/* * Copyright (c) 2009-2012, Salvatore Sanfilippo * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Redis nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "server.h" /*----------------------------------------------------------------------------- * Set Commands *----------------------------------------------------------------------------*/ void sunionDiffGenericCommand(client *c, robj **setkeys, int setnum, robj *dstkey, int op); /* Factory method to return a set that *can* hold "value". When the object has * an integer-encodable value, an intset will be returned. Otherwise a regular * hash table. */ robj *setTypeCreate(sds value) { if (isSdsRepresentableAsLongLong(value,NULL) == C_OK) return createIntsetObject(); return createSetObject(); } /* Add the specified value into a set. * * If the value was already member of the set, nothing is done and 0 is * returned, otherwise the new element is added and 1 is returned. */ int setTypeAdd(robj *subject, sds value) { long long llval; if (subject->encoding == OBJ_ENCODING_HT) { dict *ht = subject->ptr; dictEntry *de = dictAddRaw(ht,value,NULL); if (de) { dictSetKey(ht,de,sdsdup(value)); dictSetVal(ht,de,NULL); return 1; } } else if (subject->encoding == OBJ_ENCODING_INTSET) { if (isSdsRepresentableAsLongLong(value,&llval) == C_OK) { uint8_t success = 0; subject->ptr = intsetAdd(subject->ptr,llval,&success); if (success) { /* Convert to regular set when the intset contains * too many entries. */ size_t max_entries = server.set_max_intset_entries; /* limit to 1G entries due to intset internals. */ if (max_entries >= 1<<30) max_entries = 1<<30; if (intsetLen(subject->ptr) > max_entries) setTypeConvert(subject,OBJ_ENCODING_HT); return 1; } } else { /* Failed to get integer from object, convert to regular set. */ setTypeConvert(subject,OBJ_ENCODING_HT); /* The set *was* an intset and this value is not integer * encodable, so dictAdd should always work. */ serverAssert(dictAdd(subject->ptr,sdsdup(value),NULL) == DICT_OK); return 1; } } else { serverPanic("Unknown set encoding"); } return 0; } int setTypeRemove(robj *setobj, sds value) { long long llval; if (setobj->encoding == OBJ_ENCODING_HT) { if (dictDelete(setobj->ptr,value) == DICT_OK) { if (htNeedsResize(setobj->ptr)) dictResize(setobj->ptr); return 1; } } else if (setobj->encoding == OBJ_ENCODING_INTSET) { if (isSdsRepresentableAsLongLong(value,&llval) == C_OK) { int success; setobj->ptr = intsetRemove(setobj->ptr,llval,&success); if (success) return 1; } } else { serverPanic("Unknown set encoding"); } return 0; } int setTypeIsMember(robj *subject, sds value) { long long llval; if (subject->encoding == OBJ_ENCODING_HT) { return dictFind((dict*)subject->ptr,value) != NULL; } else if (subject->encoding == OBJ_ENCODING_INTSET) { if (isSdsRepresentableAsLongLong(value,&llval) == C_OK) { return intsetFind((intset*)subject->ptr,llval); } } else { serverPanic("Unknown set encoding"); } return 0; } setTypeIterator *setTypeInitIterator(robj *subject) { setTypeIterator *si = zmalloc(sizeof(setTypeIterator)); si->subject = subject; si->encoding = subject->encoding; if (si->encoding == OBJ_ENCODING_HT) { si->di = dictGetIterator(subject->ptr); } else if (si->encoding == OBJ_ENCODING_INTSET) { si->ii = 0; } else { serverPanic("Unknown set encoding"); } return si; } void setTypeReleaseIterator(setTypeIterator *si) { if (si->encoding == OBJ_ENCODING_HT) dictReleaseIterator(si->di); zfree(si); } /* Move to the next entry in the set. Returns the object at the current * position. * * Since set elements can be internally be stored as SDS strings or * simple arrays of integers, setTypeNext returns the encoding of the * set object you are iterating, and will populate the appropriate pointer * (sdsele) or (llele) accordingly. * * Note that both the sdsele and llele pointers should be passed and cannot * be NULL since the function will try to defensively populate the non * used field with values which are easy to trap if misused. * * When there are no longer elements -1 is returned. */ int setTypeNext(setTypeIterator *si, sds *sdsele, int64_t *llele) { if (si->encoding == OBJ_ENCODING_HT) { dictEntry *de = dictNext(si->di); if (de == NULL) return -1; *sdsele = dictGetKey(de); *llele = -123456789; /* Not needed. Defensive. */ } else if (si->encoding == OBJ_ENCODING_INTSET) { if (!intsetGet(si->subject->ptr,si->ii++,llele)) return -1; *sdsele = NULL; /* Not needed. Defensive. */ } else { serverPanic("Wrong set encoding in setTypeNext"); } return si->encoding; } /* The not copy on write friendly version but easy to use version * of setTypeNext() is setTypeNextObject(), returning new SDS * strings. So if you don't retain a pointer to this object you should call * sdsfree() against it. * * This function is the way to go for write operations where COW is not * an issue. */ sds setTypeNextObject(setTypeIterator *si) { int64_t intele; sds sdsele; int encoding; encoding = setTypeNext(si,&sdsele,&intele); switch(encoding) { case -1: return NULL; case OBJ_ENCODING_INTSET: return sdsfromlonglong(intele); case OBJ_ENCODING_HT: return sdsdup(sdsele); default: serverPanic("Unsupported encoding"); } return NULL; /* just to suppress warnings */ } /* Return random element from a non empty set. * The returned element can be an int64_t value if the set is encoded * as an "intset" blob of integers, or an SDS string if the set * is a regular set. * * The caller provides both pointers to be populated with the right * object. The return value of the function is the object->encoding * field of the object and is used by the caller to check if the * int64_t pointer or the sds pointer was populated. * * Note that both the sdsele and llele pointers should be passed and cannot * be NULL since the function will try to defensively populate the non * used field with values which are easy to trap if misused. */ int setTypeRandomElement(robj *setobj, sds *sdsele, int64_t *llele) { if (setobj->encoding == OBJ_ENCODING_HT) { dictEntry *de = dictGetFairRandomKey(setobj->ptr); *sdsele = dictGetKey(de); *llele = -123456789; /* Not needed. Defensive. */ } else if (setobj->encoding == OBJ_ENCODING_INTSET) { *llele = intsetRandom(setobj->ptr); *sdsele = NULL; /* Not needed. Defensive. */ } else { serverPanic("Unknown set encoding"); } return setobj->encoding; } unsigned long setTypeSize(const robj *subject) { if (subject->encoding == OBJ_ENCODING_HT) { return dictSize((const dict*)subject->ptr); } else if (subject->encoding == OBJ_ENCODING_INTSET) { return intsetLen((const intset*)subject->ptr); } else { serverPanic("Unknown set encoding"); } } /* Convert the set to specified encoding. The resulting dict (when converting * to a hash table) is presized to hold the number of elements in the original * set. */ void setTypeConvert(robj *setobj, int enc) { setTypeIterator *si; serverAssertWithInfo(NULL,setobj,setobj->type == OBJ_SET && setobj->encoding == OBJ_ENCODING_INTSET); if (enc == OBJ_ENCODING_HT) { int64_t intele; dict *d = dictCreate(&setDictType); sds element; /* Presize the dict to avoid rehashing */ dictExpand(d,intsetLen(setobj->ptr)); /* To add the elements we extract integers and create redis objects */ si = setTypeInitIterator(setobj); while (setTypeNext(si,&element,&intele) != -1) { element = sdsfromlonglong(intele); serverAssert(dictAdd(d,element,NULL) == DICT_OK); } setTypeReleaseIterator(si); setobj->encoding = OBJ_ENCODING_HT; zfree(setobj->ptr); setobj->ptr = d; } else { serverPanic("Unsupported set conversion"); } } /* This is a helper function for the COPY command. * Duplicate a set object, with the guarantee that the returned object * has the same encoding as the original one. * * The resulting object always has refcount set to 1 */ robj *setTypeDup(robj *o) { robj *set; setTypeIterator *si; sds elesds; int64_t intobj; serverAssert(o->type == OBJ_SET); /* Create a new set object that have the same encoding as the original object's encoding */ if (o->encoding == OBJ_ENCODING_INTSET) { intset *is = o->ptr; size_t size = intsetBlobLen(is); intset *newis = zmalloc(size); memcpy(newis,is,size); set = createObject(OBJ_SET, newis); set->encoding = OBJ_ENCODING_INTSET; } else if (o->encoding == OBJ_ENCODING_HT) { set = createSetObject(); dict *d = o->ptr; dictExpand(set->ptr, dictSize(d)); si = setTypeInitIterator(o); while (setTypeNext(si, &elesds, &intobj) != -1) { setTypeAdd(set, elesds); } setTypeReleaseIterator(si); } else { serverPanic("Unknown set encoding"); } return set; } void saddCommand(client *c) { robj *set; int j, added = 0; set = lookupKeyWrite(c->db,c->argv[1]); if (checkType(c,set,OBJ_SET)) return; if (set == NULL) { set = setTypeCreate(c->argv[2]->ptr); dbAdd(c->db,c->argv[1],set); } for (j = 2; j < c->argc; j++) { if (setTypeAdd(set,c->argv[j]->ptr)) added++; } if (added) { signalModifiedKey(c,c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_SET,"sadd",c->argv[1],c->db->id); } server.dirty += added; addReplyLongLong(c,added); } void sremCommand(client *c) { robj *set; int j, deleted = 0, keyremoved = 0; if ((set = lookupKeyWriteOrReply(c,c->argv[1],shared.czero)) == NULL || checkType(c,set,OBJ_SET)) return; for (j = 2; j < c->argc; j++) { if (setTypeRemove(set,c->argv[j]->ptr)) { deleted++; if (setTypeSize(set) == 0) { dbDelete(c->db,c->argv[1]); keyremoved = 1; break; } } } if (deleted) { signalModifiedKey(c,c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_SET,"srem",c->argv[1],c->db->id); if (keyremoved) notifyKeyspaceEvent(NOTIFY_GENERIC,"del",c->argv[1], c->db->id); server.dirty += deleted; } addReplyLongLong(c,deleted); } void smoveCommand(client *c) { robj *srcset, *dstset, *ele; srcset = lookupKeyWrite(c->db,c->argv[1]); dstset = lookupKeyWrite(c->db,c->argv[2]); ele = c->argv[3]; /* If the source key does not exist return 0 */ if (srcset == NULL) { addReply(c,shared.czero); return; } /* If the source key has the wrong type, or the destination key * is set and has the wrong type, return with an error. */ if (checkType(c,srcset,OBJ_SET) || checkType(c,dstset,OBJ_SET)) return; /* If srcset and dstset are equal, SMOVE is a no-op */ if (srcset == dstset) { addReply(c,setTypeIsMember(srcset,ele->ptr) ? shared.cone : shared.czero); return; } /* If the element cannot be removed from the src set, return 0. */ if (!setTypeRemove(srcset,ele->ptr)) { addReply(c,shared.czero); return; } notifyKeyspaceEvent(NOTIFY_SET,"srem",c->argv[1],c->db->id); /* Remove the src set from the database when empty */ if (setTypeSize(srcset) == 0) { dbDelete(c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_GENERIC,"del",c->argv[1],c->db->id); } /* Create the destination set when it doesn't exist */ if (!dstset) { dstset = setTypeCreate(ele->ptr); dbAdd(c->db,c->argv[2],dstset); } signalModifiedKey(c,c->db,c->argv[1]); server.dirty++; /* An extra key has changed when ele was successfully added to dstset */ if (setTypeAdd(dstset,ele->ptr)) { server.dirty++; signalModifiedKey(c,c->db,c->argv[2]); notifyKeyspaceEvent(NOTIFY_SET,"sadd",c->argv[2],c->db->id); } addReply(c,shared.cone); } void sismemberCommand(client *c) { robj *set; if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL || checkType(c,set,OBJ_SET)) return; if (setTypeIsMember(set,c->argv[2]->ptr)) addReply(c,shared.cone); else addReply(c,shared.czero); } void smismemberCommand(client *c) { robj *set; int j; /* Don't abort when the key cannot be found. Non-existing keys are empty * sets, where SMISMEMBER should respond with a series of zeros. */ set = lookupKeyRead(c->db,c->argv[1]); if (set && checkType(c,set,OBJ_SET)) return; addReplyArrayLen(c,c->argc - 2); for (j = 2; j < c->argc; j++) { if (set && setTypeIsMember(set,c->argv[j]->ptr)) addReply(c,shared.cone); else addReply(c,shared.czero); } } void scardCommand(client *c) { robj *o; if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL || checkType(c,o,OBJ_SET)) return; addReplyLongLong(c,setTypeSize(o)); } /* Handle the "SPOP key " variant. The normal version of the * command is handled by the spopCommand() function itself. */ /* How many times bigger should be the set compared to the remaining size * for us to use the "create new set" strategy? Read later in the * implementation for more info. */ #define SPOP_MOVE_STRATEGY_MUL 5 void spopWithCountCommand(client *c) { long l; unsigned long count, size; robj *set; /* Get the count argument */ if (getPositiveLongFromObjectOrReply(c,c->argv[2],&l,NULL) != C_OK) return; count = (unsigned long) l; /* Make sure a key with the name inputted exists, and that it's type is * indeed a set. Otherwise, return nil */ if ((set = lookupKeyWriteOrReply(c,c->argv[1],shared.emptyset[c->resp])) == NULL || checkType(c,set,OBJ_SET)) return; /* If count is zero, serve an empty set ASAP to avoid special * cases later. */ if (count == 0) { addReply(c,shared.emptyset[c->resp]); return; } size = setTypeSize(set); /* Generate an SPOP keyspace notification */ notifyKeyspaceEvent(NOTIFY_SET,"spop",c->argv[1],c->db->id); server.dirty += (count >= size) ? size : count; /* CASE 1: * The number of requested elements is greater than or equal to * the number of elements inside the set: simply return the whole set. */ if (count >= size) { /* We just return the entire set */ sunionDiffGenericCommand(c,c->argv+1,1,NULL,SET_OP_UNION); /* Delete the set as it is now empty */ dbDelete(c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_GENERIC,"del",c->argv[1],c->db->id); /* todo: Move the spop notification to be executed after the command logic. */ /* Propagate this command as a DEL operation */ rewriteClientCommandVector(c,2,shared.del,c->argv[1]); signalModifiedKey(c,c->db,c->argv[1]); return; } /* Case 2 and 3 require to replicate SPOP as a set of SREM commands. * Prepare our replication argument vector. Also send the array length * which is common to both the code paths. */ robj *propargv[3]; propargv[0] = shared.srem; propargv[1] = c->argv[1]; addReplySetLen(c,count); /* Common iteration vars. */ sds sdsele; robj *objele; int encoding; int64_t llele; unsigned long remaining = size-count; /* Elements left after SPOP. */ /* If we are here, the number of requested elements is less than the * number of elements inside the set. Also we are sure that count < size. * Use two different strategies. * * CASE 2: The number of elements to return is small compared to the * set size. We can just extract random elements and return them to * the set. */ if (remaining*SPOP_MOVE_STRATEGY_MUL > count) { while(count--) { /* Emit and remove. */ encoding = setTypeRandomElement(set,&sdsele,&llele); if (encoding == OBJ_ENCODING_INTSET) { addReplyBulkLongLong(c,llele); objele = createStringObjectFromLongLong(llele); set->ptr = intsetRemove(set->ptr,llele,NULL); } else { addReplyBulkCBuffer(c,sdsele,sdslen(sdsele)); objele = createStringObject(sdsele,sdslen(sdsele)); setTypeRemove(set,sdsele); } /* Replicate/AOF this command as an SREM operation */ propargv[2] = objele; alsoPropagate(c->db->id,propargv,3,PROPAGATE_AOF|PROPAGATE_REPL); decrRefCount(objele); } } else { /* CASE 3: The number of elements to return is very big, approaching * the size of the set itself. After some time extracting random elements * from such a set becomes computationally expensive, so we use * a different strategy, we extract random elements that we don't * want to return (the elements that will remain part of the set), * creating a new set as we do this (that will be stored as the original * set). Then we return the elements left in the original set and * release it. */ robj *newset = NULL; /* Create a new set with just the remaining elements. */ while(remaining--) { encoding = setTypeRandomElement(set,&sdsele,&llele); if (encoding == OBJ_ENCODING_INTSET) { sdsele = sdsfromlonglong(llele); } else { sdsele = sdsdup(sdsele); } if (!newset) newset = setTypeCreate(sdsele); setTypeAdd(newset,sdsele); setTypeRemove(set,sdsele); sdsfree(sdsele); } /* Transfer the old set to the client. */ setTypeIterator *si; si = setTypeInitIterator(set); while((encoding = setTypeNext(si,&sdsele,&llele)) != -1) { if (encoding == OBJ_ENCODING_INTSET) { addReplyBulkLongLong(c,llele); objele = createStringObjectFromLongLong(llele); } else { addReplyBulkCBuffer(c,sdsele,sdslen(sdsele)); objele = createStringObject(sdsele,sdslen(sdsele)); } /* Replicate/AOF this command as an SREM operation */ propargv[2] = objele; alsoPropagate(c->db->id,propargv,3,PROPAGATE_AOF|PROPAGATE_REPL); decrRefCount(objele); } setTypeReleaseIterator(si); /* Assign the new set as the key value. */ dbOverwrite(c->db,c->argv[1],newset); } /* Don't propagate the command itself even if we incremented the * dirty counter. We don't want to propagate an SPOP command since * we propagated the command as a set of SREMs operations using * the alsoPropagate() API. */ preventCommandPropagation(c); signalModifiedKey(c,c->db,c->argv[1]); } void spopCommand(client *c) { robj *set, *ele; sds sdsele; int64_t llele; int encoding; if (c->argc == 3) { spopWithCountCommand(c); return; } else if (c->argc > 3) { addReplyErrorObject(c,shared.syntaxerr); return; } /* Make sure a key with the name inputted exists, and that it's type is * indeed a set */ if ((set = lookupKeyWriteOrReply(c,c->argv[1],shared.null[c->resp])) == NULL || checkType(c,set,OBJ_SET)) return; /* Get a random element from the set */ encoding = setTypeRandomElement(set,&sdsele,&llele); /* Remove the element from the set */ if (encoding == OBJ_ENCODING_INTSET) { ele = createStringObjectFromLongLong(llele); set->ptr = intsetRemove(set->ptr,llele,NULL); } else { ele = createStringObject(sdsele,sdslen(sdsele)); setTypeRemove(set,ele->ptr); } notifyKeyspaceEvent(NOTIFY_SET,"spop",c->argv[1],c->db->id); /* Replicate/AOF this command as an SREM operation */ rewriteClientCommandVector(c,3,shared.srem,c->argv[1],ele); /* Add the element to the reply */ addReplyBulk(c,ele); decrRefCount(ele); /* Delete the set if it's empty */ if (setTypeSize(set) == 0) { dbDelete(c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_GENERIC,"del",c->argv[1],c->db->id); } /* Set has been modified */ signalModifiedKey(c,c->db,c->argv[1]); server.dirty++; } /* handle the "SRANDMEMBER key " variant. The normal version of the * command is handled by the srandmemberCommand() function itself. */ /* How many times bigger should be the set compared to the requested size * for us to don't use the "remove elements" strategy? Read later in the * implementation for more info. */ #define SRANDMEMBER_SUB_STRATEGY_MUL 3 void srandmemberWithCountCommand(client *c) { long l; unsigned long count, size; int uniq = 1; robj *set; sds ele; int64_t llele; int encoding; dict *d; if (getLongFromObjectOrReply(c,c->argv[2],&l,NULL) != C_OK) return; if (l >= 0) { count = (unsigned long) l; } else { /* A negative count means: return the same elements multiple times * (i.e. don't remove the extracted element after every extraction). */ count = -l; uniq = 0; } if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.emptyarray)) == NULL || checkType(c,set,OBJ_SET)) return; size = setTypeSize(set); /* If count is zero, serve it ASAP to avoid special cases later. */ if (count == 0) { addReply(c,shared.emptyarray); return; } /* CASE 1: The count was negative, so the extraction method is just: * "return N random elements" sampling the whole set every time. * This case is trivial and can be served without auxiliary data * structures. This case is the only one that also needs to return the * elements in random order. */ if (!uniq || count == 1) { addReplyArrayLen(c,count); while(count--) { encoding = setTypeRandomElement(set,&ele,&llele); if (encoding == OBJ_ENCODING_INTSET) { addReplyBulkLongLong(c,llele); } else { addReplyBulkCBuffer(c,ele,sdslen(ele)); } } return; } /* CASE 2: * The number of requested elements is greater than the number of * elements inside the set: simply return the whole set. */ if (count >= size) { setTypeIterator *si; addReplyArrayLen(c,size); si = setTypeInitIterator(set); while ((encoding = setTypeNext(si,&ele,&llele)) != -1) { if (encoding == OBJ_ENCODING_INTSET) { addReplyBulkLongLong(c,llele); } else { addReplyBulkCBuffer(c,ele,sdslen(ele)); } size--; } setTypeReleaseIterator(si); serverAssert(size==0); return; } /* For CASE 3 and CASE 4 we need an auxiliary dictionary. */ d = dictCreate(&sdsReplyDictType); /* CASE 3: * The number of elements inside the set is not greater than * SRANDMEMBER_SUB_STRATEGY_MUL times the number of requested elements. * In this case we create a set from scratch with all the elements, and * subtract random elements to reach the requested number of elements. * * This is done because if the number of requested elements is just * a bit less than the number of elements in the set, the natural approach * used into CASE 4 is highly inefficient. */ if (count*SRANDMEMBER_SUB_STRATEGY_MUL > size) { setTypeIterator *si; /* Add all the elements into the temporary dictionary. */ si = setTypeInitIterator(set); dictExpand(d, size); while ((encoding = setTypeNext(si,&ele,&llele)) != -1) { int retval = DICT_ERR; if (encoding == OBJ_ENCODING_INTSET) { retval = dictAdd(d,sdsfromlonglong(llele),NULL); } else { retval = dictAdd(d,sdsdup(ele),NULL); } serverAssert(retval == DICT_OK); } setTypeReleaseIterator(si); serverAssert(dictSize(d) == size); /* Remove random elements to reach the right count. */ while (size > count) { dictEntry *de; de = dictGetFairRandomKey(d); dictUnlink(d,dictGetKey(de)); sdsfree(dictGetKey(de)); dictFreeUnlinkedEntry(d,de); size--; } } /* CASE 4: We have a big set compared to the requested number of elements. * In this case we can simply get random elements from the set and add * to the temporary set, trying to eventually get enough unique elements * to reach the specified count. */ else { unsigned long added = 0; sds sdsele; dictExpand(d, count); while (added < count) { encoding = setTypeRandomElement(set,&ele,&llele); if (encoding == OBJ_ENCODING_INTSET) { sdsele = sdsfromlonglong(llele); } else { sdsele = sdsdup(ele); } /* Try to add the object to the dictionary. If it already exists * free it, otherwise increment the number of objects we have * in the result dictionary. */ if (dictAdd(d,sdsele,NULL) == DICT_OK) added++; else sdsfree(sdsele); } } /* CASE 3 & 4: send the result to the user. */ { dictIterator *di; dictEntry *de; addReplyArrayLen(c,count); di = dictGetIterator(d); while((de = dictNext(di)) != NULL) addReplyBulkSds(c,dictGetKey(de)); dictReleaseIterator(di); dictRelease(d); } } /* SRANDMEMBER [] */ void srandmemberCommand(client *c) { robj *set; sds ele; int64_t llele; int encoding; if (c->argc == 3) { srandmemberWithCountCommand(c); return; } else if (c->argc > 3) { addReplyErrorObject(c,shared.syntaxerr); return; } /* Handle variant without argument. Reply with simple bulk string */ if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.null[c->resp])) == NULL || checkType(c,set,OBJ_SET)) return; encoding = setTypeRandomElement(set,&ele,&llele); if (encoding == OBJ_ENCODING_INTSET) { addReplyBulkLongLong(c,llele); } else { addReplyBulkCBuffer(c,ele,sdslen(ele)); } } int qsortCompareSetsByCardinality(const void *s1, const void *s2) { if (setTypeSize(*(robj**)s1) > setTypeSize(*(robj**)s2)) return 1; if (setTypeSize(*(robj**)s1) < setTypeSize(*(robj**)s2)) return -1; return 0; } /* This is used by SDIFF and in this case we can receive NULL that should * be handled as empty sets. */ int qsortCompareSetsByRevCardinality(const void *s1, const void *s2) { robj *o1 = *(robj**)s1, *o2 = *(robj**)s2; unsigned long first = o1 ? setTypeSize(o1) : 0; unsigned long second = o2 ? setTypeSize(o2) : 0; if (first < second) return 1; if (first > second) return -1; return 0; } /* SINTER / SMEMBERS / SINTERSTORE / SINTERCARD * * 'cardinality_only' work for SINTERCARD, only return the cardinality * with minimum processing and memory overheads. * * 'limit' work for SINTERCARD, stop searching after reaching the limit. * Passing a 0 means unlimited. */ void sinterGenericCommand(client *c, robj **setkeys, unsigned long setnum, robj *dstkey, int cardinality_only, unsigned long limit) { robj **sets = zmalloc(sizeof(robj*)*setnum); setTypeIterator *si; robj *dstset = NULL; sds elesds; int64_t intobj; void *replylen = NULL; unsigned long j, cardinality = 0; int encoding, empty = 0; for (j = 0; j < setnum; j++) { robj *setobj = lookupKeyRead(c->db, setkeys[j]); if (!setobj) { /* A NULL is considered an empty set */ empty += 1; sets[j] = NULL; continue; } if (checkType(c,setobj,OBJ_SET)) { zfree(sets); return; } sets[j] = setobj; } /* Set intersection with an empty set always results in an empty set. * Return ASAP if there is an empty set. */ if (empty > 0) { zfree(sets); if (dstkey) { if (dbDelete(c->db,dstkey)) { signalModifiedKey(c,c->db,dstkey); notifyKeyspaceEvent(NOTIFY_GENERIC,"del",dstkey,c->db->id); server.dirty++; } addReply(c,shared.czero); } else if (cardinality_only) { addReplyLongLong(c,cardinality); } else { addReply(c,shared.emptyset[c->resp]); } return; } /* Sort sets from the smallest to largest, this will improve our * algorithm's performance */ qsort(sets,setnum,sizeof(robj*),qsortCompareSetsByCardinality); /* The first thing we should output is the total number of elements... * since this is a multi-bulk write, but at this stage we don't know * the intersection set size, so we use a trick, append an empty object * to the output list and save the pointer to later modify it with the * right length */ if (dstkey) { /* If we have a target key where to store the resulting set * create this key with an empty set inside */ dstset = createIntsetObject(); } else if (!cardinality_only) { replylen = addReplyDeferredLen(c); } /* Iterate all the elements of the first (smallest) set, and test * the element against all the other sets, if at least one set does * not include the element it is discarded */ si = setTypeInitIterator(sets[0]); while((encoding = setTypeNext(si,&elesds,&intobj)) != -1) { for (j = 1; j < setnum; j++) { if (sets[j] == sets[0]) continue; if (encoding == OBJ_ENCODING_INTSET) { /* intset with intset is simple... and fast */ if (sets[j]->encoding == OBJ_ENCODING_INTSET && !intsetFind((intset*)sets[j]->ptr,intobj)) { break; /* in order to compare an integer with an object we * have to use the generic function, creating an object * for this */ } else if (sets[j]->encoding == OBJ_ENCODING_HT) { elesds = sdsfromlonglong(intobj); if (!setTypeIsMember(sets[j],elesds)) { sdsfree(elesds); break; } sdsfree(elesds); } } else if (encoding == OBJ_ENCODING_HT) { if (!setTypeIsMember(sets[j],elesds)) { break; } } } /* Only take action when all sets contain the member */ if (j == setnum) { if (cardinality_only) { cardinality++; /* We stop the searching after reaching the limit. */ if (limit && cardinality >= limit) break; } else if (!dstkey) { if (encoding == OBJ_ENCODING_HT) addReplyBulkCBuffer(c,elesds,sdslen(elesds)); else addReplyBulkLongLong(c,intobj); cardinality++; } else { if (encoding == OBJ_ENCODING_INTSET) { elesds = sdsfromlonglong(intobj); setTypeAdd(dstset,elesds); sdsfree(elesds); } else { setTypeAdd(dstset,elesds); } } } } setTypeReleaseIterator(si); if (cardinality_only) { addReplyLongLong(c,cardinality); } else if (dstkey) { /* Store the resulting set into the target, if the intersection * is not an empty set. */ if (setTypeSize(dstset) > 0) { setKey(c,c->db,dstkey,dstset,0); addReplyLongLong(c,setTypeSize(dstset)); notifyKeyspaceEvent(NOTIFY_SET,"sinterstore", dstkey,c->db->id); server.dirty++; } else { addReply(c,shared.czero); if (dbDelete(c->db,dstkey)) { server.dirty++; signalModifiedKey(c,c->db,dstkey); notifyKeyspaceEvent(NOTIFY_GENERIC,"del",dstkey,c->db->id); } } decrRefCount(dstset); } else { setDeferredSetLen(c,replylen,cardinality); } zfree(sets); } /* SINTER key [key ...] */ void sinterCommand(client *c) { sinterGenericCommand(c, c->argv+1, c->argc-1, NULL, 0, 0); } /* SINTERCARD numkeys key [key ...] [LIMIT limit] */ void sinterCardCommand(client *c) { long j; long numkeys = 0; /* Number of keys. */ long limit = 0; /* 0 means not limit. */ if (getRangeLongFromObjectOrReply(c, c->argv[1], 1, LONG_MAX, &numkeys, "numkeys should be greater than 0") != C_OK) return; if (numkeys > (c->argc - 2)) { addReplyError(c, "Number of keys can't be greater than number of args"); return; } for (j = 2 + numkeys; j < c->argc; j++) { char *opt = c->argv[j]->ptr; int moreargs = (c->argc - 1) - j; if (!strcasecmp(opt, "LIMIT") && moreargs) { j++; if (getPositiveLongFromObjectOrReply(c, c->argv[j], &limit, "LIMIT can't be negative") != C_OK) return; } else { addReplyErrorObject(c, shared.syntaxerr); return; } } sinterGenericCommand(c, c->argv+2, numkeys, NULL, 1, limit); } /* SINTERSTORE destination key [key ...] */ void sinterstoreCommand(client *c) { sinterGenericCommand(c, c->argv+2, c->argc-2, c->argv[1], 0, 0); } void sunionDiffGenericCommand(client *c, robj **setkeys, int setnum, robj *dstkey, int op) { robj **sets = zmalloc(sizeof(robj*)*setnum); setTypeIterator *si; robj *dstset = NULL; sds ele; int j, cardinality = 0; int diff_algo = 1; int sameset = 0; for (j = 0; j < setnum; j++) { robj *setobj = lookupKeyRead(c->db, setkeys[j]); if (!setobj) { sets[j] = NULL; continue; } if (checkType(c,setobj,OBJ_SET)) { zfree(sets); return; } sets[j] = setobj; if (j > 0 && sets[0] == sets[j]) { sameset = 1; } } /* Select what DIFF algorithm to use. * * Algorithm 1 is O(N*M) where N is the size of the element first set * and M the total number of sets. * * Algorithm 2 is O(N) where N is the total number of elements in all * the sets. * * We compute what is the best bet with the current input here. */ if (op == SET_OP_DIFF && sets[0] && !sameset) { long long algo_one_work = 0, algo_two_work = 0; for (j = 0; j < setnum; j++) { if (sets[j] == NULL) continue; algo_one_work += setTypeSize(sets[0]); algo_two_work += setTypeSize(sets[j]); } /* Algorithm 1 has better constant times and performs less operations * if there are elements in common. Give it some advantage. */ algo_one_work /= 2; diff_algo = (algo_one_work <= algo_two_work) ? 1 : 2; if (diff_algo == 1 && setnum > 1) { /* With algorithm 1 it is better to order the sets to subtract * by decreasing size, so that we are more likely to find * duplicated elements ASAP. */ qsort(sets+1,setnum-1,sizeof(robj*), qsortCompareSetsByRevCardinality); } } /* We need a temp set object to store our union. If the dstkey * is not NULL (that is, we are inside an SUNIONSTORE operation) then * this set object will be the resulting object to set into the target key*/ dstset = createIntsetObject(); if (op == SET_OP_UNION) { /* Union is trivial, just add every element of every set to the * temporary set. */ for (j = 0; j < setnum; j++) { if (!sets[j]) continue; /* non existing keys are like empty sets */ si = setTypeInitIterator(sets[j]); while((ele = setTypeNextObject(si)) != NULL) { if (setTypeAdd(dstset,ele)) cardinality++; sdsfree(ele); } setTypeReleaseIterator(si); } } else if (op == SET_OP_DIFF && sameset) { /* At least one of the sets is the same one (same key) as the first one, result must be empty. */ } else if (op == SET_OP_DIFF && sets[0] && diff_algo == 1) { /* DIFF Algorithm 1: * * We perform the diff by iterating all the elements of the first set, * and only adding it to the target set if the element does not exist * into all the other sets. * * This way we perform at max N*M operations, where N is the size of * the first set, and M the number of sets. */ si = setTypeInitIterator(sets[0]); while((ele = setTypeNextObject(si)) != NULL) { for (j = 1; j < setnum; j++) { if (!sets[j]) continue; /* no key is an empty set. */ if (sets[j] == sets[0]) break; /* same set! */ if (setTypeIsMember(sets[j],ele)) break; } if (j == setnum) { /* There is no other set with this element. Add it. */ setTypeAdd(dstset,ele); cardinality++; } sdsfree(ele); } setTypeReleaseIterator(si); } else if (op == SET_OP_DIFF && sets[0] && diff_algo == 2) { /* DIFF Algorithm 2: * * Add all the elements of the first set to the auxiliary set. * Then remove all the elements of all the next sets from it. * * This is O(N) where N is the sum of all the elements in every * set. */ for (j = 0; j < setnum; j++) { if (!sets[j]) continue; /* non existing keys are like empty sets */ si = setTypeInitIterator(sets[j]); while((ele = setTypeNextObject(si)) != NULL) { if (j == 0) { if (setTypeAdd(dstset,ele)) cardinality++; } else { if (setTypeRemove(dstset,ele)) cardinality--; } sdsfree(ele); } setTypeReleaseIterator(si); /* Exit if result set is empty as any additional removal * of elements will have no effect. */ if (cardinality == 0) break; } } /* Output the content of the resulting set, if not in STORE mode */ if (!dstkey) { addReplySetLen(c,cardinality); si = setTypeInitIterator(dstset); while((ele = setTypeNextObject(si)) != NULL) { addReplyBulkCBuffer(c,ele,sdslen(ele)); sdsfree(ele); } setTypeReleaseIterator(si); server.lazyfree_lazy_server_del ? freeObjAsync(NULL, dstset, -1) : decrRefCount(dstset); } else { /* If we have a target key where to store the resulting set * create this key with the result set inside */ if (setTypeSize(dstset) > 0) { setKey(c,c->db,dstkey,dstset,0); addReplyLongLong(c,setTypeSize(dstset)); notifyKeyspaceEvent(NOTIFY_SET, op == SET_OP_UNION ? "sunionstore" : "sdiffstore", dstkey,c->db->id); server.dirty++; } else { addReply(c,shared.czero); if (dbDelete(c->db,dstkey)) { server.dirty++; signalModifiedKey(c,c->db,dstkey); notifyKeyspaceEvent(NOTIFY_GENERIC,"del",dstkey,c->db->id); } } decrRefCount(dstset); } zfree(sets); } /* SUNION key [key ...] */ void sunionCommand(client *c) { sunionDiffGenericCommand(c,c->argv+1,c->argc-1,NULL,SET_OP_UNION); } /* SUNIONSTORE destination key [key ...] */ void sunionstoreCommand(client *c) { sunionDiffGenericCommand(c,c->argv+2,c->argc-2,c->argv[1],SET_OP_UNION); } /* SDIFF key [key ...] */ void sdiffCommand(client *c) { sunionDiffGenericCommand(c,c->argv+1,c->argc-1,NULL,SET_OP_DIFF); } /* SDIFFSTORE destination key [key ...] */ void sdiffstoreCommand(client *c) { sunionDiffGenericCommand(c,c->argv+2,c->argc-2,c->argv[1],SET_OP_DIFF); } void sscanCommand(client *c) { robj *set; unsigned long cursor; if (parseScanCursorOrReply(c,c->argv[2],&cursor) == C_ERR) return; if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.emptyscan)) == NULL || checkType(c,set,OBJ_SET)) return; scanGenericCommand(c,set,cursor); }