
}).
-record(delta,
{ start_seq_id, %% start_seq_id is inclusive
count,
end_seq_id %% end_seq_id is exclusive
}).
%% When we discover, on publish, that we should write some indices to
%% disk for some betas, the IO_BATCH_SIZE sets the number of betas
%% that we must be due to write indices for before we do any work at
%% all. This is both a minimum and a maximum - we don't write fewer
%% than IO_BATCH_SIZE indices out in one go, and we don't write more -
%% we can always come back on the next publish to do more.
-define(IO_BATCH_SIZE, 64).
-define(PERSISTENT_MSG_STORE, msg_store_persistent).
-define(TRANSIENT_MSG_STORE, msg_store_transient).
-define(QUEUE, lqueue).
-include("rabbit.hrl").
%%----------------------------------------------------------------------------
-rabbit_upgrade({multiple_routing_keys, local, []}).
-ifdef(use_specs).
-type(timestamp() :: {non_neg_integer(), non_neg_integer(), non_neg_integer()}).
-type(seq_id() :: non_neg_integer()).
-type(ack() :: seq_id()).
-type(rates() :: #rates { egress :: {timestamp(), non_neg_integer()},
ingress :: {timestamp(), non_neg_integer()},
avg_egress :: float(),
avg_ingress :: float(),
timestamp :: timestamp() }).
-type(delta() :: #delta { start_seq_id :: non_neg_integer(),
count :: non_neg_integer(),
end_seq_id :: non_neg_integer() }).
-type(state() :: #vqstate {
q1 :: ?QUEUE:?QUEUE(),
q2 :: ?QUEUE:?QUEUE(),
delta :: delta(),
q3 :: ?QUEUE:?QUEUE(),
q4 :: ?QUEUE:?QUEUE(),
next_seq_id :: seq_id(),
pending_ack :: gb_tree(),
ram_ack_index :: gb_tree(),
index_state :: any(),
msg_store_clients :: 'undefined' | {{any(), binary()},
{any(), binary()}},
durable :: boolean(),
transient_threshold :: non_neg_integer(),
async_callback :: async_callback(),
len :: non_neg_integer(),
persistent_count :: non_neg_integer(),
target_ram_count :: non_neg_integer() | 'infinity',
ram_msg_count :: non_neg_integer(),
ram_msg_count_prev :: non_neg_integer(),
out_counter :: non_neg_integer(),
in_counter :: non_neg_integer(),
rates :: rates(),
msgs_on_disk :: gb_set(),
msg_indices_on_disk :: gb_set(),
unconfirmed :: gb_set(),
confirmed :: gb_set(),
ack_out_counter :: non_neg_integer(),
ack_in_counter :: non_neg_integer(),
ack_rates :: rates() }).
-include("rabbit_backing_queue_spec.hrl").
-spec(multiple_routing_keys/0 :: () -> 'ok').
-endif.
-define(BLANK_DELTA, #delta { start_seq_id = undefined,
count = 0,
end_seq_id = undefined }).
-define(BLANK_DELTA_PATTERN(Z), #delta { start_seq_id = Z,
count = 0,
end_seq_id = Z }).
%%----------------------------------------------------------------------------
%% Public API
%%----------------------------------------------------------------------------
start(DurableQueues) ->
{AllTerms, StartFunState} = rabbit_queue_index:recover(DurableQueues),
start_msg_store(
[Ref || Terms <- AllTerms,
begin
Ref = proplists:get_value(persistent_ref, Terms),
Ref =/= undefined
end],
StartFunState).
stop() -> stop_msg_store().
start_msg_store(Refs, StartFunState) ->
ok = rabbit_sup:start_child(?TRANSIENT_MSG_STORE, rabbit_msg_store,
[?TRANSIENT_MSG_STORE, rabbit_mnesia:dir(),
undefined, {fun (ok) -> finished end, ok}]),
ok = rabbit_sup:start_child(?PERSISTENT_MSG_STORE, rabbit_msg_store,
[?PERSISTENT_MSG_STORE, rabbit_mnesia:dir(),
Refs, StartFunState]).
stop_msg_store() ->
ok = rabbit_sup:stop_child(?PERSISTENT_MSG_STORE),
ok = rabbit_sup:stop_child(?TRANSIENT_MSG_STORE).
init(Queue, Recover, AsyncCallback) ->
init(Queue, Recover, AsyncCallback,
fun (MsgIds, ActionTaken) ->
msgs_written_to_disk(AsyncCallback, MsgIds, ActionTaken)
end,
fun (MsgIds) -> msg_indices_written_to_disk(AsyncCallback, MsgIds) end).
init(#amqqueue { name = QueueName, durable = IsDurable }, false,
AsyncCallback, MsgOnDiskFun, MsgIdxOnDiskFun) ->
IndexState = rabbit_queue_index:init(QueueName, MsgIdxOnDiskFun),
init(IsDurable, IndexState, 0, [], AsyncCallback,
case IsDurable of
true -> msg_store_client_init(?PERSISTENT_MSG_STORE,
MsgOnDiskFun, AsyncCallback);
false -> undefined
end,
msg_store_client_init(?TRANSIENT_MSG_STORE, undefined, AsyncCallback));
init(#amqqueue { name = QueueName, durable = true }, true,
AsyncCallback, MsgOnDiskFun, MsgIdxOnDiskFun) ->
Terms = rabbit_queue_index:shutdown_terms(QueueName),
{PRef, Terms1} =
case proplists:get_value(persistent_ref, Terms) of
undefined -> {rabbit_guid:gen(), []};
PRef1 -> {PRef1, Terms}
end,
PersistentClient = msg_store_client_init(?PERSISTENT_MSG_STORE, PRef,
MsgOnDiskFun, AsyncCallback),
TransientClient = msg_store_client_init(?TRANSIENT_MSG_STORE,
undefined, AsyncCallback),
{DeltaCount, IndexState} =
rabbit_queue_index:recover(
QueueName, Terms1,
rabbit_msg_store:successfully_recovered_state(?PERSISTENT_MSG_STORE),
fun (MsgId) ->
rabbit_msg_store:contains(MsgId, PersistentClient)
end,
MsgIdxOnDiskFun),
init(true, IndexState, DeltaCount, Terms1, AsyncCallback,
PersistentClient, TransientClient).
terminate(_Reason, State) ->
State1 = #vqstate { persistent_count = PCount,
index_state = IndexState,
msg_store_clients = {MSCStateP, MSCStateT} } =
purge_pending_ack(true, State),
PRef = case MSCStateP of
undefined -> undefined;
_ -> ok = rabbit_msg_store:client_terminate(MSCStateP),
rabbit_msg_store:client_ref(MSCStateP)
end,
ok = rabbit_msg_store:client_delete_and_terminate(MSCStateT),
Terms = [{persistent_ref, PRef}, {persistent_count, PCount}],
a(State1 #vqstate { index_state = rabbit_queue_index:terminate(
Terms, IndexState),
msg_store_clients = undefined }).
%% the only difference between purge and delete is that delete also
%% needs to delete everything that's been delivered and not ack'd.
delete_and_terminate(_Reason, State) ->
%% TODO: there is no need to interact with qi at all - which we do
%% as part of 'purge' and 'purge_pending_ack', other than
%% deleting it.
{_PurgeCount, State1} = purge(State),
State2 = #vqstate { index_state = IndexState,
msg_store_clients = {MSCStateP, MSCStateT} } =
purge_pending_ack(false, State1),
IndexState1 = rabbit_queue_index:delete_and_terminate(IndexState),
case MSCStateP of
undefined -> ok;
_ -> rabbit_msg_store:client_delete_and_terminate(MSCStateP)
end,
rabbit_msg_store:client_delete_and_terminate(MSCStateT),
a(State2 #vqstate { index_state = IndexState1,
msg_store_clients = undefined }).
purge(State = #vqstate { q4 = Q4,
index_state = IndexState,
msg_store_clients = MSCState,
len = Len,
persistent_count = PCount }) ->
%% TODO: when there are no pending acks, which is a common case,
%% we could simply wipe the qi instead of issuing delivers and
%% acks for all the messages.
{LensByStore, IndexState1} = remove_queue_entries(
fun ?QUEUE:foldl/3, Q4,
orddict:new(), IndexState, MSCState),
{LensByStore1, State1 = #vqstate { q1 = Q1,
index_state = IndexState2,
msg_store_clients = MSCState1 }} =
purge_betas_and_deltas(LensByStore,
State #vqstate { q4 = ?QUEUE:new(),
index_state = IndexState1 }),
{LensByStore2, IndexState3} = remove_queue_entries(
fun ?QUEUE:foldl/3, Q1,
LensByStore1, IndexState2, MSCState1),
PCount1 = PCount - find_persistent_count(LensByStore2),
{Len, a(State1 #vqstate { q1 = ?QUEUE:new(),
index_state = IndexState3,
len = 0,
ram_msg_count = 0,
persistent_count = PCount1 })}.
publish(Msg = #basic_message { is_persistent = IsPersistent, id = MsgId },
MsgProps = #message_properties { needs_confirming = NeedsConfirming },
_ChPid, State = #vqstate { q1 = Q1, q3 = Q3, q4 = Q4,
next_seq_id = SeqId,
len = Len,
in_counter = InCount,
persistent_count = PCount,
durable = IsDurable,
ram_msg_count = RamMsgCount,
unconfirmed = UC }) ->
IsPersistent1 = IsDurable andalso IsPersistent,
MsgStatus = msg_status(IsPersistent1, SeqId, Msg, MsgProps),
{MsgStatus1, State1} = maybe_write_to_disk(false, false, MsgStatus, State),
State2 = case ?QUEUE:is_empty(Q3) of
false -> State1 #vqstate { q1 = ?QUEUE:in(m(MsgStatus1), Q1) };
true -> State1 #vqstate { q4 = ?QUEUE:in(m(MsgStatus1), Q4) }
end,
PCount1 = PCount + one_if(IsPersistent1),
UC1 = gb_sets_maybe_insert(NeedsConfirming, MsgId, UC),
a(reduce_memory_use(State2 #vqstate { next_seq_id = SeqId + 1,
len = Len + 1,
in_counter = InCount + 1,
persistent_count = PCount1,
ram_msg_count = RamMsgCount + 1,
unconfirmed = UC1 })).
publish_delivered(false, #basic_message { id = MsgId },
#message_properties { needs_confirming = NeedsConfirming },
_ChPid, State = #vqstate { async_callback = Callback,
len = 0 }) ->
case NeedsConfirming of
true -> blind_confirm(Callback, gb_sets:singleton(MsgId));
false -> ok
end,
{undefined, a(State)};
publish_delivered(true, Msg = #basic_message { is_persistent = IsPersistent,
id = MsgId },
MsgProps = #message_properties {
needs_confirming = NeedsConfirming },
_ChPid, State = #vqstate { len = 0,
next_seq_id = SeqId,
out_counter = OutCount,
in_counter = InCount,
persistent_count = PCount,
durable = IsDurable,
unconfirmed = UC }) ->
IsPersistent1 = IsDurable andalso IsPersistent,
MsgStatus = (msg_status(IsPersistent1, SeqId, Msg, MsgProps))
#msg_status { is_delivered = true },
{MsgStatus1, State1} = maybe_write_to_disk(false, false, MsgStatus, State),
State2 = record_pending_ack(m(MsgStatus1), State1),
PCount1 = PCount + one_if(IsPersistent1),
UC1 = gb_sets_maybe_insert(NeedsConfirming, MsgId, UC),
{SeqId, a(reduce_memory_use(
State2 #vqstate { next_seq_id = SeqId + 1,
out_counter = OutCount + 1,
in_counter = InCount + 1,
persistent_count = PCount1,
unconfirmed = UC1 }))}.
drain_confirmed(State = #vqstate { confirmed = C }) ->
case gb_sets:is_empty(C) of
true -> {[], State}; %% common case
false -> {gb_sets:to_list(C), State #vqstate {
confirmed = gb_sets:new() }}
end.
dropwhile(Pred, MsgFun, State) ->
case queue_out(State) of
{empty, State1} ->
a(State1);
{{value, MsgStatus = #msg_status { msg_props = MsgProps }}, State1} ->
case {Pred(MsgProps), MsgFun} of
{true, undefined} ->
{_, State2} = internal_fetch(false, MsgStatus, State1),
dropwhile(Pred, MsgFun, State2);
{true, _} ->
{MsgStatus1, State2} = read_msg(MsgStatus, State1),
{{Msg, _, AckTag, _}, State3} =
internal_fetch(true, MsgStatus1, State2),
MsgFun(Msg, AckTag),
dropwhile(Pred, MsgFun, State3);
{false, _} ->
a(in_r(MsgStatus, State1))
end
end.
fetch(AckRequired, State) ->
case queue_out(State) of
{empty, State1} ->
{empty, a(State1)};
{{value, MsgStatus}, State1} ->
%% it is possible that the message wasn't read from disk
%% at this point, so read it in.
{MsgStatus1, State2} = read_msg(MsgStatus, State1),
{Res, State3} = internal_fetch(AckRequired, MsgStatus1, State2),
{Res, a(State3)}
end.
ack([], State) ->
{[], State};
ack(AckTags, State) ->
{{IndexOnDiskSeqIds, MsgIdsByStore, AllMsgIds},
State1 = #vqstate { index_state = IndexState,
msg_store_clients = MSCState,
persistent_count = PCount,
ack_out_counter = AckOutCount }} =
lists:foldl(
fun (SeqId, {Acc, State2}) ->
{MsgStatus, State3} = remove_pending_ack(SeqId, State2),
{accumulate_ack(MsgStatus, Acc), State3}
end, {accumulate_ack_init(), State}, AckTags),
IndexState1 = rabbit_queue_index:ack(IndexOnDiskSeqIds, IndexState),
[ok = msg_store_remove(MSCState, IsPersistent, MsgIds)
|| {IsPersistent, MsgIds} <- orddict:to_list(MsgIdsByStore)],
PCount1 = PCount - find_persistent_count(sum_msg_ids_by_store_to_len(
orddict:new(), MsgIdsByStore)),
{lists:reverse(AllMsgIds),
a(State1 #vqstate { index_state = IndexState1,
persistent_count = PCount1,
ack_out_counter = AckOutCount + length(AckTags) })}.
fold(undefined, State, _AckTags) ->
State;
fold(MsgFun, State = #vqstate{pending_ack = PA}, AckTags) ->
lists:foldl(
fun(SeqId, State1) ->
{MsgStatus, State2} =
read_msg(gb_trees:get(SeqId, PA), State1),
MsgFun(MsgStatus#msg_status.msg, SeqId),
State2
end, State, AckTags).
requeue(AckTags, #vqstate { delta = Delta,
q3 = Q3,
q4 = Q4,
in_counter = InCounter,
len = Len } = State) ->
{SeqIds, Q4a, MsgIds, State1} = queue_merge(lists:sort(AckTags), Q4, [],
beta_limit(Q3),
fun publish_alpha/2, State),
{SeqIds1, Q3a, MsgIds1, State2} = queue_merge(SeqIds, Q3, MsgIds,
delta_limit(Delta),
fun publish_beta/2, State1),
{Delta1, MsgIds2, State3} = delta_merge(SeqIds1, Delta, MsgIds1,
State2),
MsgCount = length(MsgIds2),
{MsgIds2, a(reduce_memory_use(
State3 #vqstate { delta = Delta1,
q3 = Q3a,
q4 = Q4a,
in_counter = InCounter + MsgCount,
len = Len + MsgCount }))}.
len(#vqstate { len = Len }) -> Len.
is_empty(State) -> 0 == len(State).
set_ram_duration_target(
DurationTarget, State = #vqstate {
rates = #rates { avg_egress = AvgEgressRate,
avg_ingress = AvgIngressRate },
ack_rates = #rates { avg_egress = AvgAckEgressRate,
avg_ingress = AvgAckIngressRate },
target_ram_count = TargetRamCount }) ->
Rate =
AvgEgressRate + AvgIngressRate + AvgAckEgressRate + AvgAckIngressRate,
TargetRamCount1 =
case DurationTarget of
infinity -> infinity;
_ -> trunc(DurationTarget * Rate) %% msgs = sec * msgs/sec
end,
State1 = State #vqstate { target_ram_count = TargetRamCount1 },
a(case TargetRamCount1 == infinity orelse
(TargetRamCount =/= infinity andalso
TargetRamCount1 >= TargetRamCount) of
true -> State1;
false -> reduce_memory_use(State1)
end).
ram_duration(State = #vqstate {
rates = #rates { timestamp = Timestamp,
egress = Egress,
ingress = Ingress } = Rates,
ack_rates = #rates { timestamp = AckTimestamp,
egress = AckEgress,
ingress = AckIngress } = ARates,
in_counter = InCount,
out_counter = OutCount,
ack_in_counter = AckInCount,
ack_out_counter = AckOutCount,
ram_msg_count = RamMsgCount,
ram_msg_count_prev = RamMsgCountPrev,
ram_ack_index = RamAckIndex,
ram_ack_count_prev = RamAckCountPrev }) ->
Now = now(),
{AvgEgressRate, Egress1} = update_rate(Now, Timestamp, OutCount, Egress),
{AvgIngressRate, Ingress1} = update_rate(Now, Timestamp, InCount, Ingress),
{AvgAckEgressRate, AckEgress1} =
update_rate(Now, AckTimestamp, AckOutCount, AckEgress),
{AvgAckIngressRate, AckIngress1} =
update_rate(Now, AckTimestamp, AckInCount, AckIngress),
RamAckCount = gb_trees:size(RamAckIndex),
Duration = %% msgs+acks / (msgs+acks/sec) == sec
case (AvgEgressRate == 0 andalso AvgIngressRate == 0 andalso
AvgAckEgressRate == 0 andalso AvgAckIngressRate == 0) of
true -> infinity;
false -> (RamMsgCountPrev + RamMsgCount +
RamAckCount + RamAckCountPrev) /
(4 * (AvgEgressRate + AvgIngressRate +
AvgAckEgressRate + AvgAckIngressRate))
end,
{Duration, State #vqstate {
rates = Rates #rates {
egress = Egress1,
ingress = Ingress1,
avg_egress = AvgEgressRate,
avg_ingress = AvgIngressRate,
timestamp = Now },
ack_rates = ARates #rates {
egress = AckEgress1,
ingress = AckIngress1,
avg_egress = AvgAckEgressRate,
avg_ingress = AvgAckIngressRate,
timestamp = Now },
in_counter = 0,
out_counter = 0,
ack_in_counter = 0,
ack_out_counter = 0,
ram_msg_count_prev = RamMsgCount,
ram_ack_count_prev = RamAckCount }}.
needs_timeout(State = #vqstate { index_state = IndexState }) ->
case must_sync_index(State) of
true -> timed;
false ->
case rabbit_queue_index:needs_sync(IndexState) of
true -> idle;
false -> case reduce_memory_use(
fun (_Quota, State1) -> {0, State1} end,
fun (_Quota, State1) -> State1 end,
fun (_Quota, State1) -> {0, State1} end,
State) of
{true, _State} -> idle;
{false, _State} -> false
end
end
end.
timeout(State = #vqstate { index_state = IndexState }) ->
IndexState1 = rabbit_queue_index:sync(IndexState),
State1 = State #vqstate { index_state = IndexState1 },
a(reduce_memory_use(State1)).
handle_pre_hibernate(State = #vqstate { index_state = IndexState }) ->
State #vqstate { index_state = rabbit_queue_index:flush(IndexState) }.
status(#vqstate {
q1 = Q1, q2 = Q2, delta = Delta, q3 = Q3, q4 = Q4,
len = Len,
pending_ack = PA,
ram_ack_index = RAI,
target_ram_count = TargetRamCount,
ram_msg_count = RamMsgCount,
next_seq_id = NextSeqId,
persistent_count = PersistentCount,
rates = #rates { avg_egress = AvgEgressRate,
avg_ingress = AvgIngressRate },
ack_rates = #rates { avg_egress = AvgAckEgressRate,
avg_ingress = AvgAckIngressRate } }) ->
[ {q1 , ?QUEUE:len(Q1)},
{q2 , ?QUEUE:len(Q2)},
{delta , Delta},
{q3 , ?QUEUE:len(Q3)},
{q4 , ?QUEUE:len(Q4)},
{len , Len},
{pending_acks , gb_trees:size(PA)},
{target_ram_count , TargetRamCount},
{ram_msg_count , RamMsgCount},
{ram_ack_count , gb_trees:size(RAI)},
{next_seq_id , NextSeqId},
{persistent_count , PersistentCount},
{avg_ingress_rate , AvgIngressRate},
{avg_egress_rate , AvgEgressRate},
{avg_ack_ingress_rate, AvgAckIngressRate},
{avg_ack_egress_rate , AvgAckEgressRate} ].
invoke(?MODULE, Fun, State) -> Fun(?MODULE, State).
is_duplicate(_Msg, State) -> {false, State}.
discard(_Msg, _ChPid, State) -> State.
%%----------------------------------------------------------------------------
%% Minor helpers
%%----------------------------------------------------------------------------
a(State = #vqstate { q1 = Q1, q2 = Q2, delta = Delta, q3 = Q3, q4 = Q4,
len = Len,
persistent_count = PersistentCount,
ram_msg_count = RamMsgCount }) ->
E1 = ?QUEUE:is_empty(Q1),
E2 = ?QUEUE:is_empty(Q2),
ED = Delta#delta.count == 0,
E3 = ?QUEUE:is_empty(Q3),
E4 = ?QUEUE:is_empty(Q4),
LZ = Len == 0,
true = E1 or not E3,
true = E2 or not ED,
true = ED or not E3,
true = LZ == (E3 and E4),
true = Len >= 0,
true = PersistentCount >= 0,
true = RamMsgCount >= 0,
State.
d(Delta = #delta { start_seq_id = Start, count = Count, end_seq_id = End })
when Start + Count =< End ->
Delta.
m(MsgStatus = #msg_status { msg = Msg,
is_persistent = IsPersistent,
msg_on_disk = MsgOnDisk,
index_on_disk = IndexOnDisk }) ->
true = (not IsPersistent) or IndexOnDisk,
true = (not IndexOnDisk) or MsgOnDisk,
true = (Msg =/= undefined) or MsgOnDisk,
MsgStatus.
one_if(true ) -> 1;
one_if(false) -> 0.
cons_if(true, E, L) -> [E | L];
cons_if(false, _E, L) -> L.
gb_sets_maybe_insert(false, _Val, Set) -> Set;
%% when requeueing, we re-add a msg_id to the unconfirmed set
gb_sets_maybe_insert(true, Val, Set) -> gb_sets:add(Val, Set).
msg_status(IsPersistent, SeqId, Msg = #basic_message { id = MsgId },
MsgProps) ->
#msg_status { seq_id = SeqId, msg_id = MsgId, msg = Msg,
is_persistent = IsPersistent, is_delivered = false,
msg_on_disk = false, index_on_disk = false,
msg_props = MsgProps }.
trim_msg_status(MsgStatus) -> MsgStatus #msg_status { msg = undefined }.
with_msg_store_state({MSCStateP, MSCStateT}, true, Fun) ->
{Result, MSCStateP1} = Fun(MSCStateP),
{Result, {MSCStateP1, MSCStateT}};
with_msg_store_state({MSCStateP, MSCStateT}, false, Fun) ->
{Result, MSCStateT1} = Fun(MSCStateT),
{Result, {MSCStateP, MSCStateT1}}.
with_immutable_msg_store_state(MSCState, IsPersistent, Fun) ->
{Res, MSCState} = with_msg_store_state(MSCState, IsPersistent,
fun (MSCState1) ->
{Fun(MSCState1), MSCState1}
end),
Res.
msg_store_client_init(MsgStore, MsgOnDiskFun, Callback) ->
msg_store_client_init(MsgStore, rabbit_guid:gen(), MsgOnDiskFun,
Callback).
msg_store_client_init(MsgStore, Ref, MsgOnDiskFun, Callback) ->
CloseFDsFun = msg_store_close_fds_fun(MsgStore =:= ?PERSISTENT_MSG_STORE),
rabbit_msg_store:client_init(MsgStore, Ref, MsgOnDiskFun,
fun () -> Callback(?MODULE, CloseFDsFun) end).
msg_store_write(MSCState, IsPersistent, MsgId, Msg) ->
with_immutable_msg_store_state(
MSCState, IsPersistent,
fun (MSCState1) ->
rabbit_msg_store:write_flow(MsgId, Msg, MSCState1)
end).
msg_store_read(MSCState, IsPersistent, MsgId) ->
with_msg_store_state(
MSCState, IsPersistent,
fun (MSCState1) ->
rabbit_msg_store:read(MsgId, MSCState1)
end).
msg_store_remove(MSCState, IsPersistent, MsgIds) ->
with_immutable_msg_store_state(
MSCState, IsPersistent,
fun (MCSState1) ->
rabbit_msg_store:remove(MsgIds, MCSState1)
end).
msg_store_close_fds(MSCState, IsPersistent) ->
with_msg_store_state(
MSCState, IsPersistent,
fun (MSCState1) -> rabbit_msg_store:close_all_indicated(MSCState1) end).
msg_store_close_fds_fun(IsPersistent) ->
fun (?MODULE, State = #vqstate { msg_store_clients = MSCState }) ->
{ok, MSCState1} = msg_store_close_fds(MSCState, IsPersistent),
State #vqstate { msg_store_clients = MSCState1 }
end.
maybe_write_delivered(false, _SeqId, IndexState) ->
IndexState;
maybe_write_delivered(true, SeqId, IndexState) ->
rabbit_queue_index:deliver([SeqId], IndexState).
betas_from_index_entries(List, TransientThreshold, PA, IndexState) ->
{Filtered, Delivers, Acks} =
lists:foldr(
fun ({MsgId, SeqId, MsgProps, IsPersistent, IsDelivered},
{Filtered1, Delivers1, Acks1} = Acc) ->
case SeqId < TransientThreshold andalso not IsPersistent of
true -> {Filtered1,
cons_if(not IsDelivered, SeqId, Delivers1),
[SeqId | Acks1]};
false -> case gb_trees:is_defined(SeqId, PA) of
false ->
{?QUEUE:in_r(
m(#msg_status {
seq_id = SeqId,
msg_id = MsgId,
msg = undefined,
is_persistent = IsPersistent,
is_delivered = IsDelivered,
msg_on_disk = true,
index_on_disk = true,
msg_props = MsgProps
}), Filtered1),
Delivers1, Acks1};
true ->
Acc
end
end
end, {?QUEUE:new(), [], []}, List),
{Filtered, rabbit_queue_index:ack(
Acks, rabbit_queue_index:deliver(Delivers, IndexState))}.
expand_delta(SeqId, ?BLANK_DELTA_PATTERN(X)) ->
d(#delta { start_seq_id = SeqId, count = 1, end_seq_id = SeqId + 1 });
expand_delta(SeqId, #delta { start_seq_id = StartSeqId,
count = Count } = Delta)
when SeqId < StartSeqId ->
d(Delta #delta { start_seq_id = SeqId, count = Count + 1 });
expand_delta(SeqId, #delta { count = Count,
end_seq_id = EndSeqId } = Delta)
when SeqId >= EndSeqId ->
d(Delta #delta { count = Count + 1, end_seq_id = SeqId + 1 });
expand_delta(_SeqId, #delta { count = Count } = Delta) ->
d(Delta #delta { count = Count + 1 }).
update_rate(Now, Then, Count, {OThen, OCount}) ->
%% avg over the current period and the previous
{1000000.0 * (Count + OCount) / timer:now_diff(Now, OThen), {Then, Count}}.
%%----------------------------------------------------------------------------
%% Internal major helpers for Public API
%%----------------------------------------------------------------------------
init(IsDurable, IndexState, DeltaCount, Terms, AsyncCallback,
PersistentClient, TransientClient) ->
{LowSeqId, NextSeqId, IndexState1} = rabbit_queue_index:bounds(IndexState),
DeltaCount1 = proplists:get_value(persistent_count, Terms, DeltaCount),
Delta = case DeltaCount1 == 0 andalso DeltaCount /= undefined of
true -> ?BLANK_DELTA;
false -> d(#delta { start_seq_id = LowSeqId,
count = DeltaCount1,
end_seq_id = NextSeqId })
end,
Now = now(),
State = #vqstate {
q1 = ?QUEUE:new(),
q2 = ?QUEUE:new(),
delta = Delta,
q3 = ?QUEUE:new(),
q4 = ?QUEUE:new(),
next_seq_id = NextSeqId,
pending_ack = gb_trees:empty(),
ram_ack_index = gb_trees:empty(),
index_state = IndexState1,
msg_store_clients = {PersistentClient, TransientClient},
durable = IsDurable,
transient_threshold = NextSeqId,
async_callback = AsyncCallback,
len = DeltaCount1,
persistent_count = DeltaCount1,
target_ram_count = infinity,
ram_msg_count = 0,
ram_msg_count_prev = 0,
ram_ack_count_prev = 0,
out_counter = 0,
in_counter = 0,
rates = blank_rate(Now, DeltaCount1),
msgs_on_disk = gb_sets:new(),
msg_indices_on_disk = gb_sets:new(),
unconfirmed = gb_sets:new(),
confirmed = gb_sets:new(),
ack_out_counter = 0,
ack_in_counter = 0,
ack_rates = blank_rate(Now, 0) },
a(maybe_deltas_to_betas(State)).
blank_rate(Timestamp, IngressLength) ->
#rates { egress = {Timestamp, 0},
ingress = {Timestamp, IngressLength},
avg_egress = 0.0,
avg_ingress = 0.0,
timestamp = Timestamp }.
in_r(MsgStatus = #msg_status { msg = undefined },
State = #vqstate { q3 = Q3, q4 = Q4 }) ->
case ?QUEUE:is_empty(Q4) of
true -> State #vqstate { q3 = ?QUEUE:in_r(MsgStatus, Q3) };
false -> {MsgStatus1, State1 = #vqstate { q4 = Q4a }} =
read_msg(MsgStatus, State),
State1 #vqstate { q4 = ?QUEUE:in_r(MsgStatus1, Q4a) }
end;
in_r(MsgStatus, State = #vqstate { q4 = Q4 }) ->
State #vqstate { q4 = ?QUEUE:in_r(MsgStatus, Q4) }.
queue_out(State = #vqstate { q4 = Q4 }) ->
case ?QUEUE:out(Q4) of
{empty, _Q4} ->
case fetch_from_q3(State) of
{empty, _State1} = Result -> Result;
{loaded, {MsgStatus, State1}} -> {{value, MsgStatus}, State1}
end;
{{value, MsgStatus}, Q4a} ->
{{value, MsgStatus}, State #vqstate { q4 = Q4a }}
end.
read_msg(MsgStatus = #msg_status { msg = undefined,
msg_id = MsgId,
is_persistent = IsPersistent },
State = #vqstate { ram_msg_count = RamMsgCount,
msg_store_clients = MSCState}) ->
{{ok, Msg = #basic_message {}}, MSCState1} =
msg_store_read(MSCState, IsPersistent, MsgId),
{MsgStatus #msg_status { msg = Msg },
State #vqstate { ram_msg_count = RamMsgCount + 1,
msg_store_clients = MSCState1 }};
read_msg(MsgStatus, State) ->
{MsgStatus, State}.
internal_fetch(AckRequired, MsgStatus = #msg_status {
seq_id = SeqId,
msg_id = MsgId,
msg = Msg,
is_persistent = IsPersistent,
is_delivered = IsDelivered,
msg_on_disk = MsgOnDisk,
index_on_disk = IndexOnDisk },
State = #vqstate {ram_msg_count = RamMsgCount,
out_counter = OutCount,
index_state = IndexState,
msg_store_clients = MSCState,
len = Len,
persistent_count = PCount }) ->
%% 1. Mark it delivered if necessary
IndexState1 = maybe_write_delivered(
IndexOnDisk andalso not IsDelivered,
SeqId, IndexState),
%% 2. Remove from msg_store and queue index, if necessary
Rem = fun () ->
ok = msg_store_remove(MSCState, IsPersistent, [MsgId])
end,
Ack = fun () -> rabbit_queue_index:ack([SeqId], IndexState1) end,
IndexState2 =
case {AckRequired, MsgOnDisk, IndexOnDisk} of
{false, true, false} -> Rem(), IndexState1;
{false, true, true} -> Rem(), Ack();
_ -> IndexState1
end,
%% 3. If an ack is required, add something sensible to PA
{AckTag, State1} = case AckRequired of
true -> StateN = record_pending_ack(
MsgStatus #msg_status {
is_delivered = true }, State),
{SeqId, StateN};
false -> {undefined, State}
end,
PCount1 = PCount - one_if(IsPersistent andalso not AckRequired),
Len1 = Len - 1,
RamMsgCount1 = RamMsgCount - one_if(Msg =/= undefined),
{{Msg, IsDelivered, AckTag, Len1},
State1 #vqstate { ram_msg_count = RamMsgCount1,
out_counter = OutCount + 1,
index_state = IndexState2,
len = Len1,
persistent_count = PCount1 }}.
purge_betas_and_deltas(LensByStore,
State = #vqstate { q3 = Q3,
index_state = IndexState,
msg_store_clients = MSCState }) ->
case ?QUEUE:is_empty(Q3) of
true -> {LensByStore, State};
false -> {LensByStore1, IndexState1} =
remove_queue_entries(fun ?QUEUE:foldl/3, Q3,
LensByStore, IndexState, MSCState),
purge_betas_and_deltas(LensByStore1,
maybe_deltas_to_betas(
State #vqstate {
q3 = ?QUEUE:new(),
index_state = IndexState1 }))
end.
remove_queue_entries(Fold, Q, LensByStore, IndexState, MSCState) ->
{MsgIdsByStore, Delivers, Acks} =
Fold(fun remove_queue_entries1/2, {orddict:new(), [], []}, Q),
ok = orddict:fold(fun (IsPersistent, MsgIds, ok) ->
msg_store_remove(MSCState, IsPersistent, MsgIds)
end, ok, MsgIdsByStore),
{sum_msg_ids_by_store_to_len(LensByStore, MsgIdsByStore),
rabbit_queue_index:ack(Acks,
rabbit_queue_index:deliver(Delivers, IndexState))}.
remove_queue_entries1(
#msg_status { msg_id = MsgId, seq_id = SeqId,
is_delivered = IsDelivered, msg_on_disk = MsgOnDisk,
index_on_disk = IndexOnDisk, is_persistent = IsPersistent },
{MsgIdsByStore, Delivers, Acks}) ->
{case MsgOnDisk of
true -> rabbit_misc:orddict_cons(IsPersistent, MsgId, MsgIdsByStore);
false -> MsgIdsByStore
end,
cons_if(IndexOnDisk andalso not IsDelivered, SeqId, Delivers),
cons_if(IndexOnDisk, SeqId, Acks)}.
sum_msg_ids_by_store_to_len(LensByStore, MsgIdsByStore) ->
orddict:fold(
fun (IsPersistent, MsgIds, LensByStore1) ->
orddict:update_counter(IsPersistent, length(MsgIds), LensByStore1)
end, LensByStore, MsgIdsByStore).
%%----------------------------------------------------------------------------
%% Internal gubbins for publishing
%%----------------------------------------------------------------------------
maybe_write_msg_to_disk(_Force, MsgStatus = #msg_status {
msg_on_disk = true }, _MSCState) ->
MsgStatus;
maybe_write_msg_to_disk(Force, MsgStatus = #msg_status {
msg = Msg, msg_id = MsgId,
is_persistent = IsPersistent }, MSCState)
when Force orelse IsPersistent ->
Msg1 = Msg #basic_message {
%% don't persist any recoverable decoded properties
content = rabbit_binary_parser:clear_decoded_content(
Msg #basic_message.content)},
ok = msg_store_write(MSCState, IsPersistent, MsgId, Msg1),
MsgStatus #msg_status { msg_on_disk = true };
maybe_write_msg_to_disk(_Force, MsgStatus, _MSCState) ->
MsgStatus.
maybe_write_index_to_disk(_Force, MsgStatus = #msg_status {
index_on_disk = true }, IndexState) ->
true = MsgStatus #msg_status.msg_on_disk, %% ASSERTION
{MsgStatus, IndexState};
maybe_write_index_to_disk(Force, MsgStatus = #msg_status {
msg_id = MsgId,
seq_id = SeqId,
is_persistent = IsPersistent,
is_delivered = IsDelivered,
msg_props = MsgProps}, IndexState)
when Force orelse IsPersistent ->
true = MsgStatus #msg_status.msg_on_disk, %% ASSERTION
IndexState1 = rabbit_queue_index:publish(
MsgId, SeqId, MsgProps, IsPersistent, IndexState),
{MsgStatus #msg_status { index_on_disk = true },
maybe_write_delivered(IsDelivered, SeqId, IndexState1)};
maybe_write_index_to_disk(_Force, MsgStatus, IndexState) ->
{MsgStatus, IndexState}.
maybe_write_to_disk(ForceMsg, ForceIndex, MsgStatus,
State = #vqstate { index_state = IndexState,
msg_store_clients = MSCState }) ->
MsgStatus1 = maybe_write_msg_to_disk(ForceMsg, MsgStatus, MSCState),
{MsgStatus2, IndexState1} =
maybe_write_index_to_disk(ForceIndex, MsgStatus1, IndexState),
{MsgStatus2, State #vqstate { index_state = IndexState1 }}.
%%----------------------------------------------------------------------------
%% Internal gubbins for acks
%%----------------------------------------------------------------------------
record_pending_ack(#msg_status { seq_id = SeqId,
msg_id = MsgId,
msg_on_disk = MsgOnDisk } = MsgStatus,
State = #vqstate { pending_ack = PA,
ram_ack_index = RAI,
ack_in_counter = AckInCount}) ->
{AckEntry, RAI1} =
case MsgOnDisk of
true -> {m(trim_msg_status(MsgStatus)), RAI};
false -> {MsgStatus, gb_trees:insert(SeqId, MsgId, RAI)}
end,
State #vqstate { pending_ack = gb_trees:insert(SeqId, AckEntry, PA),
ram_ack_index = RAI1,
ack_in_counter = AckInCount + 1}.
remove_pending_ack(SeqId, State = #vqstate { pending_ack = PA,
ram_ack_index = RAI }) ->
{gb_trees:get(SeqId, PA),
State #vqstate { pending_ack = gb_trees:delete(SeqId, PA),
ram_ack_index = gb_trees:delete_any(SeqId, RAI) }}.
purge_pending_ack(KeepPersistent,
State = #vqstate { pending_ack = PA,
index_state = IndexState,
msg_store_clients = MSCState }) ->
{IndexOnDiskSeqIds, MsgIdsByStore, _AllMsgIds} =
rabbit_misc:gb_trees_fold(fun (_SeqId, MsgStatus, Acc) ->
accumulate_ack(MsgStatus, Acc)
end, accumulate_ack_init(), PA),
State1 = State #vqstate { pending_ack = gb_trees:empty(),
ram_ack_index = gb_trees:empty() },
case KeepPersistent of
true -> case orddict:find(false, MsgIdsByStore) of
error -> State1;
{ok, MsgIds} -> ok = msg_store_remove(MSCState, false,
MsgIds),
State1
end;
false -> IndexState1 =
rabbit_queue_index:ack(IndexOnDiskSeqIds, IndexState),
[ok = msg_store_remove(MSCState, IsPersistent, MsgIds)
|| {IsPersistent, MsgIds} <- orddict:to_list(MsgIdsByStore)],
State1 #vqstate { index_state = IndexState1 }
end.
accumulate_ack_init() -> {[], orddict:new(), []}.
accumulate_ack(#msg_status { seq_id = SeqId,
msg_id = MsgId,
is_persistent = IsPersistent,
msg_on_disk = MsgOnDisk,
index_on_disk = IndexOnDisk },
{IndexOnDiskSeqIdsAcc, MsgIdsByStore, AllMsgIds}) ->
{cons_if(IndexOnDisk, SeqId, IndexOnDiskSeqIdsAcc),
case MsgOnDisk of
true -> rabbit_misc:orddict_cons(IsPersistent, MsgId, MsgIdsByStore);
false -> MsgIdsByStore
end,
[MsgId | AllMsgIds]}.
find_persistent_count(LensByStore) ->
case orddict:find(true, LensByStore) of
error -> 0;
{ok, Len} -> Len
end.
%%----------------------------------------------------------------------------
%% Internal plumbing for confirms (aka publisher acks)
%%----------------------------------------------------------------------------
record_confirms(MsgIdSet, State = #vqstate { msgs_on_disk = MOD,
msg_indices_on_disk = MIOD,
unconfirmed = UC,
confirmed = C }) ->
State #vqstate {
msgs_on_disk = rabbit_misc:gb_sets_difference(MOD, MsgIdSet),
msg_indices_on_disk = rabbit_misc:gb_sets_difference(MIOD, MsgIdSet),
unconfirmed = rabbit_misc:gb_sets_difference(UC, MsgIdSet),
confirmed = gb_sets:union(C, MsgIdSet) }.
must_sync_index(#vqstate { msg_indices_on_disk = MIOD,
unconfirmed = UC }) ->
%% If UC is empty then by definition, MIOD and MOD are also empty
%% and there's nothing that can be pending a sync.
%% If UC is not empty, then we want to find is_empty(UC - MIOD),
%% but the subtraction can be expensive. Thus instead, we test to
%% see if UC is a subset of MIOD. This can only be the case if
%% MIOD == UC, which would indicate that every message in UC is
%% also in MIOD and is thus _all_ pending on a msg_store sync, not
%% on a qi sync. Thus the negation of this is sufficient. Because
%% is_subset is short circuiting, this is more efficient than the
%% subtraction.
not (gb_sets:is_empty(UC) orelse gb_sets:is_subset(UC, MIOD)).
blind_confirm(Callback, MsgIdSet) ->
Callback(?MODULE,
fun (?MODULE, State) -> record_confirms(MsgIdSet, State) end).
msgs_written_to_disk(Callback, MsgIdSet, ignored) ->
blind_confirm(Callback, MsgIdSet);
msgs_written_to_disk(Callback, MsgIdSet, written) ->
Callback(?MODULE,
fun (?MODULE, State = #vqstate { msgs_on_disk = MOD,
msg_indices_on_disk = MIOD,
unconfirmed = UC }) ->
Confirmed = gb_sets:intersection(UC, MsgIdSet),
record_confirms(gb_sets:intersection(MsgIdSet, MIOD),
State #vqstate {
msgs_on_disk =
gb_sets:union(MOD, Confirmed) })
end).
msg_indices_written_to_disk(Callback, MsgIdSet) ->
Callback(?MODULE,
fun (?MODULE, State = #vqstate { msgs_on_disk = MOD,
msg_indices_on_disk = MIOD,
unconfirmed = UC }) ->
Confirmed = gb_sets:intersection(UC, MsgIdSet),
record_confirms(gb_sets:intersection(MsgIdSet, MOD),
State #vqstate {
msg_indices_on_disk =
gb_sets:union(MIOD, Confirmed) })
end).
%%----------------------------------------------------------------------------
%% Internal plumbing for requeue
%%----------------------------------------------------------------------------
publish_alpha(#msg_status { msg = undefined } = MsgStatus, State) ->
read_msg(MsgStatus, State);
publish_alpha(MsgStatus, #vqstate {ram_msg_count = RamMsgCount } = State) ->
{MsgStatus, State #vqstate { ram_msg_count = RamMsgCount + 1 }}.
publish_beta(MsgStatus, State) ->
{#msg_status { msg = Msg} = MsgStatus1,
#vqstate { ram_msg_count = RamMsgCount } = State1} =
maybe_write_to_disk(true, false, MsgStatus, State),
{MsgStatus1, State1 #vqstate {
ram_msg_count = RamMsgCount + one_if(Msg =/= undefined) }}.
%% Rebuild queue, inserting sequence ids to maintain ordering
queue_merge(SeqIds, Q, MsgIds, Limit, PubFun, State) ->
queue_merge(SeqIds, Q, ?QUEUE:new(), MsgIds,
Limit, PubFun, State).
queue_merge([SeqId | Rest] = SeqIds, Q, Front, MsgIds,
Limit, PubFun, State)
when Limit == undefined orelse SeqId < Limit ->
case ?QUEUE:out(Q) of
{{value, #msg_status { seq_id = SeqIdQ } = MsgStatus}, Q1}
when SeqIdQ < SeqId ->
%% enqueue from the remaining queue
queue_merge(SeqIds, Q1, ?QUEUE:in(MsgStatus, Front), MsgIds,
Limit, PubFun, State);
{_, _Q1} ->
%% enqueue from the remaining list of sequence ids
{MsgStatus, State1} = msg_from_pending_ack(SeqId, State),
{#msg_status { msg_id = MsgId } = MsgStatus1, State2} =
PubFun(MsgStatus, State1),
queue_merge(Rest, Q, ?QUEUE:in(MsgStatus1, Front), [MsgId | MsgIds],
Limit, PubFun, State2)
end;
queue_merge(SeqIds, Q, Front, MsgIds,
_Limit, _PubFun, State) ->
{SeqIds, ?QUEUE:join(Front, Q), MsgIds, State}.
delta_merge([], Delta, MsgIds, State) ->
{Delta, MsgIds, State};
delta_merge(SeqIds, Delta, MsgIds, State) ->
lists:foldl(fun (SeqId, {Delta0, MsgIds0, State0}) ->
{#msg_status { msg_id = MsgId } = MsgStatus, State1} =
msg_from_pending_ack(SeqId, State0),
{_MsgStatus, State2} =
maybe_write_to_disk(true, true, MsgStatus, State1),
{expand_delta(SeqId, Delta0), [MsgId | MsgIds0], State2}
end, {Delta, MsgIds, State}, SeqIds).
%% Mostly opposite of record_pending_ack/2
msg_from_pending_ack(SeqId, State) ->
{#msg_status { msg_props = MsgProps } = MsgStatus, State1} =
remove_pending_ack(SeqId, State),
{MsgStatus #msg_status {
msg_props = MsgProps #message_properties { needs_confirming = false } },
State1}.
beta_limit(Q) ->
case ?QUEUE:peek(Q) of
{value, #msg_status { seq_id = SeqId }} -> SeqId;
empty -> undefined
end.
delta_limit(?BLANK_DELTA_PATTERN(_X)) -> undefined;
delta_limit(#delta { start_seq_id = StartSeqId }) -> StartSeqId.
%%----------------------------------------------------------------------------
%% Phase changes
%%----------------------------------------------------------------------------
%% Determine whether a reduction in memory use is necessary, and call
%% functions to perform the required phase changes. The function can
%% also be used to just do the former, by passing in dummy phase
%% change functions.
%%
%% The function does not report on any needed beta->delta conversions,
%% though the conversion function for that is called as necessary. The
%% reason is twofold. Firstly, this is safe because the conversion is
%% only ever necessary just after a transition to a
%% target_ram_count of zero or after an incremental alpha->beta
%% conversion. In the former case the conversion is performed straight
%% away (i.e. any betas present at the time are converted to deltas),
%% and in the latter case the need for a conversion is flagged up
%% anyway. Secondly, this is necessary because we do not have a
%% precise and cheap predicate for determining whether a beta->delta
%% conversion is necessary - due to the complexities of retaining up
%% one segment's worth of messages in q3 - and thus would risk
%% perpetually reporting the need for a conversion when no such
%% conversion is needed. That in turn could cause an infinite loop.
reduce_memory_use(_AlphaBetaFun, _BetaDeltaFun, _AckFun,
State = #vqstate {target_ram_count = infinity}) ->
{false, State};
reduce_memory_use(AlphaBetaFun, BetaDeltaFun, AckFun,
State = #vqstate {
ram_ack_index = RamAckIndex,
ram_msg_count = RamMsgCount,
target_ram_count = TargetRamCount,
rates = #rates { avg_ingress = AvgIngress,
avg_egress = AvgEgress },
ack_rates = #rates { avg_ingress = AvgAckIngress,
avg_egress = AvgAckEgress }
}) ->
{Reduce, State1 = #vqstate { q2 = Q2, q3 = Q3 }} =
case chunk_size(RamMsgCount + gb_trees:size(RamAckIndex),
TargetRamCount) of
0 -> {false, State};
%% Reduce memory of pending acks and alphas. The order is
%% determined based on which is growing faster. Whichever
%% comes second may very well get a quota of 0 if the
%% first manages to push out the max number of messages.
S1 -> {_, State2} =
lists:foldl(fun (ReduceFun, {QuotaN, StateN}) ->
ReduceFun(QuotaN, StateN)
end,
{S1, State},
case (AvgAckIngress - AvgAckEgress) >
(AvgIngress - AvgEgress) of
true -> [AckFun, AlphaBetaFun];
false -> [AlphaBetaFun, AckFun]
end),
{true, State2}
end,
case chunk_size(?QUEUE:len(Q2) + ?QUEUE:len(Q3),
permitted_beta_count(State1)) of
?IO_BATCH_SIZE = S2 -> {true, BetaDeltaFun(S2, State1)};
_ -> {Reduce, State1}
end.
limit_ram_acks(0, State) ->
{0, State};
limit_ram_acks(Quota, State = #vqstate { pending_ack = PA,
ram_ack_index = RAI }) ->
case gb_trees:is_empty(RAI) of
true ->
{Quota, State};
false ->
{SeqId, MsgId, RAI1} = gb_trees:take_largest(RAI),
MsgStatus = #msg_status { msg_id = MsgId, is_persistent = false} =
gb_trees:get(SeqId, PA),
{MsgStatus1, State1} =
maybe_write_to_disk(true, false, MsgStatus, State),
PA1 = gb_trees:update(SeqId, m(trim_msg_status(MsgStatus1)), PA),
limit_ram_acks(Quota - 1,
State1 #vqstate { pending_ack = PA1,
ram_ack_index = RAI1 })
end.
reduce_memory_use(State) ->
{_, State1} = reduce_memory_use(fun push_alphas_to_betas/2,
fun push_betas_to_deltas/2,
fun limit_ram_acks/2,
State),
State1.
permitted_beta_count(#vqstate { len = 0 }) ->
infinity;
permitted_beta_count(#vqstate { target_ram_count = 0, q3 = Q3 }) ->
lists:min([?QUEUE:len(Q3), rabbit_queue_index:next_segment_boundary(0)]);
permitted_beta_count(#vqstate { q1 = Q1,
q4 = Q4,
target_ram_count = TargetRamCount,
len = Len }) ->
BetaDelta = Len - ?QUEUE:len(Q1) - ?QUEUE:len(Q4),
lists:max([rabbit_queue_index:next_segment_boundary(0),
BetaDelta - ((BetaDelta * BetaDelta) div
(BetaDelta + TargetRamCount))]).
chunk_size(Current, Permitted)
when Permitted =:= infinity orelse Permitted >= Current ->
0;
chunk_size(Current, Permitted) ->
lists:min([Current - Permitted, ?IO_BATCH_SIZE]).
fetch_from_q3(State = #vqstate { q1 = Q1,
q2 = Q2,
delta = #delta { count = DeltaCount },
q3 = Q3,
q4 = Q4 }) ->
case ?QUEUE:out(Q3) of
{empty, _Q3} ->
{empty, State};
{{value, MsgStatus}, Q3a} ->
State1 = State #vqstate { q3 = Q3a },
State2 = case {?QUEUE:is_empty(Q3a), 0 == DeltaCount} of
{true, true} ->
%% q3 is now empty, it wasn't before;
%% delta is still empty. So q2 must be
%% empty, and we know q4 is empty
%% otherwise we wouldn't be loading from
%% q3. As such, we can just set q4 to Q1.
true = ?QUEUE:is_empty(Q2), %% ASSERTION
true = ?QUEUE:is_empty(Q4), %% ASSERTION
State1 #vqstate { q1 = ?QUEUE:new(), q4 = Q1 };
{true, false} ->
maybe_deltas_to_betas(State1);
{false, _} ->
%% q3 still isn't empty, we've not
%% touched delta, so the invariants
%% between q1, q2, delta and q3 are
%% maintained
State1
end,
{loaded, {MsgStatus, State2}}
end.
maybe_deltas_to_betas(State = #vqstate { delta = ?BLANK_DELTA_PATTERN(X) }) ->
State;
maybe_deltas_to_betas(State = #vqstate {
q2 = Q2,
delta = Delta,
q3 = Q3,
index_state = IndexState,
pending_ack = PA,
transient_threshold = TransientThreshold }) ->
#delta { start_seq_id = DeltaSeqId,
count = DeltaCount,
end_seq_id = DeltaSeqIdEnd } = Delta,
DeltaSeqId1 =
lists:min([rabbit_queue_index:next_segment_boundary(DeltaSeqId),
DeltaSeqIdEnd]),
{List, IndexState1} =
rabbit_queue_index:read(DeltaSeqId, DeltaSeqId1, IndexState),
{Q3a, IndexState2} =
betas_from_index_entries(List, TransientThreshold, PA, IndexState1),
State1 = State #vqstate { index_state = IndexState2 },
case ?QUEUE:len(Q3a) of
0 ->
%% we ignored every message in the segment due to it being
%% transient and below the threshold
maybe_deltas_to_betas(
State1 #vqstate {
delta = d(Delta #delta { start_seq_id = DeltaSeqId1 })});
Q3aLen ->
Q3b = ?QUEUE:join(Q3, Q3a),
case DeltaCount - Q3aLen of
0 ->
%% delta is now empty, but it wasn't before, so
%% can now join q2 onto q3
State1 #vqstate { q2 = ?QUEUE:new(),
delta = ?BLANK_DELTA,
q3 = ?QUEUE:join(Q3b, Q2) };
N when N > 0 ->
Delta1 = d(#delta { start_seq_id = DeltaSeqId1,
count = N,
end_seq_id = DeltaSeqIdEnd }),
State1 #vqstate { delta = Delta1,
q3 = Q3b }
end
end.
push_alphas_to_betas(Quota, State) ->
{Quota1, State1} =
push_alphas_to_betas(
fun ?QUEUE:out/1,
fun (MsgStatus, Q1a,
State0 = #vqstate { q3 = Q3, delta = #delta { count = 0 } }) ->
State0 #vqstate { q1 = Q1a, q3 = ?QUEUE:in(MsgStatus, Q3) };
(MsgStatus, Q1a, State0 = #vqstate { q2 = Q2 }) ->
State0 #vqstate { q1 = Q1a, q2 = ?QUEUE:in(MsgStatus, Q2) }
end, Quota, State #vqstate.q1, State),
{Quota2, State2} =
push_alphas_to_betas(
fun ?QUEUE:out_r/1,
fun (MsgStatus, Q4a, State0 = #vqstate { q3 = Q3 }) ->
State0 #vqstate { q3 = ?QUEUE:in_r(MsgStatus, Q3), q4 = Q4a }
end, Quota1, State1 #vqstate.q4, State1),
{Quota2, State2}.
push_alphas_to_betas(_Generator, _Consumer, Quota, _Q,
State = #vqstate { ram_msg_count = RamMsgCount,
target_ram_count = TargetRamCount })
when Quota =:= 0 orelse
TargetRamCount =:= infinity orelse
TargetRamCount >= RamMsgCount ->
{Quota, State};
push_alphas_to_betas(Generator, Consumer, Quota, Q, State) ->
case Generator(Q) of
{empty, _Q} ->
{Quota, State};
{{value, MsgStatus}, Qa} ->
{MsgStatus1 = #msg_status { msg_on_disk = true },
State1 = #vqstate { ram_msg_count = RamMsgCount }} =
maybe_write_to_disk(true, false, MsgStatus, State),
MsgStatus2 = m(trim_msg_status(MsgStatus1)),
State2 = State1 #vqstate { ram_msg_count = RamMsgCount - 1 },
push_alphas_to_betas(Generator, Consumer, Quota - 1, Qa,
Consumer(MsgStatus2, Qa, State2))
end.
push_betas_to_deltas(Quota, State = #vqstate { q2 = Q2,
delta = Delta,
q3 = Q3,
index_state = IndexState }) ->
PushState = {Quota, Delta, IndexState},
{Q3a, PushState1} = push_betas_to_deltas(
fun ?QUEUE:out_r/1,
fun rabbit_queue_index:next_segment_boundary/1,
Q3, PushState),
{Q2a, PushState2} = push_betas_to_deltas(
fun ?QUEUE:out/1,
fun (Q2MinSeqId) -> Q2MinSeqId end,
Q2, PushState1),
{_, Delta1, IndexState1} = PushState2,
State #vqstate { q2 = Q2a,
delta = Delta1,
q3 = Q3a,
index_state = IndexState1 }.
push_betas_to_deltas(Generator, LimitFun, Q, PushState) ->
case ?QUEUE:is_empty(Q) of
true ->
{Q, PushState};
false ->
{value, #msg_status { seq_id = MinSeqId }} = ?QUEUE:peek(Q),
{value, #msg_status { seq_id = MaxSeqId }} = ?QUEUE:peek_r(Q),
Limit = LimitFun(MinSeqId),
case MaxSeqId < Limit of
true -> {Q, PushState};
false -> push_betas_to_deltas1(Generator, Limit, Q, PushState)
end
end.
push_betas_to_deltas1(_Generator, _Limit, Q,
{0, _Delta, _IndexState} = PushState) ->
{Q, PushState};
push_betas_to_deltas1(Generator, Limit, Q,
{Quota, Delta, IndexState} = PushState) ->
case Generator(Q) of
{empty, _Q} ->
{Q, PushState};
{{value, #msg_status { seq_id = SeqId }}, _Qa}
when SeqId < Limit ->
{Q, PushState};
{{value, MsgStatus = #msg_status { seq_id = SeqId }}, Qa} ->
{#msg_status { index_on_disk = true }, IndexState1} =
maybe_write_index_to_disk(true, MsgStatus, IndexState),
Delta1 = expand_delta(SeqId, Delta),
push_betas_to_deltas1(Generator, Limit, Qa,
{Quota - 1, Delta1, IndexState1})
end.
%%----------------------------------------------------------------------------
%% Upgrading
%%----------------------------------------------------------------------------
multiple_routing_keys() ->
transform_storage(
fun ({basic_message, ExchangeName, Routing_Key, Content,
MsgId, Persistent}) ->
{ok, {basic_message, ExchangeName, [Routing_Key], Content,
MsgId, Persistent}};
(_) -> {error, corrupt_message}
end),
ok.
%% Assumes message store is not running
transform_storage(TransformFun) ->
transform_store(?PERSISTENT_MSG_STORE, TransformFun),
transform_store(?TRANSIENT_MSG_STORE, TransformFun).
transform_store(Store, TransformFun) ->
rabbit_msg_store:force_recovery(rabbit_mnesia:dir(), Store),
rabbit_msg_store:transform_dir(rabbit_mnesia:dir(), Store, TransformFun).
|