summaryrefslogtreecommitdiff
path: root/deps/jemalloc/src/thread_event.c
diff options
context:
space:
mode:
Diffstat (limited to 'deps/jemalloc/src/thread_event.c')
-rw-r--r--deps/jemalloc/src/thread_event.c343
1 files changed, 343 insertions, 0 deletions
diff --git a/deps/jemalloc/src/thread_event.c b/deps/jemalloc/src/thread_event.c
new file mode 100644
index 000000000..37eb5827d
--- /dev/null
+++ b/deps/jemalloc/src/thread_event.c
@@ -0,0 +1,343 @@
+#include "jemalloc/internal/jemalloc_preamble.h"
+#include "jemalloc/internal/jemalloc_internal_includes.h"
+
+#include "jemalloc/internal/thread_event.h"
+
+/*
+ * Signatures for event specific functions. These functions should be defined
+ * by the modules owning each event. The signatures here verify that the
+ * definitions follow the right format.
+ *
+ * The first two are functions computing new / postponed event wait time. New
+ * event wait time is the time till the next event if an event is currently
+ * being triggered; postponed event wait time is the time till the next event
+ * if an event should be triggered but needs to be postponed, e.g. when the TSD
+ * is not nominal or during reentrancy.
+ *
+ * The third is the event handler function, which is called whenever an event
+ * is triggered. The parameter is the elapsed time since the last time an
+ * event of the same type was triggered.
+ */
+#define E(event, condition_unused, is_alloc_event_unused) \
+uint64_t event##_new_event_wait(tsd_t *tsd); \
+uint64_t event##_postponed_event_wait(tsd_t *tsd); \
+void event##_event_handler(tsd_t *tsd, uint64_t elapsed);
+
+ITERATE_OVER_ALL_EVENTS
+#undef E
+
+/* Signatures for internal functions fetching elapsed time. */
+#define E(event, condition_unused, is_alloc_event_unused) \
+static uint64_t event##_fetch_elapsed(tsd_t *tsd);
+
+ITERATE_OVER_ALL_EVENTS
+#undef E
+
+static uint64_t
+tcache_gc_fetch_elapsed(tsd_t *tsd) {
+ return TE_INVALID_ELAPSED;
+}
+
+static uint64_t
+tcache_gc_dalloc_fetch_elapsed(tsd_t *tsd) {
+ return TE_INVALID_ELAPSED;
+}
+
+static uint64_t
+prof_sample_fetch_elapsed(tsd_t *tsd) {
+ uint64_t last_event = thread_allocated_last_event_get(tsd);
+ uint64_t last_sample_event = prof_sample_last_event_get(tsd);
+ prof_sample_last_event_set(tsd, last_event);
+ return last_event - last_sample_event;
+}
+
+static uint64_t
+stats_interval_fetch_elapsed(tsd_t *tsd) {
+ uint64_t last_event = thread_allocated_last_event_get(tsd);
+ uint64_t last_stats_event = stats_interval_last_event_get(tsd);
+ stats_interval_last_event_set(tsd, last_event);
+ return last_event - last_stats_event;
+}
+
+static uint64_t
+peak_alloc_fetch_elapsed(tsd_t *tsd) {
+ return TE_INVALID_ELAPSED;
+}
+
+static uint64_t
+peak_dalloc_fetch_elapsed(tsd_t *tsd) {
+ return TE_INVALID_ELAPSED;
+}
+
+/* Per event facilities done. */
+
+static bool
+te_ctx_has_active_events(te_ctx_t *ctx) {
+ assert(config_debug);
+#define E(event, condition, alloc_event) \
+ if (condition && alloc_event == ctx->is_alloc) { \
+ return true; \
+ }
+ ITERATE_OVER_ALL_EVENTS
+#undef E
+ return false;
+}
+
+static uint64_t
+te_next_event_compute(tsd_t *tsd, bool is_alloc) {
+ uint64_t wait = TE_MAX_START_WAIT;
+#define E(event, condition, alloc_event) \
+ if (is_alloc == alloc_event && condition) { \
+ uint64_t event_wait = \
+ event##_event_wait_get(tsd); \
+ assert(event_wait <= TE_MAX_START_WAIT); \
+ if (event_wait > 0U && event_wait < wait) { \
+ wait = event_wait; \
+ } \
+ }
+
+ ITERATE_OVER_ALL_EVENTS
+#undef E
+ assert(wait <= TE_MAX_START_WAIT);
+ return wait;
+}
+
+static void
+te_assert_invariants_impl(tsd_t *tsd, te_ctx_t *ctx) {
+ uint64_t current_bytes = te_ctx_current_bytes_get(ctx);
+ uint64_t last_event = te_ctx_last_event_get(ctx);
+ uint64_t next_event = te_ctx_next_event_get(ctx);
+ uint64_t next_event_fast = te_ctx_next_event_fast_get(ctx);
+
+ assert(last_event != next_event);
+ if (next_event > TE_NEXT_EVENT_FAST_MAX || !tsd_fast(tsd)) {
+ assert(next_event_fast == 0U);
+ } else {
+ assert(next_event_fast == next_event);
+ }
+
+ /* The subtraction is intentionally susceptible to underflow. */
+ uint64_t interval = next_event - last_event;
+
+ /* The subtraction is intentionally susceptible to underflow. */
+ assert(current_bytes - last_event < interval);
+ uint64_t min_wait = te_next_event_compute(tsd, te_ctx_is_alloc(ctx));
+ /*
+ * next_event should have been pushed up only except when no event is
+ * on and the TSD is just initialized. The last_event == 0U guard
+ * below is stronger than needed, but having an exactly accurate guard
+ * is more complicated to implement.
+ */
+ assert((!te_ctx_has_active_events(ctx) && last_event == 0U) ||
+ interval == min_wait ||
+ (interval < min_wait && interval == TE_MAX_INTERVAL));
+}
+
+void
+te_assert_invariants_debug(tsd_t *tsd) {
+ te_ctx_t ctx;
+ te_ctx_get(tsd, &ctx, true);
+ te_assert_invariants_impl(tsd, &ctx);
+
+ te_ctx_get(tsd, &ctx, false);
+ te_assert_invariants_impl(tsd, &ctx);
+}
+
+/*
+ * Synchronization around the fast threshold in tsd --
+ * There are two threads to consider in the synchronization here:
+ * - The owner of the tsd being updated by a slow path change
+ * - The remote thread, doing that slow path change.
+ *
+ * As a design constraint, we want to ensure that a slow-path transition cannot
+ * be ignored for arbitrarily long, and that if the remote thread causes a
+ * slow-path transition and then communicates with the owner thread that it has
+ * occurred, then the owner will go down the slow path on the next allocator
+ * operation (so that we don't want to just wait until the owner hits its slow
+ * path reset condition on its own).
+ *
+ * Here's our strategy to do that:
+ *
+ * The remote thread will update the slow-path stores to TSD variables, issue a
+ * SEQ_CST fence, and then update the TSD next_event_fast counter. The owner
+ * thread will update next_event_fast, issue an SEQ_CST fence, and then check
+ * its TSD to see if it's on the slow path.
+
+ * This is fairly straightforward when 64-bit atomics are supported. Assume that
+ * the remote fence is sandwiched between two owner fences in the reset pathway.
+ * The case where there is no preceding or trailing owner fence (i.e. because
+ * the owner thread is near the beginning or end of its life) can be analyzed
+ * similarly. The owner store to next_event_fast preceding the earlier owner
+ * fence will be earlier in coherence order than the remote store to it, so that
+ * the owner thread will go down the slow path once the store becomes visible to
+ * it, which is no later than the time of the second fence.
+
+ * The case where we don't support 64-bit atomics is trickier, since word
+ * tearing is possible. We'll repeat the same analysis, and look at the two
+ * owner fences sandwiching the remote fence. The next_event_fast stores done
+ * alongside the earlier owner fence cannot overwrite any of the remote stores
+ * (since they precede the earlier owner fence in sb, which precedes the remote
+ * fence in sc, which precedes the remote stores in sb). After the second owner
+ * fence there will be a re-check of the slow-path variables anyways, so the
+ * "owner will notice that it's on the slow path eventually" guarantee is
+ * satisfied. To make sure that the out-of-band-messaging constraint is as well,
+ * note that either the message passing is sequenced before the second owner
+ * fence (in which case the remote stores happen before the second set of owner
+ * stores, so malloc sees a value of zero for next_event_fast and goes down the
+ * slow path), or it is not (in which case the owner sees the tsd slow-path
+ * writes on its previous update). This leaves open the possibility that the
+ * remote thread will (at some arbitrary point in the future) zero out one half
+ * of the owner thread's next_event_fast, but that's always safe (it just sends
+ * it down the slow path earlier).
+ */
+static void
+te_ctx_next_event_fast_update(te_ctx_t *ctx) {
+ uint64_t next_event = te_ctx_next_event_get(ctx);
+ uint64_t next_event_fast = (next_event <= TE_NEXT_EVENT_FAST_MAX) ?
+ next_event : 0U;
+ te_ctx_next_event_fast_set(ctx, next_event_fast);
+}
+
+void
+te_recompute_fast_threshold(tsd_t *tsd) {
+ if (tsd_state_get(tsd) != tsd_state_nominal) {
+ /* Check first because this is also called on purgatory. */
+ te_next_event_fast_set_non_nominal(tsd);
+ return;
+ }
+
+ te_ctx_t ctx;
+ te_ctx_get(tsd, &ctx, true);
+ te_ctx_next_event_fast_update(&ctx);
+ te_ctx_get(tsd, &ctx, false);
+ te_ctx_next_event_fast_update(&ctx);
+
+ atomic_fence(ATOMIC_SEQ_CST);
+ if (tsd_state_get(tsd) != tsd_state_nominal) {
+ te_next_event_fast_set_non_nominal(tsd);
+ }
+}
+
+static void
+te_adjust_thresholds_helper(tsd_t *tsd, te_ctx_t *ctx,
+ uint64_t wait) {
+ /*
+ * The next threshold based on future events can only be adjusted after
+ * progressing the last_event counter (which is set to current).
+ */
+ assert(te_ctx_current_bytes_get(ctx) == te_ctx_last_event_get(ctx));
+ assert(wait <= TE_MAX_START_WAIT);
+
+ uint64_t next_event = te_ctx_last_event_get(ctx) + (wait <=
+ TE_MAX_INTERVAL ? wait : TE_MAX_INTERVAL);
+ te_ctx_next_event_set(tsd, ctx, next_event);
+}
+
+static uint64_t
+te_clip_event_wait(uint64_t event_wait) {
+ assert(event_wait > 0U);
+ if (TE_MIN_START_WAIT > 1U &&
+ unlikely(event_wait < TE_MIN_START_WAIT)) {
+ event_wait = TE_MIN_START_WAIT;
+ }
+ if (TE_MAX_START_WAIT < UINT64_MAX &&
+ unlikely(event_wait > TE_MAX_START_WAIT)) {
+ event_wait = TE_MAX_START_WAIT;
+ }
+ return event_wait;
+}
+
+void
+te_event_trigger(tsd_t *tsd, te_ctx_t *ctx) {
+ /* usize has already been added to thread_allocated. */
+ uint64_t bytes_after = te_ctx_current_bytes_get(ctx);
+ /* The subtraction is intentionally susceptible to underflow. */
+ uint64_t accumbytes = bytes_after - te_ctx_last_event_get(ctx);
+
+ te_ctx_last_event_set(ctx, bytes_after);
+
+ bool allow_event_trigger = tsd_nominal(tsd) &&
+ tsd_reentrancy_level_get(tsd) == 0;
+ bool is_alloc = ctx->is_alloc;
+ uint64_t wait = TE_MAX_START_WAIT;
+
+#define E(event, condition, alloc_event) \
+ bool is_##event##_triggered = false; \
+ if (is_alloc == alloc_event && condition) { \
+ uint64_t event_wait = event##_event_wait_get(tsd); \
+ assert(event_wait <= TE_MAX_START_WAIT); \
+ if (event_wait > accumbytes) { \
+ event_wait -= accumbytes; \
+ } else if (!allow_event_trigger) { \
+ event_wait = event##_postponed_event_wait(tsd); \
+ } else { \
+ is_##event##_triggered = true; \
+ event_wait = event##_new_event_wait(tsd); \
+ } \
+ event_wait = te_clip_event_wait(event_wait); \
+ event##_event_wait_set(tsd, event_wait); \
+ if (event_wait < wait) { \
+ wait = event_wait; \
+ } \
+ }
+
+ ITERATE_OVER_ALL_EVENTS
+#undef E
+
+ assert(wait <= TE_MAX_START_WAIT);
+ te_adjust_thresholds_helper(tsd, ctx, wait);
+ te_assert_invariants(tsd);
+
+#define E(event, condition, alloc_event) \
+ if (is_alloc == alloc_event && condition && \
+ is_##event##_triggered) { \
+ assert(allow_event_trigger); \
+ uint64_t elapsed = event##_fetch_elapsed(tsd); \
+ event##_event_handler(tsd, elapsed); \
+ }
+
+ ITERATE_OVER_ALL_EVENTS
+#undef E
+
+ te_assert_invariants(tsd);
+}
+
+static void
+te_init(tsd_t *tsd, bool is_alloc) {
+ te_ctx_t ctx;
+ te_ctx_get(tsd, &ctx, is_alloc);
+ /*
+ * Reset the last event to current, which starts the events from a clean
+ * state. This is necessary when re-init the tsd event counters.
+ *
+ * The event counters maintain a relationship with the current bytes:
+ * last_event <= current < next_event. When a reinit happens (e.g.
+ * reincarnated tsd), the last event needs progressing because all
+ * events start fresh from the current bytes.
+ */
+ te_ctx_last_event_set(&ctx, te_ctx_current_bytes_get(&ctx));
+
+ uint64_t wait = TE_MAX_START_WAIT;
+#define E(event, condition, alloc_event) \
+ if (is_alloc == alloc_event && condition) { \
+ uint64_t event_wait = event##_new_event_wait(tsd); \
+ event_wait = te_clip_event_wait(event_wait); \
+ event##_event_wait_set(tsd, event_wait); \
+ if (event_wait < wait) { \
+ wait = event_wait; \
+ } \
+ }
+
+ ITERATE_OVER_ALL_EVENTS
+#undef E
+ te_adjust_thresholds_helper(tsd, &ctx, wait);
+}
+
+void
+tsd_te_init(tsd_t *tsd) {
+ /* Make sure no overflow for the bytes accumulated on event_trigger. */
+ assert(TE_MAX_INTERVAL <= UINT64_MAX - SC_LARGE_MAXCLASS + 1);
+ te_init(tsd, true);
+ te_init(tsd, false);
+ te_assert_invariants(tsd);
+}