/* * Copyright 2001-2006 Adrian Thurston * 2004 Erich Ocean * 2005 Alan West */ /* This file is part of Ragel. * * Ragel is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * Ragel is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Ragel; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "ragel.h" #include "gogoto.h" #include "redfsm.h" #include "bstmap.h" #include "gendata.h" using std::endl; /* Emit the goto to take for a given transition. */ std::ostream &GoGotoCodeGen::TRANS_GOTO( RedTransAp *trans, int level ) { out << TABS(level) << "goto tr" << trans->id << ";"; return out; } int GoGotoCodeGen::TRANS_NR( RedTransAp *trans ) { return trans->id; } std::ostream &GoGotoCodeGen::TO_STATE_ACTION_SWITCH( int level ) { /* Walk the list of functions, printing the cases. */ for ( GenActionList::Iter act = actionList; act.lte(); act++ ) { /* Write out referenced actions. */ if ( act->numToStateRefs > 0 ) { /* Write the case label, the action and the case break. */ out << TABS(level) << "case " << act->actionId << ":" << endl; ACTION( out, act, 0, false, false ); } } genLineDirective( out ); return out; } std::ostream &GoGotoCodeGen::FROM_STATE_ACTION_SWITCH( int level ) { /* Walk the list of functions, printing the cases. */ for ( GenActionList::Iter act = actionList; act.lte(); act++ ) { /* Write out referenced actions. */ if ( act->numFromStateRefs > 0 ) { /* Write the case label, the action and the case break. */ out << TABS(level) << "case " << act->actionId << ":" << endl; ACTION( out, act, 0, false, false ); } } genLineDirective( out ); return out; } std::ostream &GoGotoCodeGen::EOF_ACTION_SWITCH( int level ) { /* Walk the list of functions, printing the cases. */ for ( GenActionList::Iter act = actionList; act.lte(); act++ ) { /* Write out referenced actions. */ if ( act->numEofRefs > 0 ) { /* Write the case label, the action and the case break. */ out << TABS(level) << "case " << act->actionId << ":" << endl; ACTION( out, act, 0, true, false ); } } genLineDirective( out ); return out; } std::ostream &GoGotoCodeGen::ACTION_SWITCH( int level ) { /* Walk the list of functions, printing the cases. */ for ( GenActionList::Iter act = actionList; act.lte(); act++ ) { /* Write out referenced actions. */ if ( act->numTransRefs > 0 ) { /* Write the case label, the action and the case break. */ out << TABS(level) << "case " << act->actionId << ":" << endl; ACTION( out, act, 0, false, false ); } } genLineDirective( out ); return out; } void GoGotoCodeGen::GOTO_HEADER( RedStateAp *state, int level ) { /* Label the state. */ out << TABS(level) << "case " << state->id << ":" << endl; } void GoGotoCodeGen::emitSingleSwitch( RedStateAp *state, int level ) { /* Load up the singles. */ int numSingles = state->outSingle.length(); RedTransEl *data = state->outSingle.data; if ( numSingles == 1 ) { /* If there is a single single key then write it out as an if. */ out << TABS(level) << "if " << GET_WIDE_KEY(state) << " == " << WIDE_KEY(state, data[0].lowKey) << " {" << endl; /* Virtual function for writing the target of the transition. */ TRANS_GOTO(data[0].value, level + 1) << endl; out << TABS(level) << "}" << endl; } else if ( numSingles > 1 ) { /* Write out single keys in a switch if there is more than one. */ out << TABS(level) << "switch " << GET_WIDE_KEY(state) << " {" << endl; /* Write out the single indicies. */ for ( int j = 0; j < numSingles; j++ ) { out << TABS(level) << "case " << WIDE_KEY(state, data[j].lowKey) << ":" << endl; TRANS_GOTO(data[j].value, level + 1) << endl; } /* Close off the transition switch. */ out << TABS(level) << "}" << endl; } } void GoGotoCodeGen::emitRangeBSearch( RedStateAp *state, int level, int low, int high ) { /* Get the mid position, staying on the lower end of the range. */ int mid = (low + high) >> 1; RedTransEl *data = state->outRange.data; /* Determine if we need to look higher or lower. */ bool anyLower = mid > low; bool anyHigher = mid < high; /* Determine if the keys at mid are the limits of the alphabet. */ bool limitLow = data[mid].lowKey == keyOps->minKey; bool limitHigh = data[mid].highKey == keyOps->maxKey; if ( anyLower && anyHigher ) { /* Can go lower and higher than mid. */ out << TABS(level) << "switch {" << endl; out << TABS(level) << "case " << GET_WIDE_KEY(state) << " < " << WIDE_KEY(state, data[mid].lowKey) << ":" << endl; emitRangeBSearch( state, level+1, low, mid-1 ); out << TABS(level) << "case " << GET_WIDE_KEY(state) << " > " << WIDE_KEY(state, data[mid].highKey) << ":" << endl; emitRangeBSearch( state, level+1, mid+1, high ); out << TABS(level) << "default:" << endl; TRANS_GOTO(data[mid].value, level+1) << endl; out << TABS(level) << "}" << endl; } else if ( anyLower && !anyHigher ) { /* Can go lower than mid but not higher. */ out << TABS(level) << "switch {" << endl; out << TABS(level) << "case " << GET_WIDE_KEY(state) << " < " << WIDE_KEY(state, data[mid].lowKey) << ":" << endl; emitRangeBSearch( state, level+1, low, mid-1 ); /* if the higher is the highest in the alphabet then there is no * sense testing it. */ if ( limitHigh ) { out << TABS(level) << "default:" << endl; TRANS_GOTO(data[mid].value, level+1) << endl; } else { out << TABS(level) << "case " << GET_WIDE_KEY(state) << " <= " << WIDE_KEY(state, data[mid].highKey) << ":" << endl; TRANS_GOTO(data[mid].value, level+1) << endl; } out << TABS(level) << "}" << endl; } else if ( !anyLower && anyHigher ) { /* Can go higher than mid but not lower. */ out << TABS(level) << "switch {" << endl; out << TABS(level) << "case " << GET_WIDE_KEY(state) << " > " << WIDE_KEY(state, data[mid].highKey) << ":" << endl; emitRangeBSearch( state, level+1, mid+1, high ); /* If the lower end is the lowest in the alphabet then there is no * sense testing it. */ if ( limitLow ) { out << TABS(level) << "default:" << endl; TRANS_GOTO(data[mid].value, level+1) << endl; } else { out << TABS(level) << "case " << GET_WIDE_KEY(state) << " >= " << WIDE_KEY(state, data[mid].lowKey) << ":" << endl; TRANS_GOTO(data[mid].value, level+1) << endl; } out << TABS(level) << "}" << endl; } else { /* Cannot go higher or lower than mid. It's mid or bust. What * tests to do depends on limits of alphabet. */ if ( !limitLow && !limitHigh ) { out << TABS(level) << "if " << WIDE_KEY(state, data[mid].lowKey) << " <= " << GET_WIDE_KEY(state) << " && " << GET_WIDE_KEY(state) << " <= " << WIDE_KEY(state, data[mid].highKey) << " {" << endl; TRANS_GOTO(data[mid].value, level+1) << endl; out << TABS(level) << "}" << endl; } else if ( limitLow && !limitHigh ) { out << TABS(level) << "if " << GET_WIDE_KEY(state) << " <= " << WIDE_KEY(state, data[mid].highKey) << " {" << endl; TRANS_GOTO(data[mid].value, level+1) << endl; out << TABS(level) << "}" << endl; } else if ( !limitLow && limitHigh ) { out << TABS(level) << "if " << WIDE_KEY(state, data[mid].lowKey) << " <= " << GET_WIDE_KEY(state) << " {" << endl; TRANS_GOTO(data[mid].value, level+1) << endl; out << TABS(level) << "}" << endl; } else { /* Both high and low are at the limit. No tests to do. */ TRANS_GOTO(data[mid].value, level) << endl; } } } void GoGotoCodeGen::STATE_GOTO_ERROR( int level ) { /* Label the state and bail immediately. */ outLabelUsed = true; RedStateAp *state = redFsm->errState; out << TABS(level) << "case " << state->id << ":" << endl; out << TABS(level + 1) << "goto _out" << endl; } void GoGotoCodeGen::COND_TRANSLATE( GenStateCond *stateCond, int level ) { GenCondSpace *condSpace = stateCond->condSpace; out << TABS(level) << "_widec = " << KEY(condSpace->baseKey) << " + (" << CAST(WIDE_ALPH_TYPE(), GET_KEY()) << " - " << KEY(keyOps->minKey) << ")" << endl; for ( GenCondSet::Iter csi = condSpace->condSet; csi.lte(); csi++ ) { out << TABS(level) << "if "; CONDITION( out, *csi ); Size condValOffset = ((1 << csi.pos()) * keyOps->alphSize()); out << " {" << endl; out << TABS(level + 1) << "_widec += " << condValOffset << endl; out << TABS(level) << "}" << endl; } } void GoGotoCodeGen::emitCondBSearch( RedStateAp *state, int level, int low, int high ) { /* Get the mid position, staying on the lower end of the range. */ int mid = (low + high) >> 1; GenStateCond **data = state->stateCondVect.data; /* Determine if we need to look higher or lower. */ bool anyLower = mid > low; bool anyHigher = mid < high; /* Determine if the keys at mid are the limits of the alphabet. */ bool limitLow = data[mid]->lowKey == keyOps->minKey; bool limitHigh = data[mid]->highKey == keyOps->maxKey; if ( anyLower && anyHigher ) { /* Can go lower and higher than mid. */ out << TABS(level) << "switch {" << endl; out << TABS(level) << "case " << GET_KEY() << " < " << KEY(data[mid]->lowKey) << ":" << endl; emitCondBSearch( state, level+1, low, mid-1 ); out << TABS(level) << "case " << GET_KEY() << " > " << KEY(data[mid]->highKey) << ":" << endl; emitCondBSearch( state, level+1, mid+1, high ); out << TABS(level) << "default:" << endl; COND_TRANSLATE(data[mid], level+1); out << TABS(level) << "}" << endl; } else if ( anyLower && !anyHigher ) { /* Can go lower than mid but not higher. */ out << TABS(level) << "switch {" << endl; out << TABS(level) << "case " << GET_KEY() << " < " << KEY(data[mid]->lowKey) << ":" << endl; emitCondBSearch( state, level+1, low, mid-1 ); /* if the higher is the highest in the alphabet then there is no * sense testing it. */ if ( limitHigh ) { out << TABS(level) << "default:" << endl; COND_TRANSLATE(data[mid], level+1); } else { out << TABS(level) << "case " << GET_KEY() << " <= " << KEY(data[mid]->highKey) << ":" << endl; COND_TRANSLATE(data[mid], level+1); } out << TABS(level) << "}" << endl; } else if ( !anyLower && anyHigher ) { /* Can go higher than mid but not lower. */ out << TABS(level) << "switch {" << endl; out << TABS(level) << "case " << GET_KEY() << " > " << KEY(data[mid]->highKey) << ":" << endl; emitCondBSearch( state, level+1, mid+1, high ); /* If the lower end is the lowest in the alphabet then there is no * sense testing it. */ if ( limitLow ) { out << TABS(level) << "default:" << endl; COND_TRANSLATE(data[mid], level+1); } else { out << TABS(level) << "case " << GET_KEY() << " >= " << KEY(data[mid]->lowKey) << ":" << endl; COND_TRANSLATE(data[mid], level+1); } out << TABS(level) << "}" << endl; } else { /* Cannot go higher or lower than mid. It's mid or bust. What * tests to do depends on limits of alphabet. */ if ( !limitLow && !limitHigh ) { out << TABS(level) << "if " << KEY(data[mid]->lowKey) << " <= " << GET_KEY() << " && " << GET_KEY() << " <= " << KEY(data[mid]->highKey) << " {" << endl; COND_TRANSLATE(data[mid], level+1); out << TABS(level) << "}" << endl; } else if ( limitLow && !limitHigh ) { out << TABS(level) << "if " << GET_KEY() << " <= " << KEY(data[mid]->highKey) << " {" << endl; COND_TRANSLATE(data[mid], level+1); out << TABS(level) << "}" << endl; } else if ( !limitLow && limitHigh ) { out << TABS(level) << "if " << KEY(data[mid]->lowKey) << " <= " << GET_KEY() << " {" << endl; COND_TRANSLATE(data[mid], level+1); out << TABS(level) << "}" << endl; } else { /* Both high and low are at the limit. No tests to do. */ COND_TRANSLATE(data[mid], level); } } } std::ostream &GoGotoCodeGen::STATE_GOTOS( int level ) { for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { if ( st == redFsm->errState ) STATE_GOTO_ERROR(level); else { /* Writing code above state gotos. */ GOTO_HEADER( st, level ); if ( st->stateCondVect.length() > 0 ) { out << TABS(level + 1) << "_widec = " << CAST(WIDE_ALPH_TYPE(), GET_KEY()) << endl; emitCondBSearch( st, level + 1, 0, st->stateCondVect.length() - 1 ); } /* Try singles. */ if ( st->outSingle.length() > 0 ) emitSingleSwitch( st, level + 1 ); /* Default case is to binary search for the ranges, if that fails then */ if ( st->outRange.length() > 0 ) emitRangeBSearch( st, level + 1, 0, st->outRange.length() - 1 ); /* Write the default transition. */ TRANS_GOTO( st->defTrans, level + 1 ) << endl; } } return out; } std::ostream &GoGotoCodeGen::TRANSITIONS() { /* Emit any transitions that have functions and that go to * this state. */ for ( TransApSet::Iter trans = redFsm->transSet; trans.lte(); trans++ ) { /* Write the label for the transition so it can be jumped to. */ out << " tr" << trans->id << ": "; /* Destination state. */ if ( trans->action != 0 && trans->action->anyCurStateRef() ) out << "_ps = " << vCS() << ";"; out << vCS() << " = " << trans->targ->id << "; "; if ( trans->action != 0 ) { /* Write out the transition func. */ out << "goto f" << trans->action->actListId << endl; } else { /* No code to execute, just loop around. */ out << "goto _again" << endl; } } return out; } std::ostream &GoGotoCodeGen::EXEC_FUNCS() { /* Make labels that set acts and jump to execFuncs. Loop func indicies. */ for ( GenActionTableMap::Iter redAct = redFsm->actionMap; redAct.lte(); redAct++ ) { if ( redAct->numTransRefs > 0 ) { out << " f" << redAct->actListId << ": " << "_acts = " << (redAct->location + 1) << ";" " goto execFuncs" << endl; } } out << endl << "execFuncs:" << endl << " _nacts = " << CAST(UINT(), A() + "[_acts]") << "; _acts++" << endl << " for ; _nacts > 0; _nacts-- {" << endl << " _acts++" << endl << " switch " << A() << "[_acts - 1]" << " {" << endl; ACTION_SWITCH(2); out << " }" << endl << " }" << endl << " goto _again" << endl; return out; } unsigned int GoGotoCodeGen::TO_STATE_ACTION( RedStateAp *state ) { int act = 0; if ( state->toStateAction != 0 ) act = state->toStateAction->location+1; return act; } unsigned int GoGotoCodeGen::FROM_STATE_ACTION( RedStateAp *state ) { int act = 0; if ( state->fromStateAction != 0 ) act = state->fromStateAction->location+1; return act; } unsigned int GoGotoCodeGen::EOF_ACTION( RedStateAp *state ) { int act = 0; if ( state->eofAction != 0 ) act = state->eofAction->location+1; return act; } std::ostream &GoGotoCodeGen::TO_STATE_ACTIONS() { /* Take one off for the psuedo start state. */ int numStates = redFsm->stateList.length(); unsigned int *vals = new unsigned int[numStates]; memset( vals, 0, sizeof(unsigned int)*numStates ); for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) vals[st->id] = TO_STATE_ACTION(st); out << " "; for ( int st = 0; st < redFsm->nextStateId; st++ ) { /* Write any eof action. */ out << vals[st] << ", "; if ( st < numStates-1 ) { if ( (st+1) % IALL == 0 ) out << endl << " "; } } out << endl; delete[] vals; return out; } std::ostream &GoGotoCodeGen::FROM_STATE_ACTIONS() { /* Take one off for the psuedo start state. */ int numStates = redFsm->stateList.length(); unsigned int *vals = new unsigned int[numStates]; memset( vals, 0, sizeof(unsigned int)*numStates ); for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) vals[st->id] = FROM_STATE_ACTION(st); out << " "; for ( int st = 0; st < redFsm->nextStateId; st++ ) { /* Write any eof action. */ out << vals[st] << ", "; if ( st < numStates-1 ) { if ( (st+1) % IALL == 0 ) out << endl << " "; } } out << endl; delete[] vals; return out; } std::ostream &GoGotoCodeGen::EOF_ACTIONS() { /* Take one off for the psuedo start state. */ int numStates = redFsm->stateList.length(); unsigned int *vals = new unsigned int[numStates]; memset( vals, 0, sizeof(unsigned int)*numStates ); for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) vals[st->id] = EOF_ACTION(st); out << " "; for ( int st = 0; st < redFsm->nextStateId; st++ ) { /* Write any eof action. */ out << vals[st] << ", "; if ( st < numStates-1 ) { if ( (st+1) % IALL == 0 ) out << endl << " "; } } out << endl; delete[] vals; return out; } std::ostream &GoGotoCodeGen::FINISH_CASES() { for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { /* States that are final and have an out action need a case. */ if ( st->eofAction != 0 ) { /* Write the case label. */ out << TABS(2) << "case " << st->id << ":" << endl; /* Write the goto func. */ out << TABS(3) << "goto f" << st->eofAction->actListId << endl; } } return out; } void GoGotoCodeGen::writeData() { if ( redFsm->anyActions() ) { OPEN_ARRAY( ARRAY_TYPE(redFsm->maxActArrItem), A() ); ACTIONS_ARRAY(); CLOSE_ARRAY() << endl; } if ( redFsm->anyToStateActions() ) { OPEN_ARRAY( ARRAY_TYPE(redFsm->maxActionLoc), TSA() ); TO_STATE_ACTIONS(); CLOSE_ARRAY() << endl; } if ( redFsm->anyFromStateActions() ) { OPEN_ARRAY( ARRAY_TYPE(redFsm->maxActionLoc), FSA() ); FROM_STATE_ACTIONS(); CLOSE_ARRAY() << endl; } if ( redFsm->anyEofActions() ) { OPEN_ARRAY( ARRAY_TYPE(redFsm->maxActionLoc), EA() ); EOF_ACTIONS(); CLOSE_ARRAY() << endl; } STATE_IDS(); } void GoGotoCodeGen::writeExec() { testEofUsed = false; outLabelUsed = false; out << " {" << endl; if ( redFsm->anyRegCurStateRef() ) out << " var _ps " << INT() << " = 0" << endl; if ( redFsm->anyToStateActions() || redFsm->anyRegActions() || redFsm->anyFromStateActions() ) { out << " var _acts " << INT() << endl << " var _nacts " << UINT() << endl; } if ( redFsm->anyConditions() ) out << " var _widec " << WIDE_ALPH_TYPE() << endl; out << endl; if ( !noEnd ) { testEofUsed = true; out << " if " << P() << " == " << PE() << " {" << endl << " goto _test_eof" << endl << " }" << endl; } if ( redFsm->errState != 0 ) { outLabelUsed = true; out << " if " << vCS() << " == " << redFsm->errState->id << " {" << endl << " goto _out" << endl << " }" << endl; } out << "_resume:" << endl; if ( redFsm->anyFromStateActions() ) { out << " _acts = " << CAST(INT(), FSA() + "[" + vCS() + "]") << endl << " _nacts = " << CAST(UINT(), A() + "[_acts]") << "; _acts++" << endl << " for ; _nacts > 0; _nacts-- {" << endl << " _acts++" << endl << " switch " << A() << "[_acts - 1]" << " {" << endl; FROM_STATE_ACTION_SWITCH(2); out << " }" << endl << " }" << endl << endl; } out << " switch " << vCS() << " {" << endl; STATE_GOTOS(1); out << " }" << endl << endl; TRANSITIONS() << endl; if ( redFsm->anyRegActions() ) EXEC_FUNCS() << endl; out << "_again:" << endl; if ( redFsm->anyToStateActions() ) { out << " _acts = " << CAST(INT(), TSA() + "[" + vCS() + "]") << endl << " _nacts = " << CAST(UINT(), A() + "[_acts]") << "; _acts++" << endl << " for ; _nacts > 0; _nacts-- {" << endl << " _acts++" << endl << " switch " << A() << "[_acts - 1]" << " {" << endl; TO_STATE_ACTION_SWITCH(2); out << " }" << endl << " }" << endl << endl; } if ( redFsm->errState != 0 ) { outLabelUsed = true; out << " if " << vCS() << " == " << redFsm->errState->id << " {" << endl << " goto _out" << endl << " }" << endl; } if ( !noEnd ) { out << " if " << P() << "++; " << P() << " != " << PE() << " {" << endl << " goto _resume" << endl << " }" << endl; } else { out << " " << P() << "++" << endl << " goto _resume" << endl; } if ( testEofUsed ) out << " _test_eof: {}" << endl; if ( redFsm->anyEofTrans() || redFsm->anyEofActions() ) { out << " if " << P() << " == " << vEOF() << " {" << endl; if ( redFsm->anyEofTrans() ) { out << " switch " << vCS() << " {" << endl; for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { if ( st->eofTrans != 0 ) out << " case " << st->id << ":" << endl << " goto tr" << st->eofTrans->id << endl; } out << " }" << endl; } if ( redFsm->anyEofActions() ) { out << " __acts := " << CAST(INT(), EA() + "[" + vCS() + "]") << endl << " __nacts := " << CAST(UINT(), A() + "[__acts]") << "; __acts++" << endl << " for ; __nacts > 0; __nacts-- {" << endl << " __acts++" << endl << " switch " << A() << "[__acts - 1]" << " {" << endl; EOF_ACTION_SWITCH(3); out << " }" << endl << " }" << endl; } out << " }" << endl << endl; } if ( outLabelUsed ) out << " _out: {}" << endl; out << " }" << endl; }