#ifndef JEMALLOC_INTERNAL_HPDATA_H #define JEMALLOC_INTERNAL_HPDATA_H #include "jemalloc/internal/fb.h" #include "jemalloc/internal/ph.h" #include "jemalloc/internal/ql.h" #include "jemalloc/internal/typed_list.h" /* * The metadata representation we use for extents in hugepages. While the PAC * uses the edata_t to represent both active and inactive extents, the HP only * uses the edata_t for active ones; instead, inactive extent state is tracked * within hpdata associated with the enclosing hugepage-sized, hugepage-aligned * region of virtual address space. * * An hpdata need not be "truly" backed by a hugepage (which is not necessarily * an observable property of any given region of address space). It's just * hugepage-sized and hugepage-aligned; it's *potentially* huge. */ typedef struct hpdata_s hpdata_t; ph_structs(hpdata_age_heap, hpdata_t); struct hpdata_s { /* * We likewise follow the edata convention of mangling names and forcing * the use of accessors -- this lets us add some consistency checks on * access. */ /* * The address of the hugepage in question. This can't be named h_addr, * since that conflicts with a macro defined in Windows headers. */ void *h_address; /* Its age (measured in psset operations). */ uint64_t h_age; /* Whether or not we think the hugepage is mapped that way by the OS. */ bool h_huge; /* * For some properties, we keep parallel sets of bools; h_foo_allowed * and h_in_psset_foo_container. This is a decoupling mechanism to * avoid bothering the hpa (which manages policies) from the psset * (which is the mechanism used to enforce those policies). This allows * all the container management logic to live in one place, without the * HPA needing to know or care how that happens. */ /* * Whether or not the hpdata is allowed to be used to serve allocations, * and whether or not the psset is currently tracking it as such. */ bool h_alloc_allowed; bool h_in_psset_alloc_container; /* * The same, but with purging. There's no corresponding * h_in_psset_purge_container, because the psset (currently) always * removes hpdatas from their containers during updates (to implement * LRU for purging). */ bool h_purge_allowed; /* And with hugifying. */ bool h_hugify_allowed; /* When we became a hugification candidate. */ nstime_t h_time_hugify_allowed; bool h_in_psset_hugify_container; /* Whether or not a purge or hugify is currently happening. */ bool h_mid_purge; bool h_mid_hugify; /* * Whether or not the hpdata is being updated in the psset (i.e. if * there has been a psset_update_begin call issued without a matching * psset_update_end call). Eventually this will expand to other types * of updates. */ bool h_updating; /* Whether or not the hpdata is in a psset. */ bool h_in_psset; union { /* When nonempty (and also nonfull), used by the psset bins. */ hpdata_age_heap_link_t age_link; /* * When empty (or not corresponding to any hugepage), list * linkage. */ ql_elm(hpdata_t) ql_link_empty; }; /* * Linkage for the psset to track candidates for purging and hugifying. */ ql_elm(hpdata_t) ql_link_purge; ql_elm(hpdata_t) ql_link_hugify; /* The length of the largest contiguous sequence of inactive pages. */ size_t h_longest_free_range; /* Number of active pages. */ size_t h_nactive; /* A bitmap with bits set in the active pages. */ fb_group_t active_pages[FB_NGROUPS(HUGEPAGE_PAGES)]; /* * Number of dirty or active pages, and a bitmap tracking them. One * way to think of this is as which pages are dirty from the OS's * perspective. */ size_t h_ntouched; /* The touched pages (using the same definition as above). */ fb_group_t touched_pages[FB_NGROUPS(HUGEPAGE_PAGES)]; }; TYPED_LIST(hpdata_empty_list, hpdata_t, ql_link_empty) TYPED_LIST(hpdata_purge_list, hpdata_t, ql_link_purge) TYPED_LIST(hpdata_hugify_list, hpdata_t, ql_link_hugify) ph_proto(, hpdata_age_heap, hpdata_t); static inline void * hpdata_addr_get(const hpdata_t *hpdata) { return hpdata->h_address; } static inline void hpdata_addr_set(hpdata_t *hpdata, void *addr) { assert(HUGEPAGE_ADDR2BASE(addr) == addr); hpdata->h_address = addr; } static inline uint64_t hpdata_age_get(const hpdata_t *hpdata) { return hpdata->h_age; } static inline void hpdata_age_set(hpdata_t *hpdata, uint64_t age) { hpdata->h_age = age; } static inline bool hpdata_huge_get(const hpdata_t *hpdata) { return hpdata->h_huge; } static inline bool hpdata_alloc_allowed_get(const hpdata_t *hpdata) { return hpdata->h_alloc_allowed; } static inline void hpdata_alloc_allowed_set(hpdata_t *hpdata, bool alloc_allowed) { hpdata->h_alloc_allowed = alloc_allowed; } static inline bool hpdata_in_psset_alloc_container_get(const hpdata_t *hpdata) { return hpdata->h_in_psset_alloc_container; } static inline void hpdata_in_psset_alloc_container_set(hpdata_t *hpdata, bool in_container) { assert(in_container != hpdata->h_in_psset_alloc_container); hpdata->h_in_psset_alloc_container = in_container; } static inline bool hpdata_purge_allowed_get(const hpdata_t *hpdata) { return hpdata->h_purge_allowed; } static inline void hpdata_purge_allowed_set(hpdata_t *hpdata, bool purge_allowed) { assert(purge_allowed == false || !hpdata->h_mid_purge); hpdata->h_purge_allowed = purge_allowed; } static inline bool hpdata_hugify_allowed_get(const hpdata_t *hpdata) { return hpdata->h_hugify_allowed; } static inline void hpdata_allow_hugify(hpdata_t *hpdata, nstime_t now) { assert(!hpdata->h_mid_hugify); hpdata->h_hugify_allowed = true; hpdata->h_time_hugify_allowed = now; } static inline nstime_t hpdata_time_hugify_allowed(hpdata_t *hpdata) { return hpdata->h_time_hugify_allowed; } static inline void hpdata_disallow_hugify(hpdata_t *hpdata) { hpdata->h_hugify_allowed = false; } static inline bool hpdata_in_psset_hugify_container_get(const hpdata_t *hpdata) { return hpdata->h_in_psset_hugify_container; } static inline void hpdata_in_psset_hugify_container_set(hpdata_t *hpdata, bool in_container) { assert(in_container != hpdata->h_in_psset_hugify_container); hpdata->h_in_psset_hugify_container = in_container; } static inline bool hpdata_mid_purge_get(const hpdata_t *hpdata) { return hpdata->h_mid_purge; } static inline void hpdata_mid_purge_set(hpdata_t *hpdata, bool mid_purge) { assert(mid_purge != hpdata->h_mid_purge); hpdata->h_mid_purge = mid_purge; } static inline bool hpdata_mid_hugify_get(const hpdata_t *hpdata) { return hpdata->h_mid_hugify; } static inline void hpdata_mid_hugify_set(hpdata_t *hpdata, bool mid_hugify) { assert(mid_hugify != hpdata->h_mid_hugify); hpdata->h_mid_hugify = mid_hugify; } static inline bool hpdata_changing_state_get(const hpdata_t *hpdata) { return hpdata->h_mid_purge || hpdata->h_mid_hugify; } static inline bool hpdata_updating_get(const hpdata_t *hpdata) { return hpdata->h_updating; } static inline void hpdata_updating_set(hpdata_t *hpdata, bool updating) { assert(updating != hpdata->h_updating); hpdata->h_updating = updating; } static inline bool hpdata_in_psset_get(const hpdata_t *hpdata) { return hpdata->h_in_psset; } static inline void hpdata_in_psset_set(hpdata_t *hpdata, bool in_psset) { assert(in_psset != hpdata->h_in_psset); hpdata->h_in_psset = in_psset; } static inline size_t hpdata_longest_free_range_get(const hpdata_t *hpdata) { return hpdata->h_longest_free_range; } static inline void hpdata_longest_free_range_set(hpdata_t *hpdata, size_t longest_free_range) { assert(longest_free_range <= HUGEPAGE_PAGES); hpdata->h_longest_free_range = longest_free_range; } static inline size_t hpdata_nactive_get(hpdata_t *hpdata) { return hpdata->h_nactive; } static inline size_t hpdata_ntouched_get(hpdata_t *hpdata) { return hpdata->h_ntouched; } static inline size_t hpdata_ndirty_get(hpdata_t *hpdata) { return hpdata->h_ntouched - hpdata->h_nactive; } static inline size_t hpdata_nretained_get(hpdata_t *hpdata) { return HUGEPAGE_PAGES - hpdata->h_ntouched; } static inline void hpdata_assert_empty(hpdata_t *hpdata) { assert(fb_empty(hpdata->active_pages, HUGEPAGE_PAGES)); assert(hpdata->h_nactive == 0); } /* * Only used in tests, and in hpdata_assert_consistent, below. Verifies some * consistency properties of the hpdata (e.g. that cached counts of page stats * match computed ones). */ static inline bool hpdata_consistent(hpdata_t *hpdata) { if(fb_urange_longest(hpdata->active_pages, HUGEPAGE_PAGES) != hpdata_longest_free_range_get(hpdata)) { return false; } if (fb_scount(hpdata->active_pages, HUGEPAGE_PAGES, 0, HUGEPAGE_PAGES) != hpdata->h_nactive) { return false; } if (fb_scount(hpdata->touched_pages, HUGEPAGE_PAGES, 0, HUGEPAGE_PAGES) != hpdata->h_ntouched) { return false; } if (hpdata->h_ntouched < hpdata->h_nactive) { return false; } if (hpdata->h_huge && hpdata->h_ntouched != HUGEPAGE_PAGES) { return false; } if (hpdata_changing_state_get(hpdata) && ((hpdata->h_purge_allowed) || hpdata->h_hugify_allowed)) { return false; } if (hpdata_hugify_allowed_get(hpdata) != hpdata_in_psset_hugify_container_get(hpdata)) { return false; } return true; } static inline void hpdata_assert_consistent(hpdata_t *hpdata) { assert(hpdata_consistent(hpdata)); } static inline bool hpdata_empty(hpdata_t *hpdata) { return hpdata->h_nactive == 0; } static inline bool hpdata_full(hpdata_t *hpdata) { return hpdata->h_nactive == HUGEPAGE_PAGES; } void hpdata_init(hpdata_t *hpdata, void *addr, uint64_t age); /* * Given an hpdata which can serve an allocation request, pick and reserve an * offset within that allocation. */ void *hpdata_reserve_alloc(hpdata_t *hpdata, size_t sz); void hpdata_unreserve(hpdata_t *hpdata, void *begin, size_t sz); /* * The hpdata_purge_prepare_t allows grabbing the metadata required to purge * subranges of a hugepage while holding a lock, drop the lock during the actual * purging of them, and reacquire it to update the metadata again. */ typedef struct hpdata_purge_state_s hpdata_purge_state_t; struct hpdata_purge_state_s { size_t npurged; size_t ndirty_to_purge; fb_group_t to_purge[FB_NGROUPS(HUGEPAGE_PAGES)]; size_t next_purge_search_begin; }; /* * Initializes purge state. The access to hpdata must be externally * synchronized with other hpdata_* calls. * * You can tell whether or not a thread is purging or hugifying a given hpdata * via hpdata_changing_state_get(hpdata). Racing hugification or purging * operations aren't allowed. * * Once you begin purging, you have to follow through and call hpdata_purge_next * until you're done, and then end. Allocating out of an hpdata undergoing * purging is not allowed. * * Returns the number of dirty pages that will be purged. */ size_t hpdata_purge_begin(hpdata_t *hpdata, hpdata_purge_state_t *purge_state); /* * If there are more extents to purge, sets *r_purge_addr and *r_purge_size to * true, and returns true. Otherwise, returns false to indicate that we're * done. * * This requires exclusive access to the purge state, but *not* to the hpdata. * In particular, unreserve calls are allowed while purging (i.e. you can dalloc * into one part of the hpdata while purging a different part). */ bool hpdata_purge_next(hpdata_t *hpdata, hpdata_purge_state_t *purge_state, void **r_purge_addr, size_t *r_purge_size); /* * Updates the hpdata metadata after all purging is done. Needs external * synchronization. */ void hpdata_purge_end(hpdata_t *hpdata, hpdata_purge_state_t *purge_state); void hpdata_hugify(hpdata_t *hpdata); void hpdata_dehugify(hpdata_t *hpdata); #endif /* JEMALLOC_INTERNAL_HPDATA_H */