summaryrefslogtreecommitdiff
path: root/src/dict.c
blob: a34751dfb5cc342dfce8a0030d1d2bcf24229b2f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
/* Hash Tables Implementation.
 *
 * This file implements in memory hash tables with insert/del/replace/find/
 * get-random-element operations. Hash tables will auto resize if needed
 * tables of power of two in size are used, collisions are handled by
 * chaining. See the source code for more information... :)
 *
 * Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *   * Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the name of Redis nor the names of its contributors may be used
 *     to endorse or promote products derived from this software without
 *     specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "fmacros.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <limits.h>
#include <sys/time.h>
#include <ctype.h>

#include "dict.h"
#include "zmalloc.h"
#ifndef DICT_BENCHMARK_MAIN
#include "redisassert.h"
#else
#include <assert.h>
#endif

/* Using dictEnableResize() / dictDisableResize() we make possible to
 * enable/disable resizing of the hash table as needed. This is very important
 * for Redis, as we use copy-on-write and don't want to move too much memory
 * around when there is a child performing saving operations.
 *
 * Note that even when dict_can_resize is set to 0, not all resizes are
 * prevented: a hash table is still allowed to grow if the ratio between
 * the number of elements and the buckets > dict_force_resize_ratio. */
static int dict_can_resize = 1;
static unsigned int dict_resize_ratio = 10;
static unsigned int dict_force_resize_ratio = 60;

/* -------------------------- private prototypes ---------------------------- */

static int _dictExpandIfNeeded(dict *ht);
static unsigned long _dictNextPower(unsigned long size);
static int _dictKeyIndex(dict *ht, const void *key, unsigned int *hash);
static int _dictInit(dict *ht, dictType *type, void *privDataPtr);

/* -------------------------- hash functions -------------------------------- */

static uint32_t dict_hash_function_seed = 5381;

void dictSetHashFunctionSeed(uint32_t seed) {
    dict_hash_function_seed = seed;
}

uint32_t dictGetHashFunctionSeed(void) {
    return dict_hash_function_seed;
}

/* MurmurHash2, by Austin Appleby
 * Note - This code makes a few assumptions about how your machine behaves -
 * 1. We can read a 4-byte value from any address without crashing
 * 2. sizeof(int) == 4
 *
 * And it has a few limitations -
 *
 * 1. It will not work incrementally.
 * 2. It will not produce the same results on little-endian and big-endian
 *    machines.
 */
unsigned int dictGenHashFunction(const void *key, int len) {
    /* 'm' and 'r' are mixing constants generated offline.
     They're not really 'magic', they just happen to work well.  */
    uint32_t seed = dict_hash_function_seed;
    const uint32_t m = 0x5bd1e995;
    const int r = 24;

    /* Initialize the hash to a 'random' value */
    uint32_t h = seed ^ len;

    /* Mix 4 bytes at a time into the hash */
    const unsigned char *data = (const unsigned char *)key;

    while(len >= 4) {
        uint32_t k = *(uint32_t*)data;

        k *= m;
        k ^= k >> r;
        k *= m;

        h *= m;
        h ^= k;

        data += 4;
        len -= 4;
    }

    /* Handle the last few bytes of the input array  */
    switch(len) {
    case 3: h ^= data[2] << 16;
    case 2: h ^= data[1] << 8;
    case 1: h ^= data[0]; h *= m;
    };

    /* Do a few final mixes of the hash to ensure the last few
     * bytes are well-incorporated. */
    h ^= h >> 13;
    h *= m;
    h ^= h >> 15;

    return (unsigned int)h;
}

/* And a case insensitive hash function (based on djb hash) */
unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) {
    unsigned int hash = (unsigned int)dict_hash_function_seed;

    while (len--)
        hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */
    return hash;
}

/* ----------------------------- API implementation ------------------------- */

/* Push a new entry in a vector of entries, taking care of allocating or
 * reallocating the vector if needed. If 'orig_entries' is non zero it
 * means that we are moving entries in the course of rehashing to a bigger
 * table, from a vector that had 'orig_entires' entries. The function can
 * use this hint to make better reallocation choices. */
dictEntry *dictPushEntry(dictEntryVector **table, unsigned int idx, const void *key, const void *val, unsigned int hash, uint32_t orig_entries)
{
    dictEntryVector *dv = table[idx];
    dictEntry *he;

    if (dv == NULL) {
        int initlen;
        if (orig_entries) {
            /* If we are rehashing to a larger table, in the average this
             * slot will take orig_entries/2 slots, assuming the new table
             * is double in size. */
            initlen = orig_entries/2;
        } else {
            initlen = dict_resize_ratio/4;
        }
        if (initlen == 0) initlen = 1;
        dv = table[idx] =
            zcalloc(sizeof(dictEntryVector)+sizeof(dictEntry)*initlen);
        dv->used = 1;
        dv->free = initlen-1;
        he = dv->entry;
    } else if (dv->free == 0) {
        int newlen = dv->used*2;
        dv = table[idx] = zrealloc(table[idx],sizeof(dictEntryVector)+sizeof(dictEntry)*newlen);
        he = dv->entry+dv->used;
        dv->used++;
        dv->free = newlen - dv->used;
        memset(dv->entry+dv->used,0,sizeof(dictEntry)*dv->free);
    } else {
        uint32_t entries = dv->used+dv->free;
        /* Start iterating with j set to the number of buckets already
         * used: it is likely there are empty buckets at the end after
         * a reallocation of the entries vector. */
        uint32_t j = dv->used;
        uint32_t i = entries;
        while (i--) {
            if (dv->entry[j].key == NULL) break;
            j = (j+1)%entries;
        }
        he = dv->entry+j;
        dv->used++;
        dv->free--;
    }
    he->key = (void*) key;
    he->v.val = (void*) val;
    he->hash = hash;
    return he;
}

/* Reset a hash table already initialized with ht_init().
 * NOTE: This function should only be called by ht_destroy(). */
static void _dictReset(dictht *ht)
{
    ht->table = NULL;
    ht->size = 0;
    ht->sizemask = 0;
    ht->used = 0;
}

/* Create a new hash table */
dict *dictCreate(dictType *type,
        void *privDataPtr)
{
    dict *d = zmalloc(sizeof(*d));

    _dictInit(d,type,privDataPtr);
    return d;
}

/* Initialize the hash table */
int _dictInit(dict *d, dictType *type,
        void *privDataPtr)
{
    _dictReset(&d->ht[0]);
    _dictReset(&d->ht[1]);
    d->type = type;
    d->privdata = privDataPtr;
    d->rehashidx = -1;
    d->iterators = 0;
    return DICT_OK;
}

/* Resize the table to the minimal size that contains all the elements,
 * but with the invariant of a USED/BUCKETS ratio near to <= 1 */
int dictResize(dict *d)
{
    int minimal;

    if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
    minimal = d->ht[0].used;
    if (minimal < DICT_HT_INITIAL_SIZE)
        minimal = DICT_HT_INITIAL_SIZE;
    return dictExpand(d, minimal);
}

/* Expand or create the hash table */
int dictExpand(dict *d, unsigned long size)
{
    dictht n; /* the new hash table */
    unsigned long realsize = _dictNextPower(size);

    /* the size is invalid if it is smaller than the number of
     * elements already inside the hash table */
    if (dictIsRehashing(d)) return DICT_ERR;

    /* Rehashing to the same table size is not useful. */
    if (realsize == d->ht[0].size) return DICT_ERR;

    /* Allocate the new hash table and initialize all pointers to NULL */
    n.size = realsize;
    n.sizemask = realsize-1;
    n.table = zcalloc(realsize*sizeof(dictEntryVector*));
    n.used = 0;

    /* Is this the first initialization? If so it's not really a rehashing
     * we just set the first hash table so that it can accept keys. */
    if (d->ht[0].table == NULL) {
        d->ht[0] = n;
        return DICT_OK;
    }

    /* Prepare a second hash table for incremental rehashing */
    d->ht[1] = n;
    d->rehashidx = 0;
    return DICT_OK;
}

/* Expand the dictionary to the optimal number of elements needed to
 * hold 'entries' keys. */
int dictExpandToOptimalSize(dict *d, unsigned long entries) {
    return dictExpand(d,entries/(dict_resize_ratio/2));
}

/* Performs N steps of incremental rehashing. Returns 1 if there are still
 * keys to move from the old to the new hash table, otherwise 0 is returned.
 *
 * Note that a rehashing step consists in moving a bucket (that may have more
 * than one key as we use chaining) from the old to the new hash table, however
 * since part of the hash table may be composed of empty spaces, it is not
 * guaranteed that this function will rehash even a single bucket, since it
 * will visit at max N*10 empty buckets in total, otherwise the amount of
 * work it does would be unbound and the function may block for a long time. */
int dictRehash(dict *d, int n) {
    int empty_visits = n*10; /* Max number of empty buckets to visit. */
    if (!dictIsRehashing(d)) return 0;
    int to_smaller = d->ht[0].size > d->ht[1].size; /* Moving to smaller tab? */

    while(n-- && d->ht[0].used != 0) {
        dictEntryVector *dv;

        /* Note that rehashidx can't overflow as we are sure there are more
         * elements because ht[0].used != 0 */
        assert(d->ht[0].size > (unsigned long)d->rehashidx);
        while(d->ht[0].table[d->rehashidx] == NULL) {
            d->rehashidx++;
            if (--empty_visits == 0) return 1;
        }
        dv = d->ht[0].table[d->rehashidx];
        /* Move all the keys in this bucket from the old to the new hash HT.
         * TODO: if the table we are rehasing to is smaller than the current
         * table, we can just move the whole entries vector from one table
         * to the next, since all the entries of this table will hash into
         * the same slot of the target table. */
        uint32_t entries = dv ? (dv->used + dv->free) : 0;
        uint32_t entries_hint = to_smaller ? 0 : entries;
        uint32_t j;

        for (j = 0; j < entries; j++) {
            unsigned int h;

            /* Get the index in the new hash table */
            if (dv->entry[j].key == NULL) continue;
            h = dv->entry[j].hash & d->ht[1].sizemask;
            dictPushEntry(d->ht[1].table,h,dv->entry[j].key,dv->entry[j].v.val,
                          dv->entry[j].hash, entries_hint);
            d->ht[1].used++;
            d->ht[0].used--;
        }
        zfree(dv);
        d->ht[0].table[d->rehashidx] = NULL;
        d->rehashidx++;
    }

    /* Check if we already rehashed the whole table... */
    if (d->ht[0].used == 0) {
        zfree(d->ht[0].table);
        d->ht[0] = d->ht[1];
        _dictReset(&d->ht[1]);
        d->rehashidx = -1;
        return 0;
    }

    /* More to rehash... */
    return 1;
}

long long timeInMilliseconds(void) {
    struct timeval tv;

    gettimeofday(&tv,NULL);
    return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
}

/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
int dictRehashMilliseconds(dict *d, int ms) {
    long long start = timeInMilliseconds();
    int rehashes = 0;

    while(dictRehash(d,100)) {
        rehashes += 100;
        if (timeInMilliseconds()-start > ms) break;
    }
    return rehashes;
}

/* This function performs just a step of rehashing, and only if there are
 * no safe iterators bound to our hash table. When we have iterators in the
 * middle of a rehashing we can't mess with the two hash tables otherwise
 * some element can be missed or duplicated.
 *
 * This function is called by common lookup or update operations in the
 * dictionary so that the hash table automatically migrates from H1 to H2
 * while it is actively used. */
static void _dictRehashStep(dict *d) {
    if (d->iterators == 0) dictRehash(d,1);
}

/* Add an element to the target hash table */
int dictAdd(dict *d, void *key, void *val)
{
    dictEntry *entry = dictAddRaw(d,key);

    if (!entry) return DICT_ERR;
    dictSetVal(d, entry, val);
    return DICT_OK;
}

/* Low level add. This function adds the entry but instead of setting
 * a value returns the dictEntry structure to the user, that will make
 * sure to fill the value field as he wishes.
 *
 * This function is also directly exposed to the user API to be called
 * mainly in order to store non-pointers inside the hash value, example:
 *
 * entry = dictAddRaw(dict,mykey);
 * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
 *
 * Return values:
 *
 * If key already exists NULL is returned.
 * If key was added, the hash entry is returned to be manipulated by the caller.
 */
dictEntry *dictAddRaw(dict *d, void *key)
{
    int index;
    unsigned int hash;
    dictEntry *entry;
    dictht *ht;

    if (dictIsRehashing(d)) _dictRehashStep(d);

    /* Get the index of the new element, or -1 if
     * the element already exists. */
    if ((index = _dictKeyIndex(d, key, &hash)) == -1)
        return NULL;

    /* Store the new entry: if we are rehashing all new entries go to
     * the new table. */
    ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
    entry = dictPushEntry(ht->table,index,key,NULL,hash,0);
    ht->used++;
    return entry;
}

/* Add an element, discarding the old if the key already exists.
 * Return 1 if the key was added from scratch, 0 if there was already an
 * element with such key and dictReplace() just performed a value update
 * operation. */
int dictReplace(dict *d, void *key, void *val)
{
    dictEntry *entry, auxentry;

    /* Try to add the element. If the key
     * does not exists dictAdd will suceed. */
    if (dictAdd(d, key, val) == DICT_OK)
        return 1;
    /* It already exists, get the entry */
    entry = dictFind(d, key);
    /* Set the new value and free the old one. Note that it is important
     * to do that in this order, as the value may just be exactly the same
     * as the previous one. In this context, think to reference counting,
     * you want to increment (set), and then decrement (free), and not the
     * reverse. */
    auxentry = *entry;
    dictSetVal(d, entry, val);
    dictFreeVal(d, &auxentry);
    return 0;
}

/* dictReplaceRaw() is simply a version of dictAddRaw() that always
 * returns the hash entry of the specified key, even if the key already
 * exists and can't be added (in that case the entry of the already
 * existing key is returned.)
 *
 * See dictAddRaw() for more information. */
dictEntry *dictReplaceRaw(dict *d, void *key) {
    dictEntry *entry = dictFind(d,key);

    return entry ? entry : dictAddRaw(d,key);
}

/* Search and remove an element */
static int dictGenericDelete(dict *d, const void *key, int nofree) {
    unsigned int h, idx;
    dictEntryVector *dv;
    int table;

    if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
    if (dictIsRehashing(d)) _dictRehashStep(d);
    h = dictHashKey(d, key);

    for (table = 0; table <= 1; table++) {
        idx = h & d->ht[table].sizemask;
        dv = d->ht[table].table[idx];
        if (dv != NULL) {
            uint32_t entries = dv->used + dv->free;
            uint32_t j;
            for (j = 0; j < entries; j++) {
                dictEntry *he = dv->entry+j;
                if (he->key == NULL || he->hash != h) continue;
                if (key==he->key || dictCompareKeys(d, key, he->key)) {
                    if (!nofree) {
                        dictFreeKey(d, he);
                        dictFreeVal(d, he);
                    }
                    he->key = NULL;
                    /* No need to clear val / hash fields. The key set
                     * to NULL is enough to mark the slot as empty. */
                    d->ht[table].used--;
                    dv->free++;
                    dv->used--;

                    if (dv->used == 0) {
                        zfree(dv);
                        d->ht[table].table[idx] = NULL;
                    }

                    /* TODO: Compact the entries vector if there are not
                     * safe iterators active? Alternatively we could do it
                     * in a single place when scanning entries for read
                     * accesses. */
                    return DICT_OK;
                }
            }
        }
        if (!dictIsRehashing(d)) break;
    }
    return DICT_ERR; /* not found */
}

int dictDelete(dict *ht, const void *key) {
    return dictGenericDelete(ht,key,0);
}

int dictDeleteNoFree(dict *ht, const void *key) {
    return dictGenericDelete(ht,key,1);
}

/* Destroy an entire dictionary */
int _dictClear(dict *d, dictht *ht, void(callback)(void *)) {
    unsigned long i;

    /* Free all the elements */
    for (i = 0; i < ht->size && ht->used > 0; i++) {
        dictEntryVector *dv;

        if (callback && (i & 65535) == 0) callback(d->privdata);

        if ((dv = ht->table[i]) == NULL) continue;
        uint32_t entries = dv->used + dv->free;
        uint32_t j;
        for (j = 0; j < entries; j++) {
            dictEntry *he = dv->entry+j;
            if (he->key == NULL) continue;
            dictFreeKey(d, he);
            dictFreeVal(d, he);
            ht->used--;
        }
        zfree(dv);
        ht->table[i] = NULL;
    }
    /* Free the table itself. */
    zfree(ht->table);
    /* Re-initialize the table */
    _dictReset(ht);
    return DICT_OK; /* never fails */
}

/* Clear & Release the hash table */
void dictRelease(dict *d)
{
    _dictClear(d,&d->ht[0],NULL);
    _dictClear(d,&d->ht[1],NULL);
    zfree(d);
}

void debugDv(dictEntryVector *dv) {
    uint32_t entries = dv->used + dv->free;
    uint32_t j;

    for (j = 0; j < entries; j++) {
        unsigned int h2 = (dv->entry[j].hash<<5) + (dv->entry[j].hash>>16);
        int target = h2 % entries;
        if (dv->entry[j].key == NULL) target = -1;
        printf("%d [target=%u]: %s\n", j, target, dv->entry[j].key);
    }
}

dictEntry *dictFind(dict *d, const void *key)
{
    dictEntryVector *dv;
    unsigned int h, idx, table;

    if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
    if (dictIsRehashing(d)) _dictRehashStep(d);
    h = dictHashKey(d, key);
    for (table = 0; table <= 1; table++) {
        idx = h & d->ht[table].sizemask;
        dv = d->ht[table].table[idx];
        if (dv != NULL) {
            // printf("LOOKUP %s\n", key);
            // debugDv(dv);
            uint32_t entries = dv->used + dv->free;
            /* In order to scan less entries, we use the entries vector
             * as a sub hash table. The entry is not really guaranteed to
             * be there, however we try to access it using this pattern and
             * if possible we also swap the entries so that the next time
             * we'll succeed in accessing the entry at the first try. */
            unsigned int h2 = (h<<5)+(h>>16);
            uint32_t j = h2 % entries, i = entries;
            // printf("SCAN: ");
            while(i--) {
                // printf("%d ",j);
                dictEntry *he = dv->entry+j;
                if (he->key == NULL || he->hash != h) {
                    j = (j+1) % entries;
                    continue;
                }
                if (key==he->key || dictCompareKeys(d, key, he->key)) {
                    #if 1
                    if (d->iterators == 0 && /* No interators with indexes. */
                        dict_can_resize &&   /* No copy on write concerns. */
                        i != entries-1       /* Not already in right place. */)
                    {
                        /* Try to find a suitable position... */
                        uint32_t destpos, k;
                        for (k = 0; k < 3; k++) {
                            destpos = (h2+k) % entries;
                            uint32_t target_h2 =
                                (dv->entry[destpos].hash << 5) +
                                (dv->entry[destpos].hash >> 16);
                            if (dv->entry[destpos].key == NULL ||
                                (target_h2 % entries) != destpos)
                                break; /* Valid position found. */
                        }
                        if (k != 3) {
                            dictEntry copy = *he;
                            dv->entry[j] = dv->entry[destpos];;
                            dv->entry[destpos] = copy;
                            he = dv->entry+destpos;
                        }
                    }
                    #endif
                    // printf("\n\n");
                    return he;
                }
                j = (j+1) % entries;
            }
        }
        if (!dictIsRehashing(d)) return NULL;
    }
    return NULL;
}

void *dictFetchValue(dict *d, const void *key) {
    dictEntry *he;

    he = dictFind(d,key);
    return he ? dictGetVal(he) : NULL;
}

/* A fingerprint is a 64 bit number that represents the state of the dictionary
 * at a given time, it's just a few dict properties xored together.
 * When an unsafe iterator is initialized, we get the dict fingerprint, and
 * check the fingerprint again when the iterator is released.
 * If the two fingerprints are different it means that the user of the iterator
 * performed forbidden operations against the dictionary while iterating. */
long long dictFingerprint(dict *d) {
    long long integers[6], hash = 0;
    int j;

    integers[0] = (long) d->ht[0].table;
    integers[1] = d->ht[0].size;
    integers[2] = d->ht[0].used;
    integers[3] = (long) d->ht[1].table;
    integers[4] = d->ht[1].size;
    integers[5] = d->ht[1].used;

    /* We hash N integers by summing every successive integer with the integer
     * hashing of the previous sum. Basically:
     *
     * Result = hash(hash(hash(int1)+int2)+int3) ...
     *
     * This way the same set of integers in a different order will (likely)
     * hash to a different number. */
    for (j = 0; j < 6; j++) {
        hash += integers[j];
        /* For the hashing step we use Tomas Wang's 64 bit integer hash. */
        hash = (~hash) + (hash << 21); // hash = (hash << 21) - hash - 1;
        hash = hash ^ (hash >> 24);
        hash = (hash + (hash << 3)) + (hash << 8); // hash * 265
        hash = hash ^ (hash >> 14);
        hash = (hash + (hash << 2)) + (hash << 4); // hash * 21
        hash = hash ^ (hash >> 28);
        hash = hash + (hash << 31);
    }
    return hash;
}

dictIterator *dictGetIterator(dict *d)
{
    dictIterator *iter = zmalloc(sizeof(*iter));

    iter->d = d;
    iter->table = 0;
    iter->index = -1;
    iter->safe = 0;
    iter->entry = -1;
    return iter;
}

dictIterator *dictGetSafeIterator(dict *d) {
    dictIterator *i = dictGetIterator(d);

    i->safe = 1;
    return i;
}

dictEntry *dictNext(dictIterator *iter) {
    while (1) {
        if (iter->entry == -1) {
            dictht *ht = &iter->d->ht[iter->table];
            if (iter->index == -1 && iter->table == 0) {
                if (iter->safe)
                    iter->d->iterators++;
                else
                    iter->fingerprint = dictFingerprint(iter->d);
            }
            iter->index++;
            if (iter->index >= (long) ht->size) {
                if (dictIsRehashing(iter->d) && iter->table == 0) {
                    iter->table++;
                    iter->index = 0;
                    ht = &iter->d->ht[1];
                } else {
                    break;
                }
            }
            iter->entry = 0;
        } else {
            iter->entry++;
        }

        dictEntryVector *dv = iter->d->ht[iter->table].table[iter->index];
        if (dv == NULL || (unsigned)iter->entry >= (dv->used + dv->free))
            iter->entry = -1;

        if (iter->entry >= 0 && dv->entry[iter->entry].key != NULL) {
            return dv->entry+iter->entry;
        }
    }
    return NULL;
}

void dictReleaseIterator(dictIterator *iter)
{
    if (!(iter->index == -1 && iter->table == 0)) {
        if (iter->safe)
            iter->d->iterators--;
        else
            assert(iter->fingerprint == dictFingerprint(iter->d));
    }
    zfree(iter);
}

/* Return a random entry from the hash table. Useful to
 * implement randomized algorithms */
dictEntry *dictGetRandomKey(dict *d)
{
    dictEntryVector *dv;
    unsigned int h;

    if (dictSize(d) == 0) return NULL;
    if (dictIsRehashing(d)) _dictRehashStep(d);
    if (dictIsRehashing(d)) {
        do {
            /* We are sure there are no elements in indexes from 0
             * to rehashidx-1 */
            h = d->rehashidx + (random() % (d->ht[0].size +
                                            d->ht[1].size -
                                            d->rehashidx));
            dv = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
                                        d->ht[0].table[h];
        } while(dv == NULL);
    } else {
        do {
            h = random() & d->ht[0].sizemask;
            dv = d->ht[0].table[h];
        } while(dv == NULL);
    }

    /* Now we found a non empty vector. We need to get a random element from
     * the vector now. */
    dictEntry *he = NULL;
    while(he == NULL) {
        uint32_t r = random() % (dv->used + dv->free);
        if (dv->entry[r].key != NULL) {
            he = dv->entry+r;
            break;
        }
    }
    return he;
}

/* This function samples the dictionary to return a few keys from random
 * locations.
 *
 * It does not guarantee to return all the keys specified in 'count', nor
 * it does guarantee to return non-duplicated elements, however it will make
 * some effort to do both things.
 *
 * Returned pointers to hash table entries are stored into 'des' that
 * points to an array of dictEntry pointers. The array must have room for
 * at least 'count' elements, that is the argument we pass to the function
 * to tell how many random elements we need.
 *
 * The function returns the number of items stored into 'des', that may
 * be less than 'count' if the hash table has less than 'count' elements
 * inside, or if not enough elements were found in a reasonable amount of
 * steps.
 *
 * Note that this function is not suitable when you need a good distribution
 * of the returned items, but only when you need to "sample" a given number
 * of continuous elements to run some kind of algorithm or to produce
 * statistics. However the function is much faster than dictGetRandomKey()
 * at producing N elements. */
unsigned int dictGetSomeKeys(dict *d, dictEntry **des, unsigned int count) {
    unsigned long j; /* internal hash table id, 0 or 1. */
    unsigned long tables; /* 1 or 2 tables? */
    unsigned long stored = 0, maxsizemask;
    unsigned long maxsteps;

    if (dictSize(d) < count) count = dictSize(d);
    maxsteps = count*10;

    /* Try to do a rehashing work proportional to 'count'. */
    for (j = 0; j < count; j++) {
        if (dictIsRehashing(d))
            _dictRehashStep(d);
        else
            break;
    }

    tables = dictIsRehashing(d) ? 2 : 1;
    maxsizemask = d->ht[0].sizemask;
    if (tables > 1 && maxsizemask < d->ht[1].sizemask)
        maxsizemask = d->ht[1].sizemask;

    /* Pick a random point inside the larger table. */
    unsigned long i = random() & maxsizemask;
    unsigned long emptylen = 0; /* Continuous empty entries so far. */
    while(stored < count && maxsteps--) {
        for (j = 0; j < tables; j++) {
            /* Invariant of the dict.c rehashing: up to the indexes already
             * visited in ht[0] during the rehashing, there are no populated
             * buckets, so we can skip ht[0] for indexes between 0 and idx-1. */
            if (tables == 2 && j == 0 && i < (unsigned long) d->rehashidx) {
                /* Moreover, if we are currently out of range in the second
                 * table, there will be no elements in both tables up to
                 * the current rehashing index, so we jump if possible.
                 * (this happens when going from big to small table). */
                if (i >= d->ht[1].size) i = d->rehashidx;
                continue;
            }
            if (i >= d->ht[j].size) continue; /* Out of range for this table. */
            dictEntryVector *dv = d->ht[j].table[i];

            /* Count contiguous empty buckets, and jump to other
             * locations if they reach 'count' (with a minimum of 5). */
            if (dv == NULL) {
                emptylen++;
                if (emptylen >= 5 && emptylen > count) {
                    i = random() & maxsizemask;
                    emptylen = 0;
                }
            } else {
                emptylen = 0;
                uint32_t entries = dv->used + dv->free;
                uint32_t j;
                for (j = 0; j < entries; j++) {
                    if (dv->entry[j].key != NULL) {
                        /* Collect all the elements of the buckets found non
                         * empty while iterating. */
                        *des = dv->entry+j;
                        des++;
                        stored++;
                        if (stored == count) return stored;
                    }
                }
            }
        }
        i = (i+1) & maxsizemask;
    }
    return stored;
}

/* Function to reverse bits. Algorithm from:
 * http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel */
static unsigned long rev(unsigned long v) {
    unsigned long s = 8 * sizeof(v); // bit size; must be power of 2
    unsigned long mask = ~0;
    while ((s >>= 1) > 0) {
        mask ^= (mask << s);
        v = ((v >> s) & mask) | ((v << s) & ~mask);
    }
    return v;
}

/* dictScan() is used to iterate over the elements of a dictionary.
 *
 * Iterating works the following way:
 *
 * 1) Initially you call the function using a cursor (v) value of 0.
 * 2) The function performs one step of the iteration, and returns the
 *    new cursor value you must use in the next call.
 * 3) When the returned cursor is 0, the iteration is complete.
 *
 * The function guarantees all elements present in the
 * dictionary get returned between the start and end of the iteration.
 * However it is possible some elements get returned multiple times.
 *
 * For every element returned, the callback argument 'fn' is
 * called with 'privdata' as first argument and the dictionary entry
 * 'de' as second argument.
 *
 * HOW IT WORKS.
 *
 * The iteration algorithm was designed by Pieter Noordhuis.
 * The main idea is to increment a cursor starting from the higher order
 * bits. That is, instead of incrementing the cursor normally, the bits
 * of the cursor are reversed, then the cursor is incremented, and finally
 * the bits are reversed again.
 *
 * This strategy is needed because the hash table may be resized between
 * iteration calls.
 *
 * dict.c hash tables are always power of two in size, and they
 * use chaining, so the position of an element in a given table is given
 * by computing the bitwise AND between Hash(key) and SIZE-1
 * (where SIZE-1 is always the mask that is equivalent to taking the rest
 *  of the division between the Hash of the key and SIZE).
 *
 * For example if the current hash table size is 16, the mask is
 * (in binary) 1111. The position of a key in the hash table will always be
 * the last four bits of the hash output, and so forth.
 *
 * WHAT HAPPENS IF THE TABLE CHANGES IN SIZE?
 *
 * If the hash table grows, elements can go anywhere in one multiple of
 * the old bucket: for example let's say we already iterated with
 * a 4 bit cursor 1100 (the mask is 1111 because hash table size = 16).
 *
 * If the hash table will be resized to 64 elements, then the new mask will
 * be 111111. The new buckets you obtain by substituting in ??1100
 * with either 0 or 1 can be targeted only by keys we already visited
 * when scanning the bucket 1100 in the smaller hash table.
 *
 * By iterating the higher bits first, because of the inverted counter, the
 * cursor does not need to restart if the table size gets bigger. It will
 * continue iterating using cursors without '1100' at the end, and also
 * without any other combination of the final 4 bits already explored.
 *
 * Similarly when the table size shrinks over time, for example going from
 * 16 to 8, if a combination of the lower three bits (the mask for size 8
 * is 111) were already completely explored, it would not be visited again
 * because we are sure we tried, for example, both 0111 and 1111 (all the
 * variations of the higher bit) so we don't need to test it again.
 *
 * WAIT... YOU HAVE *TWO* TABLES DURING REHASHING!
 *
 * Yes, this is true, but we always iterate the smaller table first, then
 * we test all the expansions of the current cursor into the larger
 * table. For example if the current cursor is 101 and we also have a
 * larger table of size 16, we also test (0)101 and (1)101 inside the larger
 * table. This reduces the problem back to having only one table, where
 * the larger one, if it exists, is just an expansion of the smaller one.
 *
 * LIMITATIONS
 *
 * This iterator is completely stateless, and this is a huge advantage,
 * including no additional memory used.
 *
 * The disadvantages resulting from this design are:
 *
 * 1) It is possible we return elements more than once. However this is usually
 *    easy to deal with in the application level.
 * 2) The iterator must return multiple elements per call, as it needs to always
 *    return all the keys chained in a given bucket, and all the expansions, so
 *    we are sure we don't miss keys moving during rehashing.
 * 3) The reverse cursor is somewhat hard to understand at first, but this
 *    comment is supposed to help.
 */
unsigned long dictScan(dict *d,
                       unsigned long v,
                       dictScanFunction *fn,
                       void *privdata)
{
    dictht *t0, *t1;
    const dictEntryVector *dv;
    uint32_t j;
    unsigned long m0, m1;

    if (dictSize(d) == 0) return 0;

    if (!dictIsRehashing(d)) {
        t0 = &(d->ht[0]);
        m0 = t0->sizemask;

        /* Emit entries at cursor */
        dv = t0->table[v & m0];
        for (j = 0; dv && j < (dv->used+dv->free); j++) {
            if (dv->entry[j].key == NULL) continue;
            fn(privdata, dv->entry+j);
        }
    } else {
        t0 = &d->ht[0];
        t1 = &d->ht[1];

        /* Make sure t0 is the smaller and t1 is the bigger table */
        if (t0->size > t1->size) {
            t0 = &d->ht[1];
            t1 = &d->ht[0];
        }

        m0 = t0->sizemask;
        m1 = t1->sizemask;

        /* Emit entries at cursor */
        dv = t0->table[v & m0];
        for (j = 0; dv && j < (dv->used+dv->free); j++) {
            if (dv->entry[j].key == NULL) continue;
            fn(privdata, dv->entry+j);
        }

        /* Iterate over indices in larger table that are the expansion
         * of the index pointed to by the cursor in the smaller table */
        do {
            /* Emit entries at cursor */
            dv = t1->table[v & m1];
            for (j = 0; dv && j < (dv->used+dv->free); j++) {
                if (dv->entry[j].key == NULL) continue;
                fn(privdata, dv->entry+j);
            }

            /* Increment bits not covered by the smaller mask */
            v = (((v | m0) + 1) & ~m0) | (v & m0);

            /* Continue while bits covered by mask difference is non-zero */
        } while (v & (m0 ^ m1));
    }

    /* Set unmasked bits so incrementing the reversed cursor
     * operates on the masked bits of the smaller table */
    v |= ~m0;

    /* Increment the reverse cursor */
    v = rev(v);
    v++;
    v = rev(v);

    return v;
}

/* ------------------------- private functions ------------------------------ */

/* Expand the hash table if needed */
static int _dictExpandIfNeeded(dict *d)
{
    /* Incremental rehashing already in progress. Return. */
    if (dictIsRehashing(d)) return DICT_OK;

    /* If the hash table is empty expand it to the initial size. */
    if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);

    /* If we reached the 1:1 ratio, and we are allowed to resize the hash
     * table (global setting) or we should avoid it but the ratio between
     * elements/buckets is over the "safe" threshold, we resize doubling
     * the number of buckets. */
    if (d->ht[0].used >= (d->ht[0].size * dict_resize_ratio) &&
        (dict_can_resize ||
         d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
    {
        return dictExpand(d, d->ht[0].used / (dict_resize_ratio/2));
    }
    return DICT_OK;
}

/* Our hash table capability is a power of two */
static unsigned long _dictNextPower(unsigned long size)
{
    unsigned long i = DICT_HT_INITIAL_SIZE;

    if (size >= LONG_MAX) return LONG_MAX;
    while(1) {
        if (i >= size)
            return i;
        i *= 2;
    }
}

/* Returns the index of a free slot that can be populated with
 * a hash entry for the given 'key'.
 * If the key already exists, -1 is returned.
 *
 * Note that if we are in the process of rehashing the hash table, the
 * index is always returned in the context of the second (new) hash table. */
static int _dictKeyIndex(dict *d, const void *key, unsigned int *hash)
{
    unsigned int h, idx, table;
    dictEntryVector *dv;

    /* Expand the hash table if needed */
    if (_dictExpandIfNeeded(d) == DICT_ERR)
        return -1;
    /* Compute the key hash value */
    h = dictHashKey(d, key);
    *hash = h;
    for (table = 0; table <= 1; table++) {
        idx = h & d->ht[table].sizemask;
        /* Search if this slot does not already contain the given key */
        dv = d->ht[table].table[idx];
        if (dv != NULL) {
            uint32_t entries = dv->used + dv->free;
            uint32_t j;
            for (j = 0; j < entries; j++) {
                dictEntry *he = dv->entry+j;
                if (he->key == NULL || he->hash != h) continue;
                if (key==he->key || dictCompareKeys(d, key, he->key))
                    return -1;
            }
        }
        if (!dictIsRehashing(d)) break;
    }
    return idx;
}

void dictEmpty(dict *d, void(callback)(void*)) {
    _dictClear(d,&d->ht[0],callback);
    _dictClear(d,&d->ht[1],callback);
    d->rehashidx = -1;
    d->iterators = 0;
}

void dictEnableResize(void) {
    dict_can_resize = 1;
}

void dictDisableResize(void) {
    dict_can_resize = 0;
}

/* ------------------------------- Debugging ---------------------------------*/

#define DICT_STATS_VECTLEN 50
size_t _dictGetStatsHt(char *buf, size_t bufsize, dictht *ht, int tableid) {
    unsigned long i, slots = 0, chainlen, maxchainlen = 0;
    unsigned long totchainlen = 0;
    unsigned long clvector[DICT_STATS_VECTLEN];
    size_t l = 0;

    if (ht->used == 0) {
        return snprintf(buf,bufsize,
            "No stats available for empty dictionaries\n");
    }

    /* Compute stats. */
    for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
    for (i = 0; i < ht->size; i++) {
        if (ht->table[i] == NULL) {
            clvector[0]++;
            continue;
        }
        slots++;
        /* For each hash entry on this slot... */
        dictEntryVector *dv = ht->table[i];
        chainlen = dv->used;
        clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
        if (chainlen > maxchainlen) maxchainlen = chainlen;
        totchainlen += chainlen;
    }

    /* Generate human readable stats. */
    l += snprintf(buf+l,bufsize-l,
        "Hash table %d stats (%s):\n"
        " table size: %ld\n"
        " number of elements: %ld\n"
        " different slots: %ld\n"
        " max chain length: %ld\n"
        " avg chain length (counted): %.02f\n"
        " avg chain length (computed): %.02f\n"
        " Chain length distribution:\n",
        tableid, (tableid == 0) ? "main hash table" : "rehashing target",
        ht->size, ht->used, slots, maxchainlen,
        (float)totchainlen/slots, (float)ht->used/slots);

    for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
        if (clvector[i] == 0) continue;
        if (l >= bufsize) break;
        l += snprintf(buf+l,bufsize-l,
            "   %s%ld: %ld (%.02f%%)\n",
            (i == DICT_STATS_VECTLEN-1)?">= ":"",
            i, clvector[i], ((float)clvector[i]/ht->size)*100);
    }

    /* Unlike snprintf(), teturn the number of characters actually written. */
    if (bufsize) buf[bufsize-1] = '\0';
    return strlen(buf);
}

void dictGetStats(char *buf, size_t bufsize, dict *d) {
    size_t l;
    char *orig_buf = buf;
    size_t orig_bufsize = bufsize;

    l = _dictGetStatsHt(buf,bufsize,&d->ht[0],0);
    buf += l;
    bufsize -= l;
    if (dictIsRehashing(d) && bufsize > 0) {
        _dictGetStatsHt(buf,bufsize,&d->ht[1],1);
    }
    /* Make sure there is a NULL term at the end. */
    if (orig_bufsize) orig_buf[orig_bufsize-1] = '\0';
}

/* ------------------------------- Benchmark ---------------------------------*/

#ifdef DICT_BENCHMARK_MAIN

#include "sds.h"

unsigned int hashCallback(const void *key) {
    return dictGenHashFunction((unsigned char*)key, sdslen((char*)key));
}

int compareCallback(void *privdata, const void *key1, const void *key2) {
    int l1,l2;
    DICT_NOTUSED(privdata);

    l1 = sdslen((sds)key1);
    l2 = sdslen((sds)key2);
    if (l1 != l2) return 0;
    return memcmp(key1, key2, l1) == 0;
}

void freeCallback(void *privdata, void *val) {
    DICT_NOTUSED(privdata);

    sdsfree(val);
}

dictType BenchmarkDictType = {
    hashCallback,
    NULL,
    NULL,
    compareCallback,
    freeCallback,
    NULL
};

#define start_benchmark() start = timeInMilliseconds()
#define end_benchmark(msg) do { \
    elapsed = timeInMilliseconds()-start; \
    printf(msg ": %ld items in %lld ms\n", count, elapsed); \
} while(0);

/* dict-benchmark [count] */
int main(int argc, char **argv) {
    long j;
    long long start, elapsed;
    dict *dict = dictCreate(&BenchmarkDictType,NULL);
    long count = 0;

    if (argc == 2) {
        count = strtol(argv[1],NULL,10);
    } else {
        count = 5000000;
    }

    start_benchmark();
    for (j = 0; j < count; j++) {
        int retval = dictAdd(dict,sdsfromlonglong(j),(void*)j);
        assert(retval == DICT_OK);
    }
    end_benchmark("Inserting");
    assert((long)dictSize(dict) == count);

/* --- */
if (0) {
    sds key = sdsfromlonglong(1);
    dictFind(dict,key);
    dictFind(dict,key);
    dictFind(dict,key);
    sdsfree(key);

    key = sdsfromlonglong(82);
    dictFind(dict,key);
    dictFind(dict,key);
    dictFind(dict,key);
    exit(1);
}
/* --- */

    /* Wait for rehashing. */
    while (dictIsRehashing(dict)) {
        dictRehashMilliseconds(dict,100);
    }

    start_benchmark();
    for (j = 0; j < count; j++) {
        sds key = sdsfromlonglong(j);
        dictEntry *de = dictFind(dict,key);
        assert(de != NULL);
        sdsfree(key);
    }
    end_benchmark("Linear access of existing elements");

    start_benchmark();
    for (j = 0; j < count; j++) {
        sds key = sdsfromlonglong(j);
        dictEntry *de = dictFind(dict,key);
        assert(de != NULL);
        sdsfree(key);
    }
    end_benchmark("Linear access of existing elements (2nd round)");

    start_benchmark();
    for (j = 0; j < count; j++) {
        sds key = sdsfromlonglong(rand() % count);
        dictEntry *de = dictFind(dict,key);
        assert(de != NULL);
        sdsfree(key);
    }
    end_benchmark("Random access of existing elements");

    start_benchmark();
    for (j = 0; j < count; j++) {
        sds key = sdsfromlonglong(rand() % count);
        key[0] = 'X';
        dictEntry *de = dictFind(dict,key);
        assert(de == NULL);
        sdsfree(key);
    }
    end_benchmark("Accessing missing");

    start_benchmark();
    for (j = 0; j < count; j++) {
        sds key = sdsfromlonglong(j);
        int retval = dictDelete(dict,key);
        assert(retval == DICT_OK);
        key[0] += 17; /* Change first number to letter. */
        retval = dictAdd(dict,key,(void*)j);
        assert(retval == DICT_OK);
    }
    end_benchmark("Removing and adding");
}
#endif