summaryrefslogtreecommitdiff
path: root/src/modules/API.md
blob: 8659f7951a6c422fbd86e271d053809c20eb4ffd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
# Modules API reference

## `RM_Alloc`

    void *RM_Alloc(size_t bytes);

Use like malloc(). Memory allocated with this function is reported in
Redis INFO memory, used for keys eviction according to maxmemory settings
and in general is taken into account as memory allocated by Redis.
You should avoid using malloc().

## `RM_Calloc`

    void *RM_Calloc(size_t nmemb, size_t size);

Use like calloc(). Memory allocated with this function is reported in
Redis INFO memory, used for keys eviction according to maxmemory settings
and in general is taken into account as memory allocated by Redis.
You should avoid using calloc() directly.

## `RM_Realloc`

    void* RM_Realloc(void *ptr, size_t bytes);

Use like realloc() for memory obtained with `RedisModule_Alloc()`.

## `RM_Free`

    void RM_Free(void *ptr);

Use like free() for memory obtained by `RedisModule_Alloc()` and
`RedisModule_Realloc()`. However you should never try to free with
`RedisModule_Free()` memory allocated with malloc() inside your module.

## `RM_Strdup`

    char *RM_Strdup(const char *str);

Like strdup() but returns memory allocated with `RedisModule_Alloc()`.

## `RM_PoolAlloc`

    void *RM_PoolAlloc(RedisModuleCtx *ctx, size_t bytes);

Return heap allocated memory that will be freed automatically when the
module callback function returns. Mostly suitable for small allocations
that are short living and must be released when the callback returns
anyway. The returned memory is aligned to the architecture word size
if at least word size bytes are requested, otherwise it is just
aligned to the next power of two, so for example a 3 bytes request is
4 bytes aligned while a 2 bytes request is 2 bytes aligned.

There is no realloc style function since when this is needed to use the
pool allocator is not a good idea.

The function returns NULL if `bytes` is 0.

## `RM_GetApi`

    int RM_GetApi(const char *funcname, void **targetPtrPtr);

Lookup the requested module API and store the function pointer into the
target pointer. The function returns `REDISMODULE_ERR` if there is no such
named API, otherwise `REDISMODULE_OK`.

This function is not meant to be used by modules developer, it is only
used implicitly by including redismodule.h.

## `RM_IsKeysPositionRequest`

    int RM_IsKeysPositionRequest(RedisModuleCtx *ctx);

Return non-zero if a module command, that was declared with the
flag "getkeys-api", is called in a special way to get the keys positions
and not to get executed. Otherwise zero is returned.

## `RM_KeyAtPos`

    void RM_KeyAtPos(RedisModuleCtx *ctx, int pos);

When a module command is called in order to obtain the position of
keys, since it was flagged as "getkeys-api" during the registration,
the command implementation checks for this special call using the
`RedisModule_IsKeysPositionRequest()` API and uses this function in
order to report keys, like in the following example:

 if (`RedisModule_IsKeysPositionRequest(ctx))` {
     `RedisModule_KeyAtPos(ctx`,1);
     `RedisModule_KeyAtPos(ctx`,2);
 }

 Note: in the example below the get keys API would not be needed since
 keys are at fixed positions. This interface is only used for commands
 with a more complex structure.

## `RM_CreateCommand`

    int RM_CreateCommand(RedisModuleCtx *ctx, const char *name, RedisModuleCmdFunc cmdfunc, const char *strflags, int firstkey, int lastkey, int keystep);

Register a new command in the Redis server, that will be handled by
calling the function pointer 'func' using the RedisModule calling
convention. The function returns `REDISMODULE_ERR` if the specified command
name is already busy or a set of invalid flags were passed, otherwise
`REDISMODULE_OK` is returned and the new command is registered.

This function must be called during the initialization of the module
inside the `RedisModule_OnLoad()` function. Calling this function outside
of the initialization function is not defined.

The command function type is the following:

     int MyCommand_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc);

And is supposed to always return `REDISMODULE_OK`.

The set of flags 'strflags' specify the behavior of the command, and should
be passed as a C string compoesd of space separated words, like for
example "write deny-oom". The set of flags are:

* **"write"**:     The command may modify the data set (it may also read
                   from it).
* **"readonly"**:  The command returns data from keys but never writes.
* **"admin"**:     The command is an administrative command (may change
                   replication or perform similar tasks).
* **"deny-oom"**:  The command may use additional memory and should be
                   denied during out of memory conditions.
* **"deny-script"**:   Don't allow this command in Lua scripts.
* **"allow-loading"**: Allow this command while the server is loading data.
                       Only commands not interacting with the data set
                       should be allowed to run in this mode. If not sure
                       don't use this flag.
* **"pubsub"**:    The command publishes things on Pub/Sub channels.
* **"random"**:    The command may have different outputs even starting
                   from the same input arguments and key values.
* **"allow-stale"**: The command is allowed to run on slaves that don't
                     serve stale data. Don't use if you don't know what
                     this means.
* **"no-monitor"**: Don't propoagate the command on monitor. Use this if
                    the command has sensible data among the arguments.
* **"fast"**:      The command time complexity is not greater
                   than O(log(N)) where N is the size of the collection or
                   anything else representing the normal scalability
                   issue with the command.
* **"getkeys-api"**: The command implements the interface to return
                     the arguments that are keys. Used when start/stop/step
                     is not enough because of the command syntax.
* **"no-cluster"**: The command should not register in Redis Cluster
                    since is not designed to work with it because, for
                    example, is unable to report the position of the
                    keys, programmatically creates key names, or any
                    other reason.

## `RM_SetModuleAttribs`

    void RM_SetModuleAttribs(RedisModuleCtx *ctx, const char *name, int ver, int apiver);

Called by `RM_Init()` to setup the `ctx->module` structure.

This is an internal function, Redis modules developers don't need
to use it.

## `RM_Milliseconds`

    long long RM_Milliseconds(void);

Return the current UNIX time in milliseconds.

## `RM_AutoMemory`

    void RM_AutoMemory(RedisModuleCtx *ctx);

Enable automatic memory management. See API.md for more information.

The function must be called as the first function of a command implementation
that wants to use automatic memory.

## `RM_CreateString`

    RedisModuleString *RM_CreateString(RedisModuleCtx *ctx, const char *ptr, size_t len);

Create a new module string object. The returned string must be freed
with `RedisModule_FreeString()`, unless automatic memory is enabled.

The string is created by copying the `len` bytes starting
at `ptr`. No reference is retained to the passed buffer.

## `RM_CreateStringPrintf`

    RedisModuleString *RM_CreateStringPrintf(RedisModuleCtx *ctx, const char *fmt, ...);

Create a new module string object from a printf format and arguments.
The returned string must be freed with `RedisModule_FreeString()`, unless
automatic memory is enabled.

The string is created using the sds formatter function sdscatvprintf().

## `RM_CreateStringFromLongLong`

    RedisModuleString *RM_CreateStringFromLongLong(RedisModuleCtx *ctx, long long ll);

Like `RedisModule_CreatString()`, but creates a string starting from a long long
integer instead of taking a buffer and its length.

The returned string must be released with `RedisModule_FreeString()` or by
enabling automatic memory management.

## `RM_CreateStringFromString`

    RedisModuleString *RM_CreateStringFromString(RedisModuleCtx *ctx, const RedisModuleString *str);

Like `RedisModule_CreatString()`, but creates a string starting from another
RedisModuleString.

The returned string must be released with `RedisModule_FreeString()` or by
enabling automatic memory management.

## `RM_FreeString`

    void RM_FreeString(RedisModuleCtx *ctx, RedisModuleString *str);

Free a module string object obtained with one of the Redis modules API calls
that return new string objects.

It is possible to call this function even when automatic memory management
is enabled. In that case the string will be released ASAP and removed
from the pool of string to release at the end.

## `RM_RetainString`

    void RM_RetainString(RedisModuleCtx *ctx, RedisModuleString *str);

Every call to this function, will make the string 'str' requiring
an additional call to `RedisModule_FreeString()` in order to really
free the string. Note that the automatic freeing of the string obtained
enabling modules automatic memory management counts for one
`RedisModule_FreeString()` call (it is just executed automatically).

Normally you want to call this function when, at the same time
the following conditions are true:

1) You have automatic memory management enabled.
2) You want to create string objects.
3) Those string objects you create need to live *after* the callback
   function(for example a command implementation) creating them returns.

Usually you want this in order to store the created string object
into your own data structure, for example when implementing a new data
type.

Note that when memory management is turned off, you don't need
any call to RetainString() since creating a string will always result
into a string that lives after the callback function returns, if
no FreeString() call is performed.

## `RM_StringPtrLen`

    const char *RM_StringPtrLen(const RedisModuleString *str, size_t *len);

Given a string module object, this function returns the string pointer
and length of the string. The returned pointer and length should only
be used for read only accesses and never modified.

## `RM_StringToLongLong`

    int RM_StringToLongLong(const RedisModuleString *str, long long *ll);

Convert the string into a long long integer, storing it at `*ll`.
Returns `REDISMODULE_OK` on success. If the string can't be parsed
as a valid, strict long long (no spaces before/after), `REDISMODULE_ERR`
is returned.

## `RM_StringToDouble`

    int RM_StringToDouble(const RedisModuleString *str, double *d);

Convert the string into a double, storing it at `*d`.
Returns `REDISMODULE_OK` on success or `REDISMODULE_ERR` if the string is
not a valid string representation of a double value.

## `RM_StringCompare`

    int RM_StringCompare(RedisModuleString *a, RedisModuleString *b);

Compare two string objects, returning -1, 0 or 1 respectively if
a < b, a == b, a > b. Strings are compared byte by byte as two
binary blobs without any encoding care / collation attempt.

## `RM_StringAppendBuffer`

    int RM_StringAppendBuffer(RedisModuleCtx *ctx, RedisModuleString *str, const char *buf, size_t len);

Append the specified buffere to the string 'str'. The string must be a
string created by the user that is referenced only a single time, otherwise
`REDISMODULE_ERR` is returend and the operation is not performed.

## `RM_WrongArity`

    int RM_WrongArity(RedisModuleCtx *ctx);

Send an error about the number of arguments given to the command,
citing the command name in the error message.

Example:

 if (argc != 3) return `RedisModule_WrongArity(ctx)`;

## `RM_ReplyWithLongLong`

    int RM_ReplyWithLongLong(RedisModuleCtx *ctx, long long ll);

Send an integer reply to the client, with the specified long long value.
The function always returns `REDISMODULE_OK`.

## `RM_ReplyWithError`

    int RM_ReplyWithError(RedisModuleCtx *ctx, const char *err);

Reply with the error 'err'.

Note that 'err' must contain all the error, including
the initial error code. The function only provides the initial "-", so
the usage is, for example:

 `RM_ReplyWithError(ctx`,"ERR Wrong Type");

and not just:

 `RM_ReplyWithError(ctx`,"Wrong Type");

The function always returns `REDISMODULE_OK`.

## `RM_ReplyWithSimpleString`

    int RM_ReplyWithSimpleString(RedisModuleCtx *ctx, const char *msg);

Reply with a simple string (+... \r\n in RESP protocol). This replies
are suitable only when sending a small non-binary string with small
overhead, like "OK" or similar replies.

The function always returns `REDISMODULE_OK`.

## `RM_ReplyWithArray`

    int RM_ReplyWithArray(RedisModuleCtx *ctx, long len);

Reply with an array type of 'len' elements. However 'len' other calls
to `ReplyWith*` style functions must follow in order to emit the elements
of the array.

When producing arrays with a number of element that is not known beforehand
the function can be called with the special count
`REDISMODULE_POSTPONED_ARRAY_LEN`, and the actual number of elements can be
later set with `RedisModule_ReplySetArrayLength()` (which will set the
latest "open" count if there are multiple ones).

The function always returns `REDISMODULE_OK`.

## `RM_ReplySetArrayLength`

    void RM_ReplySetArrayLength(RedisModuleCtx *ctx, long len);

When `RedisModule_ReplyWithArray()` is used with the argument
`REDISMODULE_POSTPONED_ARRAY_LEN`, because we don't know beforehand the number
of items we are going to output as elements of the array, this function
will take care to set the array length.

Since it is possible to have multiple array replies pending with unknown
length, this function guarantees to always set the latest array length
that was created in a postponed way.

For example in order to output an array like [1,[10,20,30]] we
could write:

 `RedisModule_ReplyWithArray(ctx`,`REDISMODULE_POSTPONED_ARRAY_LEN`);
 `RedisModule_ReplyWithLongLong(ctx`,1);
 `RedisModule_ReplyWithArray(ctx`,`REDISMODULE_POSTPONED_ARRAY_LEN`);
 `RedisModule_ReplyWithLongLong(ctx`,10);
 `RedisModule_ReplyWithLongLong(ctx`,20);
 `RedisModule_ReplyWithLongLong(ctx`,30);
 `RedisModule_ReplySetArrayLength(ctx`,3); // Set len of 10,20,30 array.
 `RedisModule_ReplySetArrayLength(ctx`,2); // Set len of top array

Note that in the above example there is no reason to postpone the array
length, since we produce a fixed number of elements, but in the practice
the code may use an interator or other ways of creating the output so
that is not easy to calculate in advance the number of elements.

## `RM_ReplyWithStringBuffer`

    int RM_ReplyWithStringBuffer(RedisModuleCtx *ctx, const char *buf, size_t len);

Reply with a bulk string, taking in input a C buffer pointer and length.

The function always returns `REDISMODULE_OK`.

## `RM_ReplyWithString`

    int RM_ReplyWithString(RedisModuleCtx *ctx, RedisModuleString *str);

Reply with a bulk string, taking in input a RedisModuleString object.

The function always returns `REDISMODULE_OK`.

## `RM_ReplyWithNull`

    int RM_ReplyWithNull(RedisModuleCtx *ctx);

Reply to the client with a NULL. In the RESP protocol a NULL is encoded
as the string "$-1\r\n".

The function always returns `REDISMODULE_OK`.

## `RM_ReplyWithCallReply`

    int RM_ReplyWithCallReply(RedisModuleCtx *ctx, RedisModuleCallReply *reply);

Reply exactly what a Redis command returned us with `RedisModule_Call()`.
This function is useful when we use `RedisModule_Call()` in order to
execute some command, as we want to reply to the client exactly the
same reply we obtained by the command.

The function always returns `REDISMODULE_OK`.

## `RM_ReplyWithDouble`

    int RM_ReplyWithDouble(RedisModuleCtx *ctx, double d);

Send a string reply obtained converting the double 'd' into a bulk string.
This function is basically equivalent to converting a double into
a string into a C buffer, and then calling the function
`RedisModule_ReplyWithStringBuffer()` with the buffer and length.

The function always returns `REDISMODULE_OK`.

## `RM_Replicate`

    int RM_Replicate(RedisModuleCtx *ctx, const char *cmdname, const char *fmt, ...);

Replicate the specified command and arguments to slaves and AOF, as effect
of execution of the calling command implementation.

The replicated commands are always wrapped into the MULTI/EXEC that
contains all the commands replicated in a given module command
execution. However the commands replicated with `RedisModule_Call()`
are the first items, the ones replicated with `RedisModule_Replicate()`
will all follow before the EXEC.

Modules should try to use one interface or the other.

This command follows exactly the same interface of `RedisModule_Call()`,
so a set of format specifiers must be passed, followed by arguments
matching the provided format specifiers.

Please refer to `RedisModule_Call()` for more information.

The command returns `REDISMODULE_ERR` if the format specifiers are invalid
or the command name does not belong to a known command.

## `RM_ReplicateVerbatim`

    int RM_ReplicateVerbatim(RedisModuleCtx *ctx);

This function will replicate the command exactly as it was invoked
by the client. Note that this function will not wrap the command into
a MULTI/EXEC stanza, so it should not be mixed with other replication
commands.

Basically this form of replication is useful when you want to propagate
the command to the slaves and AOF file exactly as it was called, since
the command can just be re-executed to deterministically re-create the
new state starting from the old one.

The function always returns `REDISMODULE_OK`.

## `RM_GetClientId`

    unsigned long long RM_GetClientId(RedisModuleCtx *ctx);

Return the ID of the current client calling the currently active module
command. The returned ID has a few guarantees:

1. The ID is different for each different client, so if the same client
   executes a module command multiple times, it can be recognized as
   having the same ID, otherwise the ID will be different.
2. The ID increases monotonically. Clients connecting to the server later
   are guaranteed to get IDs greater than any past ID previously seen.

Valid IDs are from 1 to 2^64-1. If 0 is returned it means there is no way
to fetch the ID in the context the function was currently called.

## `RM_GetSelectedDb`

    int RM_GetSelectedDb(RedisModuleCtx *ctx);

Return the currently selected DB.

## `RM_SelectDb`

    int RM_SelectDb(RedisModuleCtx *ctx, int newid);

Change the currently selected DB. Returns an error if the id
is out of range.

Note that the client will retain the currently selected DB even after
the Redis command implemented by the module calling this function
returns.

If the module command wishes to change something in a different DB and
returns back to the original one, it should call `RedisModule_GetSelectedDb()`
before in order to restore the old DB number before returning.

## `RM_OpenKey`

    void *RM_OpenKey(RedisModuleCtx *ctx, robj *keyname, int mode);

Return an handle representing a Redis key, so that it is possible
to call other APIs with the key handle as argument to perform
operations on the key.

The return value is the handle repesenting the key, that must be
closed with `RM_CloseKey()`.

If the key does not exist and WRITE mode is requested, the handle
is still returned, since it is possible to perform operations on
a yet not existing key (that will be created, for example, after
a list push operation). If the mode is just READ instead, and the
key does not exist, NULL is returned. However it is still safe to
call `RedisModule_CloseKey()` and `RedisModule_KeyType()` on a NULL
value.

## `RM_CloseKey`

    void RM_CloseKey(RedisModuleKey *key);

Close a key handle.

## `RM_KeyType`

    int RM_KeyType(RedisModuleKey *key);

Return the type of the key. If the key pointer is NULL then
`REDISMODULE_KEYTYPE_EMPTY` is returned.

## `RM_ValueLength`

    size_t RM_ValueLength(RedisModuleKey *key);

Return the length of the value associated with the key.
For strings this is the length of the string. For all the other types
is the number of elements (just counting keys for hashes).

If the key pointer is NULL or the key is empty, zero is returned.

## `RM_DeleteKey`

    int RM_DeleteKey(RedisModuleKey *key);

If the key is open for writing, remove it, and setup the key to
accept new writes as an empty key (that will be created on demand).
On success `REDISMODULE_OK` is returned. If the key is not open for
writing `REDISMODULE_ERR` is returned.

## `RM_GetExpire`

    mstime_t RM_GetExpire(RedisModuleKey *key);

Return the key expire value, as milliseconds of remaining TTL.
If no TTL is associated with the key or if the key is empty,
`REDISMODULE_NO_EXPIRE` is returned.

## `RM_SetExpire`

    int RM_SetExpire(RedisModuleKey *key, mstime_t expire);

Set a new expire for the key. If the special expire
`REDISMODULE_NO_EXPIRE` is set, the expire is cancelled if there was
one (the same as the PERSIST command).

Note that the expire must be provided as a positive integer representing
the number of milliseconds of TTL the key should have.

The function returns `REDISMODULE_OK` on success or `REDISMODULE_ERR` if
the key was not open for writing or is an empty key.

## `RM_StringSet`

    int RM_StringSet(RedisModuleKey *key, RedisModuleString *str);

If the key is open for writing, set the specified string 'str' as the
value of the key, deleting the old value if any.
On success `REDISMODULE_OK` is returned. If the key is not open for
writing or there is an active iterator, `REDISMODULE_ERR` is returned.

## `RM_StringDMA`

    char *RM_StringDMA(RedisModuleKey *key, size_t *len, int mode);

Prepare the key associated string value for DMA access, and returns
a pointer and size (by reference), that the user can use to read or
modify the string in-place accessing it directly via pointer.

The 'mode' is composed by bitwise OR-ing the following flags:

`REDISMODULE_READ` -- Read access
`REDISMODULE_WRITE` -- Write access

If the DMA is not requested for writing, the pointer returned should
only be accessed in a read-only fashion.

On error (wrong type) NULL is returned.

DMA access rules:

1. No other key writing function should be called since the moment
the pointer is obtained, for all the time we want to use DMA access
to read or modify the string.

2. Each time `RM_StringTruncate()` is called, to continue with the DMA
access, `RM_StringDMA()` should be called again to re-obtain
a new pointer and length.

3. If the returned pointer is not NULL, but the length is zero, no
byte can be touched (the string is empty, or the key itself is empty)
so a `RM_StringTruncate()` call should be used if there is to enlarge
the string, and later call StringDMA() again to get the pointer.

## `RM_StringTruncate`

    int RM_StringTruncate(RedisModuleKey *key, size_t newlen);

If the string is open for writing and is of string type, resize it, padding
with zero bytes if the new length is greater than the old one.

After this call, `RM_StringDMA()` must be called again to continue
DMA access with the new pointer.

The function returns `REDISMODULE_OK` on success, and `REDISMODULE_ERR` on
error, that is, the key is not open for writing, is not a string
or resizing for more than 512 MB is requested.

If the key is empty, a string key is created with the new string value
unless the new length value requested is zero.

## `RM_ListPush`

    int RM_ListPush(RedisModuleKey *key, int where, RedisModuleString *ele);

Push an element into a list, on head or tail depending on 'where' argumnet.
If the key pointer is about an empty key opened for writing, the key
is created. On error (key opened for read-only operations or of the wrong
type) `REDISMODULE_ERR` is returned, otherwise `REDISMODULE_OK` is returned.

## `RM_ListPop`

    RedisModuleString *RM_ListPop(RedisModuleKey *key, int where);

Pop an element from the list, and returns it as a module string object
that the user should be free with `RM_FreeString()` or by enabling
automatic memory. 'where' specifies if the element should be popped from
head or tail. The command returns NULL if:
1) The list is empty.
2) The key was not open for writing.
3) The key is not a list.

## `RM_ZsetAddFlagsToCoreFlags`

    int RM_ZsetAddFlagsToCoreFlags(int flags);

Conversion from/to public flags of the Modules API and our private flags,
so that we have everything decoupled.

## `RM_ZsetAddFlagsFromCoreFlags`

    int RM_ZsetAddFlagsFromCoreFlags(int flags);

See previous function comment.

## `RM_ZsetAdd`

    int RM_ZsetAdd(RedisModuleKey *key, double score, RedisModuleString *ele, int *flagsptr);

Add a new element into a sorted set, with the specified 'score'.
If the element already exists, the score is updated.

A new sorted set is created at value if the key is an empty open key
setup for writing.

Additional flags can be passed to the function via a pointer, the flags
are both used to receive input and to communicate state when the function
returns. 'flagsptr' can be NULL if no special flags are used.

The input flags are:

`REDISMODULE_ZADD_XX`: Element must already exist. Do nothing otherwise.
`REDISMODULE_ZADD_NX`: Element must not exist. Do nothing otherwise.

The output flags are:

`REDISMODULE_ZADD_ADDED`: The new element was added to the sorted set.
`REDISMODULE_ZADD_UPDATED`: The score of the element was updated.
`REDISMODULE_ZADD_NOP`: No operation was performed because XX or NX flags.

On success the function returns `REDISMODULE_OK`. On the following errors
`REDISMODULE_ERR` is returned:

* The key was not opened for writing.
* The key is of the wrong type.
* 'score' double value is not a number (NaN).

## `RM_ZsetIncrby`

    int RM_ZsetIncrby(RedisModuleKey *key, double score, RedisModuleString *ele, int *flagsptr, double *newscore);

This function works exactly like `RM_ZsetAdd()`, but instead of setting
a new score, the score of the existing element is incremented, or if the
element does not already exist, it is added assuming the old score was
zero.

The input and output flags, and the return value, have the same exact
meaning, with the only difference that this function will return
`REDISMODULE_ERR` even when 'score' is a valid double number, but adding it
to the existing score resuts into a NaN (not a number) condition.

This function has an additional field 'newscore', if not NULL is filled
with the new score of the element after the increment, if no error
is returned.

## `RM_ZsetRem`

    int RM_ZsetRem(RedisModuleKey *key, RedisModuleString *ele, int *deleted);

Remove the specified element from the sorted set.
The function returns `REDISMODULE_OK` on success, and `REDISMODULE_ERR`
on one of the following conditions:

* The key was not opened for writing.
* The key is of the wrong type.

The return value does NOT indicate the fact the element was really
removed (since it existed) or not, just if the function was executed
with success.

In order to know if the element was removed, the additional argument
'deleted' must be passed, that populates the integer by reference
setting it to 1 or 0 depending on the outcome of the operation.
The 'deleted' argument can be NULL if the caller is not interested
to know if the element was really removed.

Empty keys will be handled correctly by doing nothing.

## `RM_ZsetScore`

    int RM_ZsetScore(RedisModuleKey *key, RedisModuleString *ele, double *score);

On success retrieve the double score associated at the sorted set element
'ele' and returns `REDISMODULE_OK`. Otherwise `REDISMODULE_ERR` is returned
to signal one of the following conditions:

* There is no such element 'ele' in the sorted set.
* The key is not a sorted set.
* The key is an open empty key.

## `RM_ZsetRangeStop`

    void RM_ZsetRangeStop(RedisModuleKey *key);

Stop a sorted set iteration.

## `RM_ZsetRangeEndReached`

    int RM_ZsetRangeEndReached(RedisModuleKey *key);

Return the "End of range" flag value to signal the end of the iteration.

## `RM_ZsetFirstInScoreRange`

    int RM_ZsetFirstInScoreRange(RedisModuleKey *key, double min, double max, int minex, int maxex);

Setup a sorted set iterator seeking the first element in the specified
range. Returns `REDISMODULE_OK` if the iterator was correctly initialized
otherwise `REDISMODULE_ERR` is returned in the following conditions:

1. The value stored at key is not a sorted set or the key is empty.

The range is specified according to the two double values 'min' and 'max'.
Both can be infinite using the following two macros:

`REDISMODULE_POSITIVE_INFINITE` for positive infinite value
`REDISMODULE_NEGATIVE_INFINITE` for negative infinite value

'minex' and 'maxex' parameters, if true, respectively setup a range
where the min and max value are exclusive (not included) instead of
inclusive.

## `RM_ZsetLastInScoreRange`

    int RM_ZsetLastInScoreRange(RedisModuleKey *key, double min, double max, int minex, int maxex);

Exactly like `RedisModule_ZsetFirstInScoreRange()` but the last element of
the range is selected for the start of the iteration instead.

## `RM_ZsetFirstInLexRange`

    int RM_ZsetFirstInLexRange(RedisModuleKey *key, RedisModuleString *min, RedisModuleString *max);

Setup a sorted set iterator seeking the first element in the specified
lexicographical range. Returns `REDISMODULE_OK` if the iterator was correctly
initialized otherwise `REDISMODULE_ERR` is returned in the
following conditions:

1. The value stored at key is not a sorted set or the key is empty.
2. The lexicographical range 'min' and 'max' format is invalid.

'min' and 'max' should be provided as two RedisModuleString objects
in the same format as the parameters passed to the ZRANGEBYLEX command.
The function does not take ownership of the objects, so they can be released
ASAP after the iterator is setup.

## `RM_ZsetLastInLexRange`

    int RM_ZsetLastInLexRange(RedisModuleKey *key, RedisModuleString *min, RedisModuleString *max);

Exactly like `RedisModule_ZsetFirstInLexRange()` but the last element of
the range is selected for the start of the iteration instead.

## `RM_ZsetRangeCurrentElement`

    RedisModuleString *RM_ZsetRangeCurrentElement(RedisModuleKey *key, double *score);

Return the current sorted set element of an active sorted set iterator
or NULL if the range specified in the iterator does not include any
element.

## `RM_ZsetRangeNext`

    int RM_ZsetRangeNext(RedisModuleKey *key);

Go to the next element of the sorted set iterator. Returns 1 if there was
a next element, 0 if we are already at the latest element or the range
does not include any item at all.

## `RM_ZsetRangePrev`

    int RM_ZsetRangePrev(RedisModuleKey *key);

Go to the previous element of the sorted set iterator. Returns 1 if there was
a previous element, 0 if we are already at the first element or the range
does not include any item at all.

## `RM_HashSet`

    int RM_HashSet(RedisModuleKey *key, int flags, ...);

Set the field of the specified hash field to the specified value.
If the key is an empty key open for writing, it is created with an empty
hash value, in order to set the specified field.

The function is variadic and the user must specify pairs of field
names and values, both as RedisModuleString pointers (unless the
CFIELD option is set, see later).

Example to set the hash argv[1] to the value argv[2]:

 `RedisModule_HashSet(key`,`REDISMODULE_HASH_NONE`,argv[1],argv[2],NULL);

The function can also be used in order to delete fields (if they exist)
by setting them to the specified value of `REDISMODULE_HASH_DELETE`:

 `RedisModule_HashSet(key`,`REDISMODULE_HASH_NONE`,argv[1],
                     `REDISMODULE_HASH_DELETE`,NULL);

The behavior of the command changes with the specified flags, that can be
set to `REDISMODULE_HASH_NONE` if no special behavior is needed.

`REDISMODULE_HASH_NX`: The operation is performed only if the field was not
                    already existing in the hash.
`REDISMODULE_HASH_XX`: The operation is performed only if the field was
                    already existing, so that a new value could be
                    associated to an existing filed, but no new fields
                    are created.
`REDISMODULE_HASH_CFIELDS`: The field names passed are null terminated C
                         strings instead of RedisModuleString objects.

Unless NX is specified, the command overwrites the old field value with
the new one.

When using `REDISMODULE_HASH_CFIELDS`, field names are reported using
normal C strings, so for example to delete the field "foo" the following
code can be used:

 `RedisModule_HashSet(key`,`REDISMODULE_HASH_CFIELDS`,"foo",
                     `REDISMODULE_HASH_DELETE`,NULL);

Return value:

The number of fields updated (that may be less than the number of fields
specified because of the XX or NX options).

In the following case the return value is always zero:

* The key was not open for writing.
* The key was associated with a non Hash value.

## `RM_HashGet`

    int RM_HashGet(RedisModuleKey *key, int flags, ...);

Get fields from an hash value. This function is called using a variable
number of arguments, alternating a field name (as a StringRedisModule
pointer) with a pointer to a StringRedisModule pointer, that is set to the
value of the field if the field exist, or NULL if the field did not exist.
At the end of the field/value-ptr pairs, NULL must be specified as last
argument to signal the end of the arguments in the variadic function.

This is an example usage:

     RedisModuleString *first, *second;
     `RedisModule_HashGet(mykey`,`REDISMODULE_HASH_NONE`,argv[1],&first,
                     argv[2],&second,NULL);

As with `RedisModule_HashSet()` the behavior of the command can be specified
passing flags different than `REDISMODULE_HASH_NONE`:

`REDISMODULE_HASH_CFIELD`: field names as null terminated C strings.

`REDISMODULE_HASH_EXISTS`: instead of setting the value of the field
expecting a RedisModuleString pointer to pointer, the function just
reports if the field esists or not and expects an integer pointer
as the second element of each pair.

Example of `REDISMODULE_HASH_CFIELD`:

     RedisModuleString *username, *hashedpass;
     `RedisModule_HashGet(mykey`,"username",&username,"hp",&hashedpass, NULL);

Example of `REDISMODULE_HASH_EXISTS`:

     int exists;
     `RedisModule_HashGet(mykey`,argv[1],&exists,NULL);

The function returns `REDISMODULE_OK` on success and `REDISMODULE_ERR` if
the key is not an hash value.

Memory management:

The returned RedisModuleString objects should be released with
`RedisModule_FreeString()`, or by enabling automatic memory management.

## `RM_FreeCallReply_Rec`

    void RM_FreeCallReply_Rec(RedisModuleCallReply *reply, int freenested);

Free a Call reply and all the nested replies it contains if it's an
array.

## `RM_FreeCallReply`

    void RM_FreeCallReply(RedisModuleCallReply *reply);

Wrapper for the recursive free reply function. This is needed in order
to have the first level function to return on nested replies, but only
if called by the module API.

## `RM_CallReplyType`

    int RM_CallReplyType(RedisModuleCallReply *reply);

Return the reply type.

## `RM_CallReplyLength`

    size_t RM_CallReplyLength(RedisModuleCallReply *reply);

Return the reply type length, where applicable.

## `RM_CallReplyArrayElement`

    RedisModuleCallReply *RM_CallReplyArrayElement(RedisModuleCallReply *reply, size_t idx);

Return the 'idx'-th nested call reply element of an array reply, or NULL
if the reply type is wrong or the index is out of range.

## `RM_CallReplyInteger`

    long long RM_CallReplyInteger(RedisModuleCallReply *reply);

Return the long long of an integer reply.

## `RM_CallReplyStringPtr`

    const char *RM_CallReplyStringPtr(RedisModuleCallReply *reply, size_t *len);

Return the pointer and length of a string or error reply.

## `RM_CreateStringFromCallReply`

    RedisModuleString *RM_CreateStringFromCallReply(RedisModuleCallReply *reply);

Return a new string object from a call reply of type string, error or
integer. Otherwise (wrong reply type) return NULL.

## `RM_Call`

    RedisModuleCallReply *RM_Call(RedisModuleCtx *ctx, const char *cmdname, const char *fmt, ...);

Exported API to call any Redis command from modules.
On success a RedisModuleCallReply object is returned, otherwise
NULL is returned and errno is set to the following values:

EINVAL: command non existing, wrong arity, wrong format specifier.
EPERM:  operation in Cluster instance with key in non local slot.

## `RM_CallReplyProto`

    const char *RM_CallReplyProto(RedisModuleCallReply *reply, size_t *len);

Return a pointer, and a length, to the protocol returned by the command
that returned the reply object.

## `RM_CreateDataType`

    moduleType *RM_CreateDataType(RedisModuleCtx *ctx, const char *name, int encver, void *typemethods_ptr);

Register a new data type exported by the module. The parameters are the
following. Please for in depth documentation check the modules API
documentation, especially the TYPES.md file.

* **name**: A 9 characters data type name that MUST be unique in the Redis
  Modules ecosystem. Be creative... and there will be no collisions. Use
  the charset A-Z a-z 9-0, plus the two "-_" characters. A good
  idea is to use, for example `<typename>-<vendor>`. For example
  "tree-AntZ" may mean "Tree data structure by @antirez". To use both
  lower case and upper case letters helps in order to prevent collisions.
* **encver**: Encoding version, which is, the version of the serialization
  that a module used in order to persist data. As long as the "name"
  matches, the RDB loading will be dispatched to the type callbacks
  whatever 'encver' is used, however the module can understand if
  the encoding it must load are of an older version of the module.
  For example the module "tree-AntZ" initially used encver=0. Later
  after an upgrade, it started to serialize data in a different format
  and to register the type with encver=1. However this module may
  still load old data produced by an older version if the rdb_load
  callback is able to check the encver value and act accordingly.
  The encver must be a positive value between 0 and 1023.
* **typemethods_ptr** is a pointer to a RedisModuleTypeMethods structure
  that should be populated with the methods callbacks and structure
  version, like in the following example:

     RedisModuleTypeMethods tm = {
         .version = `REDISMODULE_TYPE_METHOD_VERSION`,
         .rdb_load = myType_RDBLoadCallBack,
         .rdb_save = myType_RDBSaveCallBack,
         .aof_rewrite = myType_AOFRewriteCallBack,
         .free = myType_FreeCallBack,

         // Optional fields
         .digest = myType_DigestCallBack,
         .mem_usage = myType_MemUsageCallBack,
     }

* **rdb_load**: A callback function pointer that loads data from RDB files.
* **rdb_save**: A callback function pointer that saves data to RDB files.
* **aof_rewrite**: A callback function pointer that rewrites data as commands.
* **digest**: A callback function pointer that is used for `DEBUG DIGEST`.
* **free**: A callback function pointer that can free a type value.

The **digest* and **mem_usage** methods should currently be omitted since
they are not yet implemented inside the Redis modules core.

Note: the module name "AAAAAAAAA" is reserved and produces an error, it
happens to be pretty lame as well.

If there is already a module registering a type with the same name,
and if the module name or encver is invalid, NULL is returned.
Otherwise the new type is registered into Redis, and a reference of
type RedisModuleType is returned: the caller of the function should store
this reference into a gobal variable to make future use of it in the
modules type API, since a single module may register multiple types.
Example code fragment:

     static RedisModuleType *BalancedTreeType;

     int `RedisModule_OnLoad(RedisModuleCtx` *ctx) {
         // some code here ...
         BalancedTreeType = `RM_CreateDataType(`...);
     }

## `RM_ModuleTypeSetValue`

    int RM_ModuleTypeSetValue(RedisModuleKey *key, moduleType *mt, void *value);

If the key is open for writing, set the specified module type object
as the value of the key, deleting the old value if any.
On success `REDISMODULE_OK` is returned. If the key is not open for
writing or there is an active iterator, `REDISMODULE_ERR` is returned.

## `RM_ModuleTypeGetType`

    moduleType *RM_ModuleTypeGetType(RedisModuleKey *key);

Assuming `RedisModule_KeyType()` returned `REDISMODULE_KEYTYPE_MODULE` on
the key, returns the moduel type pointer of the value stored at key.

If the key is NULL, is not associated with a module type, or is empty,
then NULL is returned instead.

## `RM_ModuleTypeGetValue`

    void *RM_ModuleTypeGetValue(RedisModuleKey *key);

Assuming `RedisModule_KeyType()` returned `REDISMODULE_KEYTYPE_MODULE` on
the key, returns the module type low-level value stored at key, as
it was set by the user via `RedisModule_ModuleTypeSet()`.

If the key is NULL, is not associated with a module type, or is empty,
then NULL is returned instead.

## `RM_SaveUnsigned`

    void RM_SaveUnsigned(RedisModuleIO *io, uint64_t value);

Save an unsigned 64 bit value into the RDB file. This function should only
be called in the context of the rdb_save method of modules implementing new
data types.

## `RM_LoadUnsigned`

    uint64_t RM_LoadUnsigned(RedisModuleIO *io);

Load an unsigned 64 bit value from the RDB file. This function should only
be called in the context of the rdb_load method of modules implementing
new data types.

## `RM_SaveSigned`

    void RM_SaveSigned(RedisModuleIO *io, int64_t value);

Like `RedisModule_SaveUnsigned()` but for signed 64 bit values.

## `RM_LoadSigned`

    int64_t RM_LoadSigned(RedisModuleIO *io);

Like `RedisModule_LoadUnsigned()` but for signed 64 bit values.

## `RM_SaveString`

    void RM_SaveString(RedisModuleIO *io, RedisModuleString *s);

In the context of the rdb_save method of a module type, saves a
string into the RDB file taking as input a RedisModuleString.

The string can be later loaded with `RedisModule_LoadString()` or
other Load family functions expecting a serialized string inside
the RDB file.

## `RM_SaveStringBuffer`

    void RM_SaveStringBuffer(RedisModuleIO *io, const char *str, size_t len);

Like `RedisModule_SaveString()` but takes a raw C pointer and length
as input.

## `RM_LoadString`

    RedisModuleString *RM_LoadString(RedisModuleIO *io);

In the context of the rdb_load method of a module data type, loads a string
from the RDB file, that was previously saved with `RedisModule_SaveString()`
functions family.

The returned string is a newly allocated RedisModuleString object, and
the user should at some point free it with a call to `RedisModule_FreeString()`.

If the data structure does not store strings as RedisModuleString objects,
the similar function `RedisModule_LoadStringBuffer()` could be used instead.

## `RM_LoadStringBuffer`

    char *RM_LoadStringBuffer(RedisModuleIO *io, size_t *lenptr);

Like `RedisModule_LoadString()` but returns an heap allocated string that
was allocated with `RedisModule_Alloc()`, and can be resized or freed with
`RedisModule_Realloc()` or `RedisModule_Free()`.

The size of the string is stored at '*lenptr' if not NULL.
The returned string is not automatically NULL termianted, it is loaded
exactly as it was stored inisde the RDB file.

## `RM_SaveDouble`

    void RM_SaveDouble(RedisModuleIO *io, double value);

In the context of the rdb_save method of a module data type, saves a double
value to the RDB file. The double can be a valid number, a NaN or infinity.
It is possible to load back the value with `RedisModule_LoadDouble()`.

## `RM_LoadDouble`

    double RM_LoadDouble(RedisModuleIO *io);

In the context of the rdb_save method of a module data type, loads back the
double value saved by `RedisModule_SaveDouble()`.

## `RM_SaveFloat`

    void RM_SaveFloat(RedisModuleIO *io, float value);

In the context of the rdb_save method of a module data type, saves a float 
value to the RDB file. The float can be a valid number, a NaN or infinity.
It is possible to load back the value with `RedisModule_LoadFloat()`.

## `RM_LoadFloat`

    float RM_LoadFloat(RedisModuleIO *io);

In the context of the rdb_save method of a module data type, loads back the
float value saved by `RedisModule_SaveFloat()`.

## `RM_EmitAOF`

    void RM_EmitAOF(RedisModuleIO *io, const char *cmdname, const char *fmt, ...);

Emits a command into the AOF during the AOF rewriting process. This function
is only called in the context of the aof_rewrite method of data types exported
by a module. The command works exactly like `RedisModule_Call()` in the way
the parameters are passed, but it does not return anything as the error
handling is performed by Redis itself.

## `RM_LogRaw`

    void RM_LogRaw(RedisModule *module, const char *levelstr, const char *fmt, va_list ap);

This is the low level function implementing both:

 `RM_Log()`
 `RM_LogIOError()`

## `RM_Log`

    void RM_Log(RedisModuleCtx *ctx, const char *levelstr, const char *fmt, ...);

/*
Produces a log message to the standard Redis log, the format accepts
printf-alike specifiers, while level is a string describing the log
level to use when emitting the log, and must be one of the following:

* "debug"
* "verbose"
* "notice"
* "warning"

If the specified log level is invalid, verbose is used by default.
There is a fixed limit to the length of the log line this function is able
to emit, this limti is not specified but is guaranteed to be more than
a few lines of text.

## `RM_LogIOError`

    void RM_LogIOError(RedisModuleIO *io, const char *levelstr, const char *fmt, ...);

Log errors from RDB / AOF serialization callbacks.

This function should be used when a callback is returning a critical
error to the caller since cannot load or save the data for some
critical reason.

## `RM_BlockClient`

    RedisModuleBlockedClient *RM_BlockClient(RedisModuleCtx *ctx, RedisModuleCmdFunc reply_callback, RedisModuleCmdFunc timeout_callback, void (*free_privdata)(void*), long long timeout_ms);

Block a client in the context of a blocking command, returning an handle
which will be used, later, in order to block the client with a call to
`RedisModule_UnblockClient()`. The arguments specify callback functions
and a timeout after which the client is unblocked.

The callbacks are called in the following contexts:

reply_callback:  called after a successful `RedisModule_UnblockClient()` call
                 in order to reply to the client and unblock it.
reply_timeout:   called when the timeout is reached in order to send an
                 error to the client.
free_privdata:   called in order to free the privata data that is passed
                 by `RedisModule_UnblockClient()` call.

## `RM_UnblockClient`

    int RM_UnblockClient(RedisModuleBlockedClient *bc, void *privdata);

Unblock a client blocked by ``RedisModule_BlockedClient``. This will trigger
the reply callbacks to be called in order to reply to the client.
The 'privdata' argument will be accessible by the reply callback, so
the caller of this function can pass any value that is needed in order to
actually reply to the client.

A common usage for 'privdata' is a thread that computes something that
needs to be passed to the client, included but not limited some slow
to compute reply or some reply obtained via networking.

Note: this function can be called from threads spawned by the module.

## `RM_AbortBlock`

    int RM_AbortBlock(RedisModuleBlockedClient *bc);

Abort a blocked client blocking operation: the client will be unblocked
without firing the reply callback.

## `RM_IsBlockedReplyRequest`

    int RM_IsBlockedReplyRequest(RedisModuleCtx *ctx);

Return non-zero if a module command was called in order to fill the
reply for a blocked client.

## `RM_IsBlockedTimeoutRequest`

    int RM_IsBlockedTimeoutRequest(RedisModuleCtx *ctx);

Return non-zero if a module command was called in order to fill the
reply for a blocked client that timed out.

## `RM_GetBlockedClientPrivateData`

    void *RM_GetBlockedClientPrivateData(RedisModuleCtx *ctx);

Get the privata data set by `RedisModule_UnblockClient()`