/* * Copyright 2001-2007 Adrian Thurston * Copyright 2007 Victor Hugo Borja */ /* This file is part of Ragel. * * Ragel is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * Ragel is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Ragel; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "rubyflat.h" #include "ragel.h" #include "redfsm.h" #include "gendata.h" using std::ostream; using std::string; std::ostream &RubyFlatCodeGen::TO_STATE_ACTION_SWITCH() { /* Walk the list of functions, printing the cases. */ for ( GenActionList::Iter act = actionList; act.lte(); act++ ) { /* Write out referenced actions. */ if ( act->numToStateRefs > 0 ) { /* Write the case label, the action and the case break */ out << "\twhen " << act->actionId << " then\n"; ACTION( out, act, 0, false ); } } genLineDirective( out ); return out; } std::ostream &RubyFlatCodeGen::FROM_STATE_ACTION_SWITCH() { /* Walk the list of functions, printing the cases. */ for ( GenActionList::Iter act = actionList; act.lte(); act++ ) { /* Write out referenced actions. */ if ( act->numFromStateRefs > 0 ) { /* Write the case label, the action and the case break */ out << "\twhen " << act->actionId << " then\n"; ACTION( out, act, 0, false ); } } genLineDirective( out ); return out; } std::ostream &RubyFlatCodeGen::EOF_ACTION_SWITCH() { /* Walk the list of functions, printing the cases. */ for ( GenActionList::Iter act = actionList; act.lte(); act++ ) { /* Write out referenced actions. */ if ( act->numEofRefs > 0 ) { /* Write the case label, the action and the case break */ out << "\twhen " << act->actionId << " then\n"; ACTION( out, act, 0, true ); } } genLineDirective( out ); return out; } std::ostream &RubyFlatCodeGen::ACTION_SWITCH() { /* Walk the list of functions, printing the cases. */ for ( GenActionList::Iter act = actionList; act.lte(); act++ ) { /* Write out referenced actions. */ if ( act->numTransRefs > 0 ) { /* Write the case label, the action and the case break */ out << "\twhen " << act->actionId << " then\n"; ACTION( out, act, 0, false ); } } genLineDirective( out ); return out; } std::ostream &RubyFlatCodeGen::KEYS() { START_ARRAY_LINE(); int totalTrans = 0; for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { /* Emit just low key and high key. */ ARRAY_ITEM( KEY( st->lowKey ), ++totalTrans, false ); ARRAY_ITEM( KEY( st->highKey ), ++totalTrans, false ); if ( ++totalTrans % IALL == 0 ) out << "\n\t"; } /* Output one last number so we don't have to figure out when the last * entry is and avoid writing a comma. */ ARRAY_ITEM( INT( 0 ), ++totalTrans, true ); END_ARRAY_LINE(); return out; } std::ostream &RubyFlatCodeGen::INDICIES() { int totalTrans = 0; START_ARRAY_LINE(); for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { if ( st->transList != 0 ) { /* Walk the singles. */ unsigned long long span = keyOps->span( st->lowKey, st->highKey ); for ( unsigned long long pos = 0; pos < span; pos++ ) { ARRAY_ITEM( KEY( st->transList[pos]->id ), ++totalTrans, false ); } } /* The state's default index goes next. */ if ( st->defTrans != 0 ) ARRAY_ITEM( KEY( st->defTrans->id ), ++totalTrans, false ); } /* Output one last number so we don't have to figure out when the last * entry is and avoid writing a comma. */ ARRAY_ITEM( INT( 0 ), ++totalTrans, true ); END_ARRAY_LINE(); return out; } std::ostream &RubyFlatCodeGen::FLAT_INDEX_OFFSET() { START_ARRAY_LINE(); int totalStateNum = 0, curIndOffset = 0; for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { /* Write the index offset. */ ARRAY_ITEM( INT( curIndOffset ), ++totalStateNum, st.last() ); /* Move the index offset ahead. */ if ( st->transList != 0 ) curIndOffset += keyOps->span( st->lowKey, st->highKey ); if ( st->defTrans != 0 ) curIndOffset += 1; } END_ARRAY_LINE(); return out; } std::ostream &RubyFlatCodeGen::KEY_SPANS() { START_ARRAY_LINE(); int totalStateNum = 0; for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { /* Write singles length. */ unsigned long long span = 0; if ( st->transList != 0 ) span = keyOps->span( st->lowKey, st->highKey ); ARRAY_ITEM( INT( span ), ++totalStateNum, st.last() ); } END_ARRAY_LINE(); return out; } std::ostream &RubyFlatCodeGen::TO_STATE_ACTIONS() { START_ARRAY_LINE(); int totalStateNum = 0; for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { /* Write any eof action. */ ARRAY_ITEM( INT( TO_STATE_ACTION(st) ), ++totalStateNum, st.last() ); } END_ARRAY_LINE(); return out; } std::ostream &RubyFlatCodeGen::FROM_STATE_ACTIONS() { START_ARRAY_LINE(); int totalStateNum = 0; for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { /* Write any eof action. */ ARRAY_ITEM( INT( FROM_STATE_ACTION(st) ), ++totalStateNum, st.last() ); } END_ARRAY_LINE(); return out; } std::ostream &RubyFlatCodeGen::EOF_ACTIONS() { START_ARRAY_LINE(); int totalStateNum = 0; for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { /* Write any eof action. */ ARRAY_ITEM( INT( EOF_ACTION(st) ), ++totalStateNum, st.last() ); } END_ARRAY_LINE(); return out; } std::ostream &RubyFlatCodeGen::EOF_TRANS() { START_ARRAY_LINE(); int totalStateNum = 0; for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { /* Write any eof action. */ long trans = 0; if ( st->eofTrans != 0 ) { assert( st->eofTrans->pos >= 0 ); trans = st->eofTrans->pos+1; } /* Write any eof action. */ ARRAY_ITEM( INT(trans), ++totalStateNum, st.last() ); } END_ARRAY_LINE(); return out; } std::ostream &RubyFlatCodeGen::TRANS_TARGS() { /* Transitions must be written ordered by their id. */ RedTransAp **transPtrs = new RedTransAp*[redFsm->transSet.length()]; for ( TransApSet::Iter trans = redFsm->transSet; trans.lte(); trans++ ) transPtrs[trans->id] = trans; /* Keep a count of the num of items in the array written. */ START_ARRAY_LINE(); int totalStates = 0; for ( int t = 0; t < redFsm->transSet.length(); t++ ) { /* Save the position. Needed for eofTargs. */ RedTransAp *trans = transPtrs[t]; trans->pos = t; /* Write out the target state. */ ARRAY_ITEM( INT( trans->targ->id ), ++totalStates, t >= redFsm->transSet.length()-1 ); } END_ARRAY_LINE(); delete[] transPtrs; return out; } std::ostream &RubyFlatCodeGen::TRANS_ACTIONS() { /* Transitions must be written ordered by their id. */ RedTransAp **transPtrs = new RedTransAp*[redFsm->transSet.length()]; for ( TransApSet::Iter trans = redFsm->transSet; trans.lte(); trans++ ) transPtrs[trans->id] = trans; /* Keep a count of the num of items in the array written. */ START_ARRAY_LINE(); int totalAct = 0; for ( int t = 0; t < redFsm->transSet.length(); t++ ) { /* Write the function for the transition. */ RedTransAp *trans = transPtrs[t]; ARRAY_ITEM( INT( TRANS_ACTION( trans ) ), ++totalAct, t >= redFsm->transSet.length()-1 ); } END_ARRAY_LINE(); delete[] transPtrs; return out; } void RubyFlatCodeGen::LOCATE_TRANS() { out << " _keys = " << vCS() << " << 1\n" " _inds = " << IO() << "[" << vCS() << "]\n" " _slen = " << SP() << "[" << vCS() << "]\n" " _wide = " << GET_WIDE_KEY() << "\n" " _trans = if ( _slen > 0 && \n" " " << K() << "[_keys] <= _wide && \n" " " << "_wide <= " << K() << "[_keys + 1] \n" " ) then\n" " " << I() << "[ _inds + _wide - " << K() << "[_keys] ] \n" " else \n" " " << I() << "[ _inds + _slen ]\n" " end\n" ""; } std::ostream &RubyFlatCodeGen::COND_INDEX_OFFSET() { START_ARRAY_LINE(); int totalStateNum = 0, curIndOffset = 0; for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { /* Write the index offset. */ ARRAY_ITEM( INT( curIndOffset ), ++totalStateNum, st.last() ); /* Move the index offset ahead. */ if ( st->condList != 0 ) curIndOffset += keyOps->span( st->condLowKey, st->condHighKey ); } END_ARRAY_LINE(); return out; } void RubyFlatCodeGen::COND_TRANSLATE() { out << " _widec = " << GET_KEY() << "\n" " _keys = " << vCS() << " << 1\n" " _conds = " << CO() << "[" << vCS() << "]\n" " _slen = " << CSP() << "[" << vCS() << "]\n" " _wide = " << GET_WIDE_KEY() << "\n" " _cond = if ( _slen > 0 && \n" " " << CK() << "[_keys] <= _wide &&\n" " " << "_wide <= " << CK() << "[_keys + 1]\n" " ) then \n" " " << C() << "[ _conds + _wide - " << CK() << "[_keys]" << " ]\n" " else\n" " 0\n" " end\n"; out << " case _cond \n"; for ( CondSpaceList::Iter csi = condSpaceList; csi.lte(); csi++ ) { GenCondSpace *condSpace = csi; out << " when " << condSpace->condSpaceId + 1 << " then\n"; out << TABS(2) << "_widec = " << "(" << KEY(condSpace->baseKey) << " + (" << GET_KEY() << " - " << KEY(keyOps->minKey) << "))\n"; for ( GenCondSet::Iter csi = condSpace->condSet; csi.lte(); csi++ ) { out << TABS(2) << "if ( "; CONDITION( out, *csi ); Size condValOffset = ((1 << csi.pos()) * keyOps->alphSize()); out << " ) then \n" << TABS(3) << " _widec += " << condValOffset << "\n" "end\n"; } } out << " end # _cond switch \n"; } std::ostream &RubyFlatCodeGen::CONDS() { int totalTrans = 0; START_ARRAY_LINE(); for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { if ( st->condList != 0 ) { /* Walk the singles. */ unsigned long long span = keyOps->span( st->condLowKey, st->condHighKey ); for ( unsigned long long pos = 0; pos < span; pos++ ) { if ( st->condList[pos] != 0 ) ARRAY_ITEM( INT( st->condList[pos]->condSpaceId + 1 ), ++totalTrans, false ); else ARRAY_ITEM( INT( 0 ), ++totalTrans, false ); } } } /* Output one last number so we don't have to figure out when the last * entry is and avoid writing a comma. */ ARRAY_ITEM( INT( 0 ), ++totalTrans, true ); END_ARRAY_LINE(); return out; } std::ostream &RubyFlatCodeGen::COND_KEYS() { START_ARRAY_LINE(); int totalTrans = 0; for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { /* Emit just cond low key and cond high key. */ ARRAY_ITEM( KEY( st->condLowKey ), ++totalTrans, false ); ARRAY_ITEM( KEY( st->condHighKey ), ++totalTrans, false ); } /* Output one last number so we don't have to figure out when the last * entry is and avoid writing a comma. */ ARRAY_ITEM( INT( 0 ), ++totalTrans, true ); END_ARRAY_LINE(); return out; } std::ostream &RubyFlatCodeGen::COND_KEY_SPANS() { START_ARRAY_LINE(); int totalStateNum = 0; for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) { /* Write singles length. */ unsigned long long span = 0; if ( st->condList != 0 ) span = keyOps->span( st->condLowKey, st->condHighKey ); ARRAY_ITEM( INT( span ), ++totalStateNum, false ); } END_ARRAY_LINE(); return out; } void RubyFlatCodeGen::GOTO( ostream &out, int gotoDest, bool inFinish ) { out << " begin\n" " " << vCS() << " = " << gotoDest << "\n" " _trigger_goto = true\n" " _goto_level = _again\n" " break\n" " end\n"; } void RubyFlatCodeGen::CALL( ostream &out, int callDest, int targState, bool inFinish ) { if ( prePushExpr != 0 ) { out << "begin\n"; INLINE_LIST( out, prePushExpr, 0, false ); } out << " begin\n" " " << STACK() << "[" << TOP() << "] = " << vCS() << "\n" " " << TOP() << "+= 1\n" " " << vCS() << " = " << callDest << "\n" " _trigger_goto = true\n" " _goto_level = _again\n" " break\n" " end\n"; if ( prePushExpr != 0 ) out << "end\n"; } void RubyFlatCodeGen::CALL_EXPR(ostream &out, GenInlineItem *ilItem, int targState, bool inFinish ) { if ( prePushExpr != 0 ) { out << "begin\n"; INLINE_LIST( out, prePushExpr, 0, false ); } out << " begin\n" " " << STACK() << "[" << TOP() << "] = " << vCS() << "\n" " " << TOP() << " += 1\n" " " << vCS() << " = ("; INLINE_LIST( out, ilItem->children, targState, inFinish ); out << ")\n"; out << " _trigger_goto = true\n" " _goto_level = _again\n" " break\n" " end\n"; if ( prePushExpr != 0 ) out << "end\n"; } void RubyFlatCodeGen::RET( ostream &out, bool inFinish ) { out << " begin\n" " " << TOP() << " -= 1\n" " " << vCS() << " = " << STACK() << "[" << TOP() << "]\n"; if ( postPopExpr != 0 ) { out << "begin\n"; INLINE_LIST( out, postPopExpr, 0, false ); out << "end\n"; } out << " _trigger_goto = true\n" " _goto_level = _again\n" " break\n" " end\n"; } void RubyFlatCodeGen::NEXT( ostream &ret, int nextDest, bool inFinish ) { ret << vCS() << " = " << nextDest << ";"; } void RubyFlatCodeGen::GOTO_EXPR( ostream &out, GenInlineItem *ilItem, bool inFinish ) { out << " begin\n" " " << vCS() << " = ("; INLINE_LIST( out, ilItem->children, 0, inFinish ); out << ")\n"; out << " _trigger_goto = true\n" " _goto_level = _again\n" " break\n" " end\n"; } void RubyFlatCodeGen::NEXT_EXPR( ostream &ret, GenInlineItem *ilItem, bool inFinish ) { ret << vCS() << " = ("; INLINE_LIST( ret, ilItem->children, 0, inFinish ); ret << ");"; } void RubyFlatCodeGen::CURS( ostream &ret, bool inFinish ) { ret << "(_ps)"; } void RubyFlatCodeGen::TARGS( ostream &ret, bool inFinish, int targState ) { ret << "(" << vCS() << ")"; } void RubyFlatCodeGen::BREAK( ostream &out, int targState ) { out << " begin\n" " " << P() << " += 1\n" " _trigger_goto = true\n" " _goto_level = _out\n" " break\n" " end\n"; } int RubyFlatCodeGen::TO_STATE_ACTION( RedStateAp *state ) { int act = 0; if ( state->toStateAction != 0 ) act = state->toStateAction->location+1; return act; } int RubyFlatCodeGen::FROM_STATE_ACTION( RedStateAp *state ) { int act = 0; if ( state->fromStateAction != 0 ) act = state->fromStateAction->location+1; return act; } int RubyFlatCodeGen::EOF_ACTION( RedStateAp *state ) { int act = 0; if ( state->eofAction != 0 ) act = state->eofAction->location+1; return act; } int RubyFlatCodeGen::TRANS_ACTION( RedTransAp *trans ) { /* If there are actions, emit them. Otherwise emit zero. */ int act = 0; if ( trans->action != 0 ) act = trans->action->location+1; return act; } void RubyFlatCodeGen::writeData() { /* If there are any transtion functions then output the array. If there * are none, don't bother emitting an empty array that won't be used. */ if ( redFsm->anyActions() ) { OPEN_ARRAY( ARRAY_TYPE(redFsm->maxActArrItem), A() ); ACTIONS_ARRAY(); CLOSE_ARRAY() << "\n"; } if ( redFsm->anyConditions() ) { OPEN_ARRAY( WIDE_ALPH_TYPE(), CK() ); COND_KEYS(); CLOSE_ARRAY() << "\n"; OPEN_ARRAY( ARRAY_TYPE(redFsm->maxCondSpan), CSP() ); COND_KEY_SPANS(); CLOSE_ARRAY() << "\n"; OPEN_ARRAY( ARRAY_TYPE(redFsm->maxCond), C() ); CONDS(); CLOSE_ARRAY() << "\n"; OPEN_ARRAY( ARRAY_TYPE(redFsm->maxCondIndexOffset), CO() ); COND_INDEX_OFFSET(); CLOSE_ARRAY() << "\n"; } OPEN_ARRAY( WIDE_ALPH_TYPE(), K() ); KEYS(); CLOSE_ARRAY() << "\n"; OPEN_ARRAY( ARRAY_TYPE(redFsm->maxSpan), SP() ); KEY_SPANS(); CLOSE_ARRAY() << "\n"; OPEN_ARRAY( ARRAY_TYPE(redFsm->maxFlatIndexOffset), IO() ); FLAT_INDEX_OFFSET(); CLOSE_ARRAY() << "\n"; OPEN_ARRAY( ARRAY_TYPE(redFsm->maxIndex), I() ); INDICIES(); CLOSE_ARRAY() << "\n"; OPEN_ARRAY( ARRAY_TYPE(redFsm->maxState), TT() ); TRANS_TARGS(); CLOSE_ARRAY() << "\n"; if ( redFsm->anyActions() ) { OPEN_ARRAY( ARRAY_TYPE(redFsm->maxActionLoc), TA() ); TRANS_ACTIONS(); CLOSE_ARRAY() << "\n"; } if ( redFsm->anyToStateActions() ) { OPEN_ARRAY( ARRAY_TYPE(redFsm->maxActionLoc), TSA() ); TO_STATE_ACTIONS(); CLOSE_ARRAY() << "\n"; } if ( redFsm->anyFromStateActions() ) { OPEN_ARRAY( ARRAY_TYPE(redFsm->maxActionLoc), FSA() ); FROM_STATE_ACTIONS(); CLOSE_ARRAY() << "\n"; } if ( redFsm->anyEofActions() ) { OPEN_ARRAY( ARRAY_TYPE(redFsm->maxActionLoc), EA() ); EOF_ACTIONS(); CLOSE_ARRAY() << "\n"; } if ( redFsm->anyEofTrans() ) { OPEN_ARRAY( ARRAY_TYPE(redFsm->maxIndexOffset+1), ET() ); EOF_TRANS(); CLOSE_ARRAY() << "\n"; } STATE_IDS(); } void RubyFlatCodeGen::writeExec() { out << "begin # ragel flat\n" " testEof = false\n" " _slen, _trans, _keys, _inds"; if ( redFsm->anyRegCurStateRef() ) out << ", _ps"; if ( redFsm->anyConditions() ) out << ", _cond, _conds, _widec"; if ( redFsm->anyToStateActions() || redFsm->anyRegActions() || redFsm->anyFromStateActions() ) out << ", _acts, _nacts"; out << " = nil\n"; out << " _goto_level = 0\n" " _resume = 10\n" " _eof_trans = 15\n" " _again = 20\n" " _test_eof = 30\n" " _out = 40\n"; out << " while true\n" " _trigger_goto = false\n" " if _goto_level <= 0\n"; if ( !noEnd ) { out << " if " << P() << " == " << PE() << "\n" " _goto_level = _test_eof\n" " next\n" " end\n"; } if ( redFsm->errState != 0 ) { out << " if " << vCS() << " == " << redFsm->errState->id << "\n" " _goto_level = _out\n" " next\n" " end\n"; } /* The resume label. */ out << " end\n" " if _goto_level <= _resume\n"; if ( redFsm->anyFromStateActions() ) { out << " _acts = " << FSA() << "[" << vCS() << "]\n" " _nacts = " << A() << "[_acts]\n" " _acts += 1\n" " while _nacts > 0\n" " _nacts -= 1\n" " _acts += 1\n" " case " << A() << "[_acts - 1]\n"; FROM_STATE_ACTION_SWITCH(); out << " end # from state action switch\n" " end\n" " if _trigger_goto\n" " next\n" " end\n"; } if ( redFsm->anyConditions() ) COND_TRANSLATE(); LOCATE_TRANS(); if ( redFsm->anyEofTrans() ) { out << " end\n" " if _goto_level <= _eof_trans\n"; } if ( redFsm->anyRegCurStateRef() ) out << " _ps = " << vCS() << "\n"; out << " " << vCS() << " = " << TT() << "[_trans]\n"; if ( redFsm->anyRegActions() ) { out << " if " << TA() << "[_trans] != 0\n" " _acts = " << TA() << "[_trans]\n" " _nacts = " << A() << "[_acts]\n" " _acts += 1\n" " while _nacts > 0\n" " _nacts -= 1\n" " _acts += 1\n" " case " << A() << "[_acts - 1]\n"; ACTION_SWITCH(); out << " end # action switch\n" " end\n" " end\n" " if _trigger_goto\n" " next\n" " end\n"; } /* The again label. */ out << " end\n" " if _goto_level <= _again\n"; if ( redFsm->anyToStateActions() ) { out << " _acts = " << TSA() << "[" << vCS() << "]\n" " _nacts = " << A() << "[_acts]\n" " _acts += 1\n" " while _nacts > 0\n" " _nacts -= 1\n" " _acts += 1\n" " case " << A() << "[_acts - 1]\n"; TO_STATE_ACTION_SWITCH() << " end # to state action switch\n" " end\n" " if _trigger_goto\n" " next\n" " end\n"; } if ( redFsm->errState != 0 ) { out << " if " << vCS() << " == " << redFsm->errState->id << "\n" " _goto_level = _out\n" " next\n" " end\n"; } out << " " << P() << " += 1\n"; if ( !noEnd ) { out << " if " << P() << " != " << PE() << "\n" " _goto_level = _resume\n" " next\n" " end\n"; } else { out << " _goto_level = _resume\n" " next\n"; } /* The test_eof label. */ out << " end\n" " if _goto_level <= _test_eof\n"; if ( redFsm->anyEofTrans() || redFsm->anyEofActions() ) { out << " if " << P() << " == " << vEOF() << "\n"; if ( redFsm->anyEofTrans() ) { out << " if " << ET() << "[" << vCS() << "] > 0\n" " _trans = " << ET() << "[" << vCS() << "] - 1;\n" " _goto_level = _eof_trans\n" " next;\n" " end\n"; } if ( redFsm->anyEofActions() ) { out << " begin\n" " __acts = " << EA() << "[" << vCS() << "]\n" " __nacts = " << A() << "[__acts]\n" << " __acts += 1\n" " while ( __nacts > 0 ) \n" " __nacts -= 1\n" " __acts += 1\n" " case ( "<< A() << "[__acts-1] ) \n"; EOF_ACTION_SWITCH() << " end\n" " end\n" " if _trigger_goto\n" " next\n" " end\n" " end\n"; } out << " end\n"; } out << " end\n" " if _goto_level <= _out\n" " break\n" " end\n"; /* The loop for faking goto. */ out << " end\n"; /* Wrapping the execute block. */ out << " end\n"; } /* * Local Variables: * mode: c++ * indent-tabs-mode: 1 * c-file-style: "bsd" * End: */