/* * Copyright 2002, 2006 Adrian Thurston */ /* This file is part of Aapl. * * Aapl is free software; you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation; either version 2.1 of the License, or (at your option) * any later version. * * Aapl is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU Lesser General Public License * along with Aapl; if not, write to the Free Software Foundation, Inc., 59 * Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef _AAPL_VECTOR_H #define _AAPL_VECTOR_H #include #include #include #include #include "table.h" #ifdef AAPL_NAMESPACE namespace Aapl { #endif /** * \addtogroup vector * @{ */ /** \class Vector * \brief Dynamic array. * * This is typical vector implementation. It is a dynamic array that can be * used to contain complex data structures that have constructors and * destructors as well as simple types such as integers and pointers. * * Vector supports inserting, overwriting, and removing single or multiple * elements at once. Constructors and destructors are called wherever * appropriate. For example, before an element is overwritten, it's * destructor is called. * * Vector provides automatic resizing of allocated memory as needed and offers * different allocation schemes for controlling how the automatic allocation * is done. Two senses of the the length of the data is maintained: the * amount of raw memory allocated to the vector and the number of actual * elements in the vector. The various allocation schemes control how the * allocated space is changed in relation to the number of elements in the * vector. * * \include ex_vector.cpp */ /*@}*/ template < class T, class Resize = ResizeExpn > class Vector : public Table, public Resize { private: typedef Table BaseTable; public: /** * \brief Initialize an empty vector with no space allocated. * * If a linear resizer is used, the step defaults to 256 units of T. For a * runtime vector both up and down allocation schemes default to * Exponential. */ Vector() { } /** * \brief Create a vector that contains an initial element. * * The vector becomes one element in length. The element's copy * constructor is used to place the value in the vector. */ Vector(const T &val) { setAs(&val, 1); } /** * \brief Create a vector that contains an array of elements. * * The vector becomes len elements in length. Copy constructors are used * to place the new elements in the vector. */ Vector(const T *val, long len) { setAs(val, len); } /* Deep copy. */ Vector( const Vector &v ); /* Free all mem used by the vector. */ ~Vector() { empty(); } /* Delete all items. */ void empty(); /* Abandon the contents of the vector without deleteing. */ void abandon(); /* Transfers the elements of another vector into this vector. First emptys * the current vector. */ void transfer( Vector &v ); /* Perform a deep copy of another vector into this vector. */ Vector &operator=( const Vector &v ); /*@{*/ /** * \brief Insert one element at position pos. * * Elements in the vector from pos onward are shifted one space to the * right. The copy constructor is used to place the element into this * vector. If pos is greater than the length of the vector then undefined * behaviour results. If pos is negative then it is treated as an offset * relative to the length of the vector. */ void insert(long pos, const T &val) { insert(pos, &val, 1); } /* Insert an array of values. */ void insert(long pos, const T *val, long len); /** * \brief Insert all the elements from another vector at position pos. * * Elements in this vector from pos onward are shifted v.tabLen spaces to * the right. The element's copy constructor is used to copy the items * into this vector. The other vector is left unchanged. If pos is off the * end of the vector, then undefined behaviour results. If pos is negative * then it is treated as an offset relative to the length of the vector. * Equivalent to vector.insert(pos, other.data, other.tabLen). */ void insert(long pos, const Vector &v) { insert(pos, v.data, v.tabLen); } /* Insert len copies of val into the vector. */ void insertDup(long pos, const T &val, long len); /** * \brief Insert one new element using the default constrcutor. * * Elements in the vector from pos onward are shifted one space to the * right. The default constructor is used to init the new element. If pos * is greater than the length of the vector then undefined behaviour * results. If pos is negative then it is treated as an offset relative to * the length of the vector. */ void insertNew(long pos) { insertNew(pos, 1); } /* Insert len new items using default constructor. */ void insertNew(long pos, long len); /*@}*/ /*@{*/ /** * \brief Remove one element at position pos. * * The element's destructor is called. Elements to the right of pos are * shifted one space to the left to take up the free space. If pos is greater * than or equal to the length of the vector then undefined behavior results. * If pos is negative then it is treated as an offset relative to the length * of the vector. */ void remove(long pos) { remove(pos, 1); } /* Delete a number of elements. */ void remove(long pos, long len); /*@}*/ /*@{*/ /** * \brief Replace one element at position pos. * * If there is an existing element at position pos (if pos is less than * the length of the vector) then its destructor is called before the * space is used. The copy constructor is used to place the element into * the vector. If pos is greater than the length of the vector then * undefined behaviour results. If pos is negative then it is treated as * an offset relative to the length of the vector. */ void replace(long pos, const T &val) { replace(pos, &val, 1); } /* Replace with an array of values. */ void replace(long pos, const T *val, long len); /** * \brief Replace at position pos with all the elements of another vector. * * Replace at position pos with all the elements of another vector. The * other vector is left unchanged. If there are existing elements at the * positions to be replaced, then destructors are called before the space * is used. Copy constructors are used to place the elements into this * vector. It is allowable for the pos and length of the other vector to * specify a replacement that overwrites existing elements and creates new * ones. If pos is greater than the length of the vector then undefined * behaviour results. If pos is negative, then it is treated as an offset * relative to the length of the vector. */ void replace(long pos, const Vector &v) { replace(pos, v.data, v.tabLen); } /* Replace len items with len copies of val. */ void replaceDup(long pos, const T &val, long len); /** * \brief Replace at position pos with one new element. * * If there is an existing element at the position to be replaced (pos is * less than the length of the vector) then the element's destructor is * called before the space is used. The default constructor is used to * initialize the new element. If pos is greater than the length of the * vector then undefined behaviour results. If pos is negative, then it is * treated as an offset relative to the length of the vector. */ void replaceNew(long pos) { replaceNew(pos, 1); } /* Replace len items at pos with newly constructed objects. */ void replaceNew(long pos, long len); /*@}*/ /*@{*/ /** * \brief Set the contents of the vector to be val exactly. * * The vector becomes one element in length. Destructors are called on any * existing elements in the vector. The element's copy constructor is used * to place the val in the vector. */ void setAs(const T &val) { setAs(&val, 1); } /* Set to the contents of an array. */ void setAs(const T *val, long len); /** * \brief Set the vector to exactly the contents of another vector. * * The vector becomes v.tabLen elements in length. Destructors are called * on any existing elements. Copy constructors are used to place the new * elements in the vector. */ void setAs(const Vector &v) { setAs(v.data, v.tabLen); } /* Set as len copies of item. */ void setAsDup(const T &item, long len); /** * \brief Set the vector to exactly one new item. * * The vector becomes one element in length. Destructors are called on any * existing elements in the vector. The default constructor is used to * init the new item. */ void setAsNew() { setAsNew(1); } /* Set as newly constructed objects using the default constructor. */ void setAsNew(long len); /*@}*/ /*@{*/ /** * \brief Append one elment to the end of the vector. * * Copy constructor is used to place the element in the vector. */ void append(const T &val) { replace(BaseTable::tabLen, &val, 1); } /** * \brief Append len elements to the end of the vector. * * Copy constructors are used to place the elements in the vector. */ void append(const T *val, long len) { replace(BaseTable::tabLen, val, len); } /** * \brief Append the contents of another vector. * * The other vector is left unchanged. Copy constructors are used to place the * elements in the vector. */ void append(const Vector &v) { replace(BaseTable::tabLen, v.data, v.tabLen); } /** * \brief Append len copies of item. * * The copy constructor is used to place the item in the vector. */ void appendDup(const T &item, long len) { replaceDup(BaseTable::tabLen, item, len); } /** * \brief Append a single newly created item. * * The new element is initialized with the default constructor. */ void appendNew() { replaceNew(BaseTable::tabLen, 1); } /** * \brief Append len newly created items. * * The new elements are initialized with the default constructor. */ void appendNew(long len) { replaceNew(BaseTable::tabLen, len); } /*@}*/ /*@{*/ /** \fn Vector::prepend(const T &val) * \brief Prepend one elment to the front of the vector. * * Copy constructor is used to place the element in the vector. */ void prepend(const T &val) { insert(0, &val, 1); } /** * \brief Prepend len elements to the front of the vector. * * Copy constructors are used to place the elements in the vector. */ void prepend(const T *val, long len) { insert(0, val, len); } /** * \brief Prepend the contents of another vector. * * The other vector is left unchanged. Copy constructors are used to place the * elements in the vector. */ void prepend(const Vector &v) { insert(0, v.data, v.tabLen); } /** * \brief Prepend len copies of item. * * The copy constructor is used to place the item in the vector. */ void prependDup(const T &item, long len) { insertDup(0, item, len); } /** * \brief Prepend a single newly created item. * * The new element is initialized with the default constructor. */ void prependNew() { insertNew(0, 1); } /** * \brief Prepend len newly created items. * * The new elements are initialized with the default constructor. */ void prependNew(long len) { insertNew(0, len); } /*@}*/ /* Convenience access. */ T &operator[](int i) const { return BaseTable::data[i]; } long size() const { return BaseTable::tabLen; } /* Forward this so a ref can be used. */ struct Iter; /* Various classes for setting the iterator */ struct IterFirst { IterFirst( const Vector &v ) : v(v) { } const Vector &v; }; struct IterLast { IterLast( const Vector &v ) : v(v) { } const Vector &v; }; struct IterNext { IterNext( const Iter &i ) : i(i) { } const Iter &i; }; struct IterPrev { IterPrev( const Iter &i ) : i(i) { } const Iter &i; }; /** * \brief Vector Iterator. * \ingroup iterators */ struct Iter { /* Construct, assign. */ Iter() : ptr(0), ptrBeg(0), ptrEnd(0) { } /* Construct. */ Iter( const Vector &v ); Iter( const IterFirst &vf ); Iter( const IterLast &vl ); inline Iter( const IterNext &vn ); inline Iter( const IterPrev &vp ); /* Assign. */ Iter &operator=( const Vector &v ); Iter &operator=( const IterFirst &vf ); Iter &operator=( const IterLast &vl ); inline Iter &operator=( const IterNext &vf ); inline Iter &operator=( const IterPrev &vl ); /** \brief Less than end? */ bool lte() const { return ptr != ptrEnd; } /** \brief At end? */ bool end() const { return ptr == ptrEnd; } /** \brief Greater than beginning? */ bool gtb() const { return ptr != ptrBeg; } /** \brief At beginning? */ bool beg() const { return ptr == ptrBeg; } /** \brief At first element? */ bool first() const { return ptr == ptrBeg+1; } /** \brief At last element? */ bool last() const { return ptr == ptrEnd-1; } /* Return the position. */ long pos() const { return ptr - ptrBeg - 1; } T &operator[](int i) const { return ptr[i]; } /** \brief Implicit cast to T*. */ operator T*() const { return ptr; } /** \brief Dereference operator returns T&. */ T &operator *() const { return *ptr; } /** \brief Arrow operator returns T*. */ T *operator->() const { return ptr; } /** \brief Move to next item. */ T *operator++() { return ++ptr; } /** \brief Move to next item. */ T *operator++(int) { return ptr++; } /** \brief Move to next item. */ T *increment() { return ++ptr; } /** \brief Move n items forward. */ T *operator+=(long n) { return ptr+=n; } /** \brief Move to previous item. */ T *operator--() { return --ptr; } /** \brief Move to previous item. */ T *operator--(int) { return ptr--; } /** \brief Move to previous item. */ T *decrement() { return --ptr; } /** \brief Move n items back. */ T *operator-=(long n) { return ptr-=n; } /** \brief Return the next item. Does not modify this. */ inline IterNext next() const { return IterNext(*this); } /** \brief Return the previous item. Does not modify this. */ inline IterPrev prev() const { return IterPrev(*this); } /** \brief The iterator is simply a pointer. */ T *ptr; /* For testing endpoints. */ T *ptrBeg, *ptrEnd; }; /** \brief Return first element. */ IterFirst first() { return IterFirst( *this ); } /** \brief Return last element. */ IterLast last() { return IterLast( *this ); } protected: void makeRawSpaceFor(long pos, long len); void upResize(long len); void downResize(long len); }; /* Init a vector iterator with just a vector. */ template Vector::Iter::Iter( const Vector &v ) { if ( v.tabLen == 0 ) ptr = ptrBeg = ptrEnd = 0; else { ptr = v.data; ptrBeg = v.data-1; ptrEnd = v.data+v.tabLen; } } /* Init a vector iterator with the first of a vector. */ template Vector::Iter::Iter( const IterFirst &vf ) { if ( vf.v.tabLen == 0 ) ptr = ptrBeg = ptrEnd = 0; else { ptr = vf.v.data; ptrBeg = vf.v.data-1; ptrEnd = vf.v.data+vf.v.tabLen; } } /* Init a vector iterator with the last of a vector. */ template Vector::Iter::Iter( const IterLast &vl ) { if ( vl.v.tabLen == 0 ) ptr = ptrBeg = ptrEnd = 0; else { ptr = vl.v.data+vl.v.tabLen-1; ptrBeg = vl.v.data-1; ptrEnd = vl.v.data+vl.v.tabLen; } } /* Init a vector iterator with the next of some other iterator. */ template Vector::Iter::Iter( const IterNext &vn ) : ptr(vn.i.ptr+1), ptrBeg(vn.i.ptrBeg), ptrEnd(vn.i.ptrEnd) { } /* Init a vector iterator with the prev of some other iterator. */ template Vector::Iter::Iter( const IterPrev &vp ) : ptr(vp.i.ptr-1), ptrBeg(vp.i.ptrBeg), ptrEnd(vp.i.ptrEnd) { } /* Set a vector iterator with some vector. */ template typename Vector::Iter & Vector::Iter::operator=( const Vector &v ) { if ( v.tabLen == 0 ) ptr = ptrBeg = ptrEnd = 0; else { ptr = v.data; ptrBeg = v.data-1; ptrEnd = v.data+v.tabLen; } return *this; } /* Set a vector iterator with the first element in a vector. */ template typename Vector::Iter & Vector::Iter::operator=( const IterFirst &vf ) { if ( vf.v.tabLen == 0 ) ptr = ptrBeg = ptrEnd = 0; else { ptr = vf.v.data; ptrBeg = vf.v.data-1; ptrEnd = vf.v.data+vf.v.tabLen; } return *this; } /* Set a vector iterator with the last element in a vector. */ template typename Vector::Iter & Vector::Iter::operator=( const IterLast &vl ) { if ( vl.v.tabLen == 0 ) ptr = ptrBeg = ptrEnd = 0; else { ptr = vl.v.data+vl.v.tabLen-1; ptrBeg = vl.v.data-1; ptrEnd = vl.v.data+vl.v.tabLen; } return *this; } /* Set a vector iterator with the next of some other iterator. */ template typename Vector::Iter & Vector::Iter::operator=( const IterNext &vn ) { ptr = vn.i.ptr+1; ptrBeg = vn.i.ptrBeg; ptrEnd = vn.i.ptrEnd; return *this; } /* Set a vector iterator with the prev of some other iterator. */ template typename Vector::Iter & Vector::Iter::operator=( const IterPrev &vp ) { ptr = vp.i.ptr-1; ptrBeg = vp.i.ptrBeg; ptrEnd = vp.i.ptrEnd; return *this; } /** * \brief Forget all elements in the vector. * * The contents of the vector are reset to null without without the space * being freed. */ template void Vector:: abandon() { BaseTable::data = 0; BaseTable::tabLen = 0; BaseTable::allocLen = 0; } /** * \brief Transfer the contents of another vector into this vector. * * The dynamic array of the other vector is moved into this vector by * reference. If this vector is non-empty then its contents are first deleted. * Afterward the other vector will be empty. */ template void Vector:: transfer( Vector &v ) { empty(); BaseTable::data = v.data; BaseTable::tabLen = v.tabLen; BaseTable::allocLen = v.allocLen; v.abandon(); } /** * \brief Deep copy another vector into this vector. * * Copies the entire contents of the other vector into this vector. Any * existing contents are first deleted. Equivalent to setAs. * * \returns A reference to this. */ template Vector &Vector:: operator=( const Vector &v ) { setAs(v.data, v.tabLen); return *this; } /* Up resize the data for len elements using Resize::upResize to tell us the * new tabLen. Reads and writes allocLen. Does not read or write tabLen. */ template void Vector:: upResize(long len) { /* Ask the resizer what the new tabLen will be. */ long newLen = Resize::upResize(BaseTable::allocLen, len); /* Did the data grow? */ if ( newLen > BaseTable::allocLen ) { BaseTable::allocLen = newLen; if ( BaseTable::data != 0 ) { /* Table exists already, resize it up. */ BaseTable::data = (T*) realloc( BaseTable::data, sizeof(T) * newLen ); if ( BaseTable::data == 0 ) throw std::bad_alloc(); } else { /* Create the data. */ BaseTable::data = (T*) malloc( sizeof(T) * newLen ); if ( BaseTable::data == 0 ) throw std::bad_alloc(); } } } /* Down resize the data for len elements using Resize::downResize to determine * the new tabLen. Reads and writes allocLen. Does not read or write tabLen. */ template void Vector:: downResize(long len) { /* Ask the resizer what the new tabLen will be. */ long newLen = Resize::downResize( BaseTable::allocLen, len ); /* Did the data shrink? */ if ( newLen < BaseTable::allocLen ) { BaseTable::allocLen = newLen; if ( newLen == 0 ) { /* Simply free the data. */ free( BaseTable::data ); BaseTable::data = 0; } else { /* Not shrinking to size zero, realloc it to the smaller size. */ BaseTable::data = (T*) realloc( BaseTable::data, sizeof(T) * newLen ); if ( BaseTable::data == 0 ) throw std::bad_alloc(); } } } /** * \brief Perform a deep copy of the vector. * * The contents of the other vector are copied into this vector. This vector * gets the same allocation size as the other vector. All items are copied * using the element's copy constructor. */ template Vector:: Vector(const Vector &v) { BaseTable::tabLen = v.tabLen; BaseTable::allocLen = v.allocLen; if ( BaseTable::allocLen > 0 ) { /* Allocate needed space. */ BaseTable::data = (T*) malloc(sizeof(T) * BaseTable::allocLen); if ( BaseTable::data == 0 ) throw std::bad_alloc(); /* If there are any items in the src data, copy them in. */ T *dst = BaseTable::data, *src = v.data; for (long pos = 0; pos < BaseTable::tabLen; pos++, dst++, src++ ) new(dst) T(*src); } else { /* Nothing allocated. */ BaseTable::data = 0; } } /** \fn Vector::~Vector() * \brief Free all memory used by the vector. * * The vector is reset to zero elements. Destructors are called on all * elements in the vector. The space allocated for the vector is freed. */ /** * \brief Free all memory used by the vector. * * The vector is reset to zero elements. Destructors are called on all * elements in the vector. The space allocated for the vector is freed. */ template void Vector:: empty() { if ( BaseTable::data != 0 ) { /* Call All destructors. */ T *pos = BaseTable::data; for ( long i = 0; i < BaseTable::tabLen; pos++, i++ ) pos->~T(); /* Free the data space. */ free( BaseTable::data ); BaseTable::data = 0; BaseTable::tabLen = BaseTable::allocLen = 0; } } /** * \brief Set the contents of the vector to be len elements exactly. * * The vector becomes len elements in length. Destructors are called on any * existing elements in the vector. Copy constructors are used to place the * new elements in the vector. */ template void Vector:: setAs(const T *val, long len) { /* Call All destructors. */ long i; T *pos = BaseTable::data; for ( i = 0; i < BaseTable::tabLen; pos++, i++ ) pos->~T(); /* Adjust the allocated length. */ if ( len < BaseTable::tabLen ) downResize( len ); else if ( len > BaseTable::tabLen ) upResize( len ); /* Set the new data length to exactly len. */ BaseTable::tabLen = len; /* Copy data in. */ T *dst = BaseTable::data; const T *src = val; for ( i = 0; i < len; i++, dst++, src++ ) new(dst) T(*src); } /** * \brief Set the vector to len copies of item. * * The vector becomes len elements in length. Destructors are called on any * existing elements in the vector. The element's copy constructor is used to * copy the item into the vector. */ template void Vector:: setAsDup(const T &item, long len) { /* Call All destructors. */ T *pos = BaseTable::data; for ( long i = 0; i < BaseTable::tabLen; pos++, i++ ) pos->~T(); /* Adjust the allocated length. */ if ( len < BaseTable::tabLen ) downResize( len ); else if ( len > BaseTable::tabLen ) upResize( len ); /* Set the new data length to exactly len. */ BaseTable::tabLen = len; /* Copy item in one spot at a time. */ T *dst = BaseTable::data; for ( long i = 0; i < len; i++, dst++ ) new(dst) T(item); } /** * \brief Set the vector to exactly len new items. * * The vector becomes len elements in length. Destructors are called on any * existing elements in the vector. Default constructors are used to init the * new items. */ template void Vector:: setAsNew(long len) { /* Call All destructors. */ T *pos = BaseTable::data; for ( long i = 0; i < BaseTable::tabLen; pos++, i++ ) pos->~T(); /* Adjust the allocated length. */ if ( len < BaseTable::tabLen ) downResize( len ); else if ( len > BaseTable::tabLen ) upResize( len ); /* Set the new data length to exactly len. */ BaseTable::tabLen = len; /* Create items using default constructor. */ T *dst = BaseTable::data; for ( long i = 0; i < len; i++, dst++ ) new(dst) T(); } /** * \brief Replace len elements at position pos. * * If there are existing elements at the positions to be replaced, then * destructors are called before the space is used. Copy constructors are used * to place the elements into the vector. It is allowable for the pos and * length to specify a replacement that overwrites existing elements and * creates new ones. If pos is greater than the length of the vector then * undefined behaviour results. If pos is negative, then it is treated as an * offset relative to the length of the vector. */ template void Vector:: replace(long pos, const T *val, long len) { long endPos, i; T *item; /* If we are given a negative position to replace at then * treat it as a position relative to the length. */ if ( pos < 0 ) pos = BaseTable::tabLen + pos; /* The end is the one past the last item that we want * to write to. */ endPos = pos + len; /* Make sure we have enough space. */ if ( endPos > BaseTable::tabLen ) { upResize( endPos ); /* Delete any objects we need to delete. */ item = BaseTable::data + pos; for ( i = pos; i < BaseTable::tabLen; i++, item++ ) item->~T(); /* We are extending the vector, set the new data length. */ BaseTable::tabLen = endPos; } else { /* Delete any objects we need to delete. */ item = BaseTable::data + pos; for ( i = pos; i < endPos; i++, item++ ) item->~T(); } /* Copy data in using copy constructor. */ T *dst = BaseTable::data + pos; const T *src = val; for ( i = 0; i < len; i++, dst++, src++ ) new(dst) T(*src); } /** * \brief Replace at position pos with len copies of an item. * * If there are existing elements at the positions to be replaced, then * destructors are called before the space is used. The copy constructor is * used to place the element into this vector. It is allowable for the pos and * length to specify a replacement that overwrites existing elements and * creates new ones. If pos is greater than the length of the vector then * undefined behaviour results. If pos is negative, then it is treated as an * offset relative to the length of the vector. */ template void Vector:: replaceDup(long pos, const T &val, long len) { long endPos, i; T *item; /* If we are given a negative position to replace at then * treat it as a position relative to the length. */ if ( pos < 0 ) pos = BaseTable::tabLen + pos; /* The end is the one past the last item that we want * to write to. */ endPos = pos + len; /* Make sure we have enough space. */ if ( endPos > BaseTable::tabLen ) { upResize( endPos ); /* Delete any objects we need to delete. */ item = BaseTable::data + pos; for ( i = pos; i < BaseTable::tabLen; i++, item++ ) item->~T(); /* We are extending the vector, set the new data length. */ BaseTable::tabLen = endPos; } else { /* Delete any objects we need to delete. */ item = BaseTable::data + pos; for ( i = pos; i < endPos; i++, item++ ) item->~T(); } /* Copy data in using copy constructor. */ T *dst = BaseTable::data + pos; for ( long i = 0; i < len; i++, dst++ ) new(dst) T(val); } /** * \brief Replace at position pos with len new elements. * * If there are existing elements at the positions to be replaced, then * destructors are called before the space is used. The default constructor is * used to initialize the new elements. It is allowable for the pos and length * to specify a replacement that overwrites existing elements and creates new * ones. If pos is greater than the length of the vector then undefined * behaviour results. If pos is negative, then it is treated as an offset * relative to the length of the vector. */ template void Vector:: replaceNew(long pos, long len) { long endPos, i; T *item; /* If we are given a negative position to replace at then * treat it as a position relative to the length. */ if ( pos < 0 ) pos = BaseTable::tabLen + pos; /* The end is the one past the last item that we want * to write to. */ endPos = pos + len; /* Make sure we have enough space. */ if ( endPos > BaseTable::tabLen ) { upResize( endPos ); /* Delete any objects we need to delete. */ item = BaseTable::data + pos; for ( i = pos; i < BaseTable::tabLen; i++, item++ ) item->~T(); /* We are extending the vector, set the new data length. */ BaseTable::tabLen = endPos; } else { /* Delete any objects we need to delete. */ item = BaseTable::data + pos; for ( i = pos; i < endPos; i++, item++ ) item->~T(); } /* Copy data in using copy constructor. */ T *dst = BaseTable::data + pos; for ( long i = 0; i < len; i++, dst++ ) new(dst) T(); } /** * \brief Remove len elements at position pos. * * Destructor is called on all elements removed. Elements to the right of pos * are shifted len spaces to the left to take up the free space. If pos is * greater than or equal to the length of the vector then undefined behavior * results. If pos is negative then it is treated as an offset relative to the * length of the vector. */ template void Vector:: remove(long pos, long len) { long newLen, lenToSlideOver, endPos; T *dst, *item; /* If we are given a negative position to remove at then * treat it as a position relative to the length. */ if ( pos < 0 ) pos = BaseTable::tabLen + pos; /* The first position after the last item deleted. */ endPos = pos + len; /* The new data length. */ newLen = BaseTable::tabLen - len; /* The place in the data we are deleting at. */ dst = BaseTable::data + pos; /* Call Destructors. */ item = dst; for ( long i = 0; i < len; i += 1, item += 1 ) item->~T(); /* Shift data over if necessary. */ lenToSlideOver = BaseTable::tabLen - endPos; if ( len > 0 && lenToSlideOver > 0 ) memmove(dst, dst + len, sizeof(T)*lenToSlideOver); /* Shrink the data if necessary. */ downResize( newLen ); /* Set the new data length. */ BaseTable::tabLen = newLen; } /** * \brief Insert len elements at position pos. * * Elements in the vector from pos onward are shifted len spaces to the right. * The copy constructor is used to place the elements into this vector. If pos * is greater than the length of the vector then undefined behaviour results. * If pos is negative then it is treated as an offset relative to the length * of the vector. */ template void Vector:: insert(long pos, const T *val, long len) { /* If we are given a negative position to insert at then * treat it as a position relative to the length. */ if ( pos < 0 ) pos = BaseTable::tabLen + pos; /* Calculate the new length. */ long newLen = BaseTable::tabLen + len; /* Up resize, we are growing. */ upResize( newLen ); /* Shift over data at insert spot if needed. */ if ( len > 0 && pos < BaseTable::tabLen ) { memmove(BaseTable::data + pos + len, BaseTable::data + pos, sizeof(T)*(BaseTable::tabLen-pos)); } /* Copy data in element by element. */ T *dst = BaseTable::data + pos; const T *src = val; for ( long i = 0; i < len; i++, dst++, src++ ) new(dst) T(*src); /* Set the new length. */ BaseTable::tabLen = newLen; } /** * \brief Insert len copies of item at position pos. * * Elements in the vector from pos onward are shifted len spaces to the right. * The copy constructor is used to place the element into this vector. If pos * is greater than the length of the vector then undefined behaviour results. * If pos is negative then it is treated as an offset relative to the length * of the vector. */ template void Vector:: insertDup(long pos, const T &item, long len) { /* If we are given a negative position to insert at then * treat it as a position relative to the length. */ if ( pos < 0 ) pos = BaseTable::tabLen + pos; /* Calculate the new length. */ long newLen = BaseTable::tabLen + len; /* Up resize, we are growing. */ upResize( newLen ); /* Shift over data at insert spot if needed. */ if ( len > 0 && pos < BaseTable::tabLen ) { memmove(BaseTable::data + pos + len, BaseTable::data + pos, sizeof(T)*(BaseTable::tabLen-pos)); } /* Copy the data item in one at a time. */ T *dst = BaseTable::data + pos; for ( long i = 0; i < len; i++, dst++ ) new(dst) T(item); /* Set the new length. */ BaseTable::tabLen = newLen; } /** * \brief Insert len new elements using the default constructor. * * Elements in the vector from pos onward are shifted len spaces to the right. * Default constructors are used to init the new elements. If pos is off the * end of the vector then undefined behaviour results. If pos is negative then * it is treated as an offset relative to the length of the vector. */ template void Vector:: insertNew(long pos, long len) { /* If we are given a negative position to insert at then * treat it as a position relative to the length. */ if ( pos < 0 ) pos = BaseTable::tabLen + pos; /* Calculate the new length. */ long newLen = BaseTable::tabLen + len; /* Up resize, we are growing. */ upResize( newLen ); /* Shift over data at insert spot if needed. */ if ( len > 0 && pos < BaseTable::tabLen ) { memmove(BaseTable::data + pos + len, BaseTable::data + pos, sizeof(T)*(BaseTable::tabLen-pos)); } /* Init new data with default constructors. */ T *dst = BaseTable::data + pos; for ( long i = 0; i < len; i++, dst++ ) new(dst) T(); /* Set the new length. */ BaseTable::tabLen = newLen; } /* Makes space for len items, Does not init the items in any way. If pos is * greater than the length of the vector then undefined behaviour results. * Updates the length of the vector. */ template void Vector:: makeRawSpaceFor(long pos, long len) { /* Calculate the new length. */ long newLen = BaseTable::tabLen + len; /* Up resize, we are growing. */ upResize( newLen ); /* Shift over data at insert spot if needed. */ if ( len > 0 && pos < BaseTable::tabLen ) { memmove(BaseTable::data + pos + len, BaseTable::data + pos, sizeof(T)*(BaseTable::tabLen-pos)); } /* Save the new length. */ BaseTable::tabLen = newLen; } #ifdef AAPL_NAMESPACE } #endif #endif /* _AAPL_VECTOR_H */