1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
|
/* Rax -- A radix tree implementation.
*
* Copyright (c) 2017, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <stdio.h>
#include <errno.h>
#include <math.h>
#include "rax.h"
#ifndef RAX_MALLOC_INCLUDE
#define RAX_MALLOC_INCLUDE "rax_malloc.h"
#endif
#include RAX_MALLOC_INCLUDE
/* This is a special pointer that is guaranteed to never have the same value
* of a radix tree node. It's used in order to report "not found" error without
* requiring the function to have multiple return values. */
void *raxNotFound = (void*)"rax-not-found-pointer";
/* -------------------------------- Debugging ------------------------------ */
void raxDebugShowNode(const char *msg, raxNode *n);
/* Turn debugging messages on/off. */
#if 0
#define debugf(...) \
do { \
printf("%s:%s:%d:\t", __FILE__, __FUNCTION__, __LINE__); \
printf(__VA_ARGS__); \
fflush(stdout); \
} while (0);
#define debugnode(msg,n) raxDebugShowNode(msg,n)
#else
#define debugf(...)
#define debugnode(msg,n)
#endif
/* ------------------------- raxStack functions --------------------------
* The raxStack is a simple stack of pointers that is capable of switching
* from using a stack-allocated array to dynamic heap once a given number of
* items are reached. It is used in order to retain the list of parent nodes
* while walking the radix tree in order to implement certain operations that
* need to navigate the tree upward.
* ------------------------------------------------------------------------- */
/* Initialize the stack. */
static inline void raxStackInit(raxStack *ts) {
ts->stack = ts->static_items;
ts->items = 0;
ts->maxitems = RAX_STACK_STATIC_ITEMS;
ts->oom = 0;
}
/* Push an item into the stack, returns 1 on success, 0 on out of memory. */
static inline int raxStackPush(raxStack *ts, void *ptr) {
if (ts->items == ts->maxitems) {
if (ts->stack == ts->static_items) {
ts->stack = rax_malloc(sizeof(void*)*ts->maxitems*2);
if (ts->stack == NULL) {
ts->stack = ts->static_items;
ts->oom = 1;
errno = ENOMEM;
return 0;
}
memcpy(ts->stack,ts->static_items,sizeof(void*)*ts->maxitems);
} else {
void **newalloc = rax_realloc(ts->stack,sizeof(void*)*ts->maxitems*2);
if (newalloc == NULL) {
ts->oom = 1;
errno = ENOMEM;
return 0;
}
ts->stack = newalloc;
}
ts->maxitems *= 2;
}
ts->stack[ts->items] = ptr;
ts->items++;
return 1;
}
/* Pop an item from the stack, the function returns NULL if there are no
* items to pop. */
static inline void *raxStackPop(raxStack *ts) {
if (ts->items == 0) return NULL;
ts->items--;
return ts->stack[ts->items];
}
/* Return the stack item at the top of the stack without actually consuming
* it. */
static inline void *raxStackPeek(raxStack *ts) {
if (ts->items == 0) return NULL;
return ts->stack[ts->items-1];
}
/* Free the stack in case we used heap allocation. */
static inline void raxStackFree(raxStack *ts) {
if (ts->stack != ts->static_items) rax_free(ts->stack);
}
/* ----------------------------------------------------------------------------
* Radix tree implementation
* --------------------------------------------------------------------------*/
/* Allocate a new non compressed node with the specified number of children.
* If datafiled is true, the allocation is made large enough to hold the
* associated data pointer.
* Returns the new node pointer. On out of memory NULL is returned. */
raxNode *raxNewNode(size_t children, int datafield) {
size_t nodesize = sizeof(raxNode)+children+
sizeof(raxNode*)*children;
if (datafield) nodesize += sizeof(void*);
raxNode *node = rax_malloc(nodesize);
if (node == NULL) return NULL;
node->iskey = 0;
node->isnull = 0;
node->iscompr = 0;
node->size = children;
return node;
}
/* Allocate a new rax and return its pointer. On out of memory the function
* returns NULL. */
rax *raxNew(void) {
rax *rax = rax_malloc(sizeof(*rax));
if (rax == NULL) return NULL;
rax->numele = 0;
rax->numnodes = 1;
rax->head = raxNewNode(0,0);
if (rax->head == NULL) {
rax_free(rax);
return NULL;
} else {
return rax;
}
}
/* Return the current total size of the node. */
#define raxNodeCurrentLength(n) ( \
sizeof(raxNode)+(n)->size+ \
((n)->iscompr ? sizeof(raxNode*) : sizeof(raxNode*)*(n)->size)+ \
(((n)->iskey && !(n)->isnull)*sizeof(void*)) \
)
/* realloc the node to make room for auxiliary data in order
* to store an item in that node. On out of memory NULL is returned. */
raxNode *raxReallocForData(raxNode *n, void *data) {
if (data == NULL) return n; /* No reallocation needed, setting isnull=1 */
size_t curlen = raxNodeCurrentLength(n);
return rax_realloc(n,curlen+sizeof(void*));
}
/* Set the node auxiliary data to the specified pointer. */
void raxSetData(raxNode *n, void *data) {
n->iskey = 1;
if (data != NULL) {
n->isnull = 0;
void **ndata = (void**)
((char*)n+raxNodeCurrentLength(n)-sizeof(void*));
memcpy(ndata,&data,sizeof(data));
} else {
n->isnull = 1;
}
}
/* Get the node auxiliary data. */
void *raxGetData(raxNode *n) {
if (n->isnull) return NULL;
void **ndata =(void**)((char*)n+raxNodeCurrentLength(n)-sizeof(void*));
void *data;
memcpy(&data,ndata,sizeof(data));
return data;
}
/* Add a new child to the node 'n' representing the character 'c' and return
* its new pointer, as well as the child pointer by reference. Additionally
* '***parentlink' is populated with the raxNode pointer-to-pointer of where
* the new child was stored, which is useful for the caller to replace the
* child pointer if it gets reallocated.
*
* On success the new parent node pointer is returned (it may change because
* of the realloc, so the caller should discard 'n' and use the new value).
* On out of memory NULL is returned, and the old node is still valid. */
raxNode *raxAddChild(raxNode *n, unsigned char c, raxNode **childptr, raxNode ***parentlink) {
assert(n->iscompr == 0);
size_t curlen = sizeof(raxNode)+
n->size+
sizeof(raxNode*)*n->size;
size_t newlen;
/* Alloc the new child we will link to 'n'. */
raxNode *child = raxNewNode(0,0);
if (child == NULL) return NULL;
/* Make space in the original node. */
if (n->iskey) curlen += sizeof(void*);
newlen = curlen+sizeof(raxNode*)+1; /* Add 1 char and 1 pointer. */
raxNode *newn = rax_realloc(n,newlen);
if (newn == NULL) {
rax_free(child);
return NULL;
}
n = newn;
/* After the reallocation, we have 5/9 (depending on the system
* pointer size) bytes at the end, that is, the additional char
* in the 'data' section, plus one pointer to the new child:
*
* [numc][abx][ap][bp][xp]|auxp|.....
*
* Let's find where to insert the new child in order to make sure
* it is inserted in-place lexicographically. */
int pos;
for (pos = 0; pos < n->size; pos++) {
if (n->data[pos] > c) break;
}
/* Now, if present, move auxiliary data pointer at the end
* so that we can mess with the other data without overwriting it.
* We will obtain something like that:
*
* [numc][abx][ap][bp][xp].....|auxp| */
unsigned char *src;
if (n->iskey && !n->isnull) {
src = n->data+n->size+sizeof(raxNode*)*n->size;
memmove(src+1+sizeof(raxNode*),src,sizeof(void*));
}
/* Now imagine we are adding a node with edge 'c'. The insertion
* point is between 'b' and 'x', so the 'pos' variable value is
* To start, move all the child pointers after the insertion point
* of 1+sizeof(pointer) bytes on the right, to obtain:
*
* [numc][abx][ap][bp].....[xp]|auxp| */
src = n->data+n->size+sizeof(raxNode*)*pos;
memmove(src+1+sizeof(raxNode*),src,sizeof(raxNode*)*(n->size-pos));
/* Now make the space for the additional char in the data section,
* but also move the pointers before the insertion point in the right
* by 1 byte, in order to obtain the following:
*
* [numc][ab.x][ap][bp]....[xp]|auxp| */
src = n->data+pos;
memmove(src+1,src,n->size-pos+sizeof(raxNode*)*pos);
/* We can now set the character and its child node pointer to get:
*
* [numc][abcx][ap][bp][cp]....|auxp|
* [numc][abcx][ap][bp][cp][xp]|auxp| */
n->data[pos] = c;
n->size++;
raxNode **childfield = (raxNode**)(n->data+n->size+sizeof(raxNode*)*pos);
memcpy(childfield,&child,sizeof(child));
*childptr = child;
*parentlink = childfield;
return n;
}
/* Return the pointer to the last child pointer in a node. For the compressed
* nodes this is the only child pointer. */
#define raxNodeLastChildPtr(n) ((raxNode**) ( \
((char*)(n)) + \
raxNodeCurrentLength(n) - \
sizeof(raxNode*) - \
(((n)->iskey && !(n)->isnull) ? sizeof(void*) : 0) \
))
/* Return the pointer to the first child pointer. */
#define raxNodeFirstChildPtr(n) ((raxNode**)((n)->data+(n)->size))
/* Turn the node 'n', that must be a node without any children, into a
* compressed node representing a set of nodes linked one after the other
* and having exactly one child each. The node can be a key or not: this
* property and the associated value if any will be preserved.
*
* The function also returns a child node, since the last node of the
* compressed chain cannot be part of the chain: it has zero children while
* we can only compress inner nodes with exactly one child each. */
raxNode *raxCompressNode(raxNode *n, unsigned char *s, size_t len, raxNode **child) {
assert(n->size == 0 && n->iscompr == 0);
void *data = NULL; /* Initialized only to avoid warnings. */
size_t newsize;
debugf("Compress node: %.*s\n", (int)len,s);
/* Allocate the child to link to this node. */
*child = raxNewNode(0,0);
if (*child == NULL) return NULL;
/* Make space in the parent node. */
newsize = sizeof(raxNode)+len+sizeof(raxNode*);
if (n->iskey) {
data = raxGetData(n); /* To restore it later. */
if (!n->isnull) newsize += sizeof(void*);
}
raxNode *newn = rax_realloc(n,newsize);
if (newn == NULL) {
rax_free(*child);
return NULL;
}
n = newn;
n->iscompr = 1;
n->size = len;
memcpy(n->data,s,len);
if (n->iskey) raxSetData(n,data);
raxNode **childfield = raxNodeLastChildPtr(n);
memcpy(childfield,child,sizeof(*child));
return n;
}
/* Low level function that walks the tree looking for the string
* 's' of 'len' bytes. The function returns the number of characters
* of the key that was possible to process: if the returned integer
* is the same as 'len', then it means that the node corresponding to the
* string was found (however it may not be a key in case the node->iskey is
* zero or if simply we stopped in the middle of a compressed node, so that
* 'splitpos' is non zero).
*
* Otherwise if the returned integer is not the same as 'len', there was an
* early stop during the tree walk because of a character mismatch.
*
* The node where the search ended (because the full string was processed
* or because there was an early stop) is returned by reference as
* '*stopnode' if the passed pointer is not NULL. This node link in the
* parent's node is returned as '*plink' if not NULL. Finally, if the
* search stopped in a compressed node, '*splitpos' returns the index
* inside the compressed node where the search ended. This is useful to
* know where to split the node for insertion. */
static inline size_t raxLowWalk(rax *rax, unsigned char *s, size_t len, raxNode **stopnode, raxNode ***plink, int *splitpos, raxStack *ts) {
raxNode *h = rax->head;
raxNode **parentlink = &rax->head;
size_t i = 0; /* Position in the string. */
size_t j = 0; /* Position in the node children (or bytes if compressed).*/
while(h->size && i < len) {
debugnode("Lookup current node",h);
unsigned char *v = h->data;
if (h->iscompr) {
for (j = 0; j < h->size && i < len; j++, i++) {
if (v[j] != s[i]) break;
}
if (j != h->size) break;
} else {
/* Even when h->size is large, linear scan provides good
* performances compared to other approaches that are in theory
* more sounding, like performing a binary search. */
for (j = 0; j < h->size; j++) {
if (v[j] == s[i]) break;
}
if (j == h->size) break;
i++;
}
if (ts) raxStackPush(ts,h); /* Save stack of parent nodes. */
raxNode **children = raxNodeFirstChildPtr(h);
if (h->iscompr) j = 0; /* Compressed node only child is at index 0. */
memcpy(&h,children+j,sizeof(h));
parentlink = children+j;
j = 0; /* If the new node is compressed and we do not
iterate again (since i == l) set the split
position to 0 to signal this node represents
the searched key. */
}
debugnode("Lookup stop node is",h);
if (stopnode) *stopnode = h;
if (plink) *plink = parentlink;
if (splitpos && h->iscompr) *splitpos = j;
return i;
}
/* Insert the element 's' of size 'len', setting as auxiliary data
* the pointer 'data'. If the element is already present, the associated
* data is updated, and 0 is returned, otherwise the element is inserted
* and 1 is returned. On out of memory the function returns 0 as well but
* sets errno to ENOMEM, otherwise errno will be set to 0. */
int raxInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old) {
size_t i;
int j = 0; /* Split position. If raxLowWalk() stops in a compressed
node, the index 'j' represents the char we stopped within the
compressed node, that is, the position where to split the
node for insertion. */
raxNode *h, **parentlink;
debugf("### Insert %.*s with value %p\n", (int)len, s, data);
i = raxLowWalk(rax,s,len,&h,&parentlink,&j,NULL);
/* If i == len we walked following the whole string. If we are not
* in the middle of a compressed node, the string is either already
* inserted or this middle node is currently not a key, but can represent
* our key. We have just to reallocate the node and make space for the
* data pointer. */
if (i == len && (!h->iscompr || j == 0 /* not in the middle if j is 0 */)) {
debugf("### Insert: node representing key exists\n");
if (!h->iskey || h->isnull) {
h = raxReallocForData(h,data);
if (h) memcpy(parentlink,&h,sizeof(h));
}
if (h == NULL) {
errno = ENOMEM;
return 0;
}
if (h->iskey) {
if (old) *old = raxGetData(h);
raxSetData(h,data);
errno = 0;
return 0; /* Element already exists. */
}
raxSetData(h,data);
rax->numele++;
return 1; /* Element inserted. */
}
/* If the node we stopped at is a compressed node, we need to
* split it before to continue.
*
* Splitting a compressed node have a few possibile cases.
* Imagine that the node 'h' we are currently at is a compressed
* node contaning the string "ANNIBALE" (it means that it represents
* nodes A -> N -> N -> I -> B -> A -> L -> E with the only child
* pointer of this node pointing at the 'E' node, because remember that
* we have characters at the edges of the graph, not inside the nodes
* themselves.
*
* In order to show a real case imagine our node to also point to
* another compressed node, that finally points at the node without
* children, representing 'O':
*
* "ANNIBALE" -> "SCO" -> []
*
* When inserting we may face the following cases. Note that all the cases
* require the insertion of a non compressed node with exactly two
* children, except for the last case which just requires splitting a
* compressed node.
*
* 1) Inserting "ANNIENTARE"
*
* |B| -> "ALE" -> "SCO" -> []
* "ANNI" -> |-|
* |E| -> (... continue algo ...) "NTARE" -> []
*
* 2) Inserting "ANNIBALI"
*
* |E| -> "SCO" -> []
* "ANNIBAL" -> |-|
* |I| -> (... continue algo ...) []
*
* 3) Inserting "AGO" (Like case 1, but set iscompr = 0 into original node)
*
* |N| -> "NIBALE" -> "SCO" -> []
* |A| -> |-|
* |G| -> (... continue algo ...) |O| -> []
*
* 4) Inserting "CIAO"
*
* |A| -> "NNIBALE" -> "SCO" -> []
* |-|
* |C| -> (... continue algo ...) "IAO" -> []
*
* 5) Inserting "ANNI"
*
* "ANNI" -> "BALE" -> "SCO" -> []
*
* The final algorithm for insertion covering all the above cases is as
* follows.
*
* ============================= ALGO 1 =============================
*
* For the above cases 1 to 4, that is, all cases where we stopped in
* the middle of a compressed node for a character mismatch, do:
*
* Let $SPLITPOS be the zero-based index at which, in the
* compressed node array of characters, we found the mismatching
* character. For example if the node contains "ANNIBALE" and we add
* "ANNIENTARE" the $SPLITPOS is 4, that is, the index at which the
* mismatching character is found.
*
* 1. Save the current compressed node $NEXT pointer (the pointer to the
* child element, that is always present in compressed nodes).
*
* 2. Create "split node" having as child the non common letter
* at the compressed node. The other non common letter (at the key)
* will be added later as we continue the normal insertion algorithm
* at step "6".
*
* 3a. IF $SPLITPOS == 0:
* Replace the old node with the split node, by copying the auxiliary
* data if any. Fix parent's reference. Free old node eventually
* (we still need its data for the next steps of the algorithm).
*
* 3b. IF $SPLITPOS != 0:
* Trim the compressed node (reallocating it as well) in order to
* contain $splitpos characters. Change chilid pointer in order to link
* to the split node. If new compressed node len is just 1, set
* iscompr to 0 (layout is the same). Fix parent's reference.
*
* 4a. IF the postfix len (the length of the remaining string of the
* original compressed node after the split character) is non zero,
* create a "postfix node". If the postfix node has just one character
* set iscompr to 0, otherwise iscompr to 1. Set the postfix node
* child pointer to $NEXT.
*
* 4b. IF the postfix len is zero, just use $NEXT as postfix pointer.
*
* 5. Set child[0] of split node to postfix node.
*
* 6. Set the split node as the current node, set current index at child[1]
* and continue insertion algorithm as usually.
*
* ============================= ALGO 2 =============================
*
* For case 5, that is, if we stopped in the middle of a compressed
* node but no mismatch was found, do:
*
* Let $SPLITPOS be the zero-based index at which, in the
* compressed node array of characters, we stopped iterating because
* there were no more keys character to match. So in the example of
* the node "ANNIBALE", addig the string "ANNI", the $SPLITPOS is 4.
*
* 1. Save the current compressed node $NEXT pointer (the pointer to the
* child element, that is always present in compressed nodes).
*
* 2. Create a "postfix node" containing all the characters from $SPLITPOS
* to the end. Use $NEXT as the postfix node child pointer.
* If the postfix node length is 1, set iscompr to 0.
* Set the node as a key with the associated value of the new
* inserted key.
*
* 3. Trim the current node to contain the first $SPLITPOS characters.
* As usually if the new node length is just 1, set iscompr to 0.
* Take the iskey / associated value as it was in the orignal node.
* Fix the parent's reference.
*
* 4. Set the postfix node as the only child pointer of the trimmed
* node created at step 1.
*/
/* ------------------------- ALGORITHM 1 --------------------------- */
if (h->iscompr && i != len) {
debugf("ALGO 1: Stopped at compressed node %.*s (%p)\n",
h->size, h->data, (void*)h);
debugf("Still to insert: %.*s\n", (int)(len-i), s+i);
debugf("Splitting at %d: '%c'\n", j, ((char*)h->data)[j]);
debugf("Other (key) letter is '%c'\n", s[i]);
/* 1: Save next pointer. */
raxNode **childfield = raxNodeLastChildPtr(h);
raxNode *next;
memcpy(&next,childfield,sizeof(next));
debugf("Next is %p\n", (void*)next);
debugf("iskey %d\n", h->iskey);
if (h->iskey) {
debugf("key value is %p\n", raxGetData(h));
}
/* Set the length of the additional nodes we will need. */
size_t trimmedlen = j;
size_t postfixlen = h->size - j - 1;
int split_node_is_key = !trimmedlen && h->iskey && !h->isnull;
size_t nodesize;
/* 2: Create the split node. Also allocate the other nodes we'll need
* ASAP, so that it will be simpler to handle OOM. */
raxNode *splitnode = raxNewNode(1, split_node_is_key);
raxNode *trimmed = NULL;
raxNode *postfix = NULL;
if (trimmedlen) {
nodesize = sizeof(raxNode)+trimmedlen+sizeof(raxNode*);
if (h->iskey && !h->isnull) nodesize += sizeof(void*);
trimmed = rax_malloc(nodesize);
}
if (postfixlen) {
nodesize = sizeof(raxNode)+postfixlen+
sizeof(raxNode*);
postfix = rax_malloc(nodesize);
}
/* OOM? Abort now that the tree is untouched. */
if (splitnode == NULL ||
(trimmedlen && trimmed == NULL) ||
(postfixlen && postfix == NULL))
{
rax_free(splitnode);
rax_free(trimmed);
rax_free(postfix);
errno = ENOMEM;
return 0;
}
splitnode->data[0] = h->data[j];
if (j == 0) {
/* 3a: Replace the old node with the split node. */
if (h->iskey) {
void *ndata = raxGetData(h);
raxSetData(splitnode,ndata);
}
memcpy(parentlink,&splitnode,sizeof(splitnode));
} else {
/* 3b: Trim the compressed node. */
trimmed->size = j;
memcpy(trimmed->data,h->data,j);
trimmed->iscompr = j > 1 ? 1 : 0;
trimmed->iskey = h->iskey;
trimmed->isnull = h->isnull;
if (h->iskey && !h->isnull) {
void *ndata = raxGetData(h);
raxSetData(trimmed,ndata);
}
raxNode **cp = raxNodeLastChildPtr(trimmed);
memcpy(cp,&splitnode,sizeof(splitnode));
memcpy(parentlink,&trimmed,sizeof(trimmed));
parentlink = cp; /* Set parentlink to splitnode parent. */
rax->numnodes++;
}
/* 4: Create the postfix node: what remains of the original
* compressed node after the split. */
if (postfixlen) {
/* 4a: create a postfix node. */
postfix->iskey = 0;
postfix->isnull = 0;
postfix->size = postfixlen;
postfix->iscompr = postfixlen > 1;
memcpy(postfix->data,h->data+j+1,postfixlen);
raxNode **cp = raxNodeLastChildPtr(postfix);
memcpy(cp,&next,sizeof(next));
rax->numnodes++;
} else {
/* 4b: just use next as postfix node. */
postfix = next;
}
/* 5: Set splitnode first child as the postfix node. */
raxNode **splitchild = raxNodeLastChildPtr(splitnode);
memcpy(splitchild,&postfix,sizeof(postfix));
/* 6. Continue insertion: this will cause the splitnode to
* get a new child (the non common character at the currently
* inserted key). */
rax_free(h);
h = splitnode;
} else if (h->iscompr && i == len) {
/* ------------------------- ALGORITHM 2 --------------------------- */
debugf("ALGO 2: Stopped at compressed node %.*s (%p) j = %d\n",
h->size, h->data, (void*)h, j);
/* Allocate postfix & trimmed nodes ASAP to fail for OOM gracefully. */
size_t postfixlen = h->size - j;
size_t nodesize = sizeof(raxNode)+postfixlen+sizeof(raxNode*);
if (data != NULL) nodesize += sizeof(void*);
raxNode *postfix = rax_malloc(nodesize);
nodesize = sizeof(raxNode)+j+sizeof(raxNode*);
if (h->iskey && !h->isnull) nodesize += sizeof(void*);
raxNode *trimmed = rax_malloc(nodesize);
if (postfix == NULL || trimmed == NULL) {
rax_free(postfix);
rax_free(trimmed);
errno = ENOMEM;
return 0;
}
/* 1: Save next pointer. */
raxNode **childfield = raxNodeLastChildPtr(h);
raxNode *next;
memcpy(&next,childfield,sizeof(next));
/* 2: Create the postfix node. */
postfix->size = postfixlen;
postfix->iscompr = postfixlen > 1;
postfix->iskey = 1;
postfix->isnull = 0;
memcpy(postfix->data,h->data+j,postfixlen);
raxSetData(postfix,data);
raxNode **cp = raxNodeLastChildPtr(postfix);
memcpy(cp,&next,sizeof(next));
rax->numnodes++;
/* 3: Trim the compressed node. */
trimmed->size = j;
trimmed->iscompr = j > 1;
trimmed->iskey = 0;
trimmed->isnull = 0;
memcpy(trimmed->data,h->data,j);
memcpy(parentlink,&trimmed,sizeof(trimmed));
if (h->iskey) {
void *aux = raxGetData(h);
raxSetData(trimmed,aux);
}
/* Fix the trimmed node child pointer to point to
* the postfix node. */
cp = raxNodeLastChildPtr(trimmed);
memcpy(cp,&postfix,sizeof(postfix));
/* Finish! We don't need to contine with the insertion
* algorithm for ALGO 2. The key is already inserted. */
rax->numele++;
rax_free(h);
return 1; /* Key inserted. */
}
/* We walked the radix tree as far as we could, but still there are left
* chars in our string. We need to insert the missing nodes. */
while(i < len) {
raxNode *child;
/* If this node is going to have a single child, and there
* are other characters, so that that would result in a chain
* of single-childed nodes, turn it into a compressed node. */
if (h->size == 0 && len-i > 1) {
debugf("Inserting compressed node\n");
size_t comprsize = len-i;
if (comprsize > RAX_NODE_MAX_SIZE)
comprsize = RAX_NODE_MAX_SIZE;
raxNode *newh = raxCompressNode(h,s+i,comprsize,&child);
if (newh == NULL) goto oom;
h = newh;
memcpy(parentlink,&h,sizeof(h));
parentlink = raxNodeLastChildPtr(h);
i += comprsize;
} else {
debugf("Inserting normal node\n");
raxNode **new_parentlink;
raxNode *newh = raxAddChild(h,s[i],&child,&new_parentlink);
if (newh == NULL) goto oom;
h = newh;
memcpy(parentlink,&h,sizeof(h));
parentlink = new_parentlink;
i++;
}
rax->numnodes++;
h = child;
}
raxNode *newh = raxReallocForData(h,data);
if (newh == NULL) goto oom;
h = newh;
if (!h->iskey) rax->numele++;
raxSetData(h,data);
memcpy(parentlink,&h,sizeof(h));
return 1; /* Element inserted. */
oom:
/* This code path handles out of memory after part of the sub-tree was
* already modified. Set the node as a key, and then remove it. However we
* do that only if the node is a terminal node, otherwise if the OOM
* happened reallocating a node in the middle, we don't need to free
* anything. */
if (h->size == 0) {
h->isnull = 1;
h->iskey = 1;
rax->numele++; /* Compensate the next remove. */
assert(raxRemove(rax,s,i,NULL) != 0);
}
errno = ENOMEM;
return 0;
}
/* Find a key in the rax, returns raxNotFound special void pointer value
* if the item was not found, otherwise the value associated with the
* item is returned. */
void *raxFind(rax *rax, unsigned char *s, size_t len) {
raxNode *h;
debugf("### Lookup: %.*s\n", (int)len, s);
int splitpos = 0;
size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,NULL);
if (i != len || (h->iscompr && splitpos != 0) || !h->iskey)
return raxNotFound;
return raxGetData(h);
}
/* Return the memory address where the 'parent' node stores the specified
* 'child' pointer, so that the caller can update the pointer with another
* one if needed. The function assumes it will find a match, otherwise the
* operation is an undefined behavior (it will continue scanning the
* memory without any bound checking). */
raxNode **raxFindParentLink(raxNode *parent, raxNode *child) {
raxNode **cp = raxNodeFirstChildPtr(parent);
raxNode *c;
while(1) {
memcpy(&c,cp,sizeof(c));
if (c == child) break;
cp++;
}
return cp;
}
/* Low level child removal from node. The new node pointer (after the child
* removal) is returned. Note that this function does not fix the pointer
* of the parent node in its parent, so this task is up to the caller.
* The function never fails for out of memory. */
raxNode *raxRemoveChild(raxNode *parent, raxNode *child) {
debugnode("raxRemoveChild before", parent);
/* If parent is a compressed node (having a single child, as for definition
* of the data structure), the removal of the child consists into turning
* it into a normal node without children. */
if (parent->iscompr) {
void *data = NULL;
if (parent->iskey) data = raxGetData(parent);
parent->isnull = 0;
parent->iscompr = 0;
parent->size = 0;
if (parent->iskey) raxSetData(parent,data);
debugnode("raxRemoveChild after", parent);
return parent;
}
/* Otherwise we need to scan for the children pointer and memmove()
* accordingly.
*
* 1. To start we seek the first element in both the children
* pointers and edge bytes in the node. */
raxNode **cp = raxNodeFirstChildPtr(parent);
raxNode **c = cp;
unsigned char *e = parent->data;
/* 2. Search the child pointer to remove inside the array of children
* pointers. */
while(1) {
raxNode *aux;
memcpy(&aux,c,sizeof(aux));
if (aux == child) break;
c++;
e++;
}
/* 3. Remove the edge and the pointer by memmoving the remaining children
* pointer and edge bytes one position before. */
int taillen = parent->size - (e - parent->data) - 1;
debugf("raxRemoveChild tail len: %d\n", taillen);
memmove(e,e+1,taillen);
/* Since we have one data byte less, also child pointers start one byte
* before now. */
memmove(((char*)cp)-1,cp,(parent->size-taillen-1)*sizeof(raxNode**));
/* Move the remaining "tail" pointer at the right position as well. */
size_t valuelen = (parent->iskey && !parent->isnull) ? sizeof(void*) : 0;
memmove(((char*)c)-1,c+1,taillen*sizeof(raxNode**)+valuelen);
/* 4. Update size. */
parent->size--;
/* realloc the node according to the theoretical memory usage, to free
* data if we are over-allocating right now. */
raxNode *newnode = rax_realloc(parent,raxNodeCurrentLength(parent));
if (newnode) {
debugnode("raxRemoveChild after", newnode);
}
/* Note: if rax_realloc() fails we just return the old address, which
* is valid. */
return newnode ? newnode : parent;
}
/* Remove the specified item. Returns 1 if the item was found and
* deleted, 0 otherwise. */
int raxRemove(rax *rax, unsigned char *s, size_t len, void **old) {
raxNode *h;
raxStack ts;
debugf("### Delete: %.*s\n", (int)len, s);
raxStackInit(&ts);
int splitpos = 0;
size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,&ts);
if (i != len || (h->iscompr && splitpos != 0) || !h->iskey) {
raxStackFree(&ts);
return 0;
}
if (old) *old = raxGetData(h);
h->iskey = 0;
rax->numele--;
/* If this node has no children, the deletion needs to reclaim the
* no longer used nodes. This is an iterative process that needs to
* walk the three upward, deleting all the nodes with just one child
* that are not keys, until the head of the rax is reached or the first
* node with more than one child is found. */
int trycompress = 0; /* Will be set to 1 if we should try to optimize the
tree resulting from the deletion. */
if (h->size == 0) {
debugf("Key deleted in node without children. Cleanup needed.\n");
raxNode *child = NULL;
while(h != rax->head) {
child = h;
debugf("Freeing child %p [%.*s] key:%d\n", (void*)child,
(int)child->size, (char*)child->data, child->iskey);
rax_free(child);
rax->numnodes--;
h = raxStackPop(&ts);
/* If this node has more then one child, or actually holds
* a key, stop here. */
if (h->iskey || (!h->iscompr && h->size != 1)) break;
}
if (child) {
debugf("Unlinking child %p from parent %p\n",
(void*)child, (void*)h);
raxNode *new = raxRemoveChild(h,child);
if (new != h) {
raxNode *parent = raxStackPeek(&ts);
raxNode **parentlink;
if (parent == NULL) {
parentlink = &rax->head;
} else {
parentlink = raxFindParentLink(parent,h);
}
memcpy(parentlink,&new,sizeof(new));
}
/* If after the removal the node has just a single child
* and is not a key, we need to try to compress it. */
if (new->size == 1 && new->iskey == 0) {
trycompress = 1;
h = new;
}
}
} else if (h->size == 1) {
/* If the node had just one child, after the removal of the key
* further compression with adjacent nodes is pontentially possible. */
trycompress = 1;
}
/* Don't try node compression if our nodes pointers stack is not
* complete because of OOM while executing raxLowWalk() */
if (trycompress && ts.oom) trycompress = 0;
/* Recompression: if trycompress is true, 'h' points to a radix tree node
* that changed in a way that could allow to compress nodes in this
* sub-branch. Compressed nodes represent chains of nodes that are not
* keys and have a single child, so there are two deletion events that
* may alter the tree so that further compression is needed:
*
* 1) A node with a single child was a key and now no longer is a key.
* 2) A node with two children now has just one child.
*
* We try to navigate upward till there are other nodes that can be
* compressed, when we reach the upper node which is not a key and has
* a single child, we scan the chain of children to collect the
* compressable part of the tree, and replace the current node with the
* new one, fixing the child pointer to reference the first non
* compressable node.
*
* Example of case "1". A tree stores the keys "FOO" = 1 and
* "FOOBAR" = 2:
*
*
* "FOO" -> "BAR" -> [] (2)
* (1)
*
* After the removal of "FOO" the tree can be compressed as:
*
* "FOOBAR" -> [] (2)
*
*
* Example of case "2". A tree stores the keys "FOOBAR" = 1 and
* "FOOTER" = 2:
*
* |B| -> "AR" -> [] (1)
* "FOO" -> |-|
* |T| -> "ER" -> [] (2)
*
* After the removal of "FOOTER" the resulting tree is:
*
* "FOO" -> |B| -> "AR" -> [] (1)
*
* That can be compressed into:
*
* "FOOBAR" -> [] (1)
*/
if (trycompress) {
debugf("After removing %.*s:\n", (int)len, s);
debugnode("Compression may be needed",h);
debugf("Seek start node\n");
/* Try to reach the upper node that is compressible.
* At the end of the loop 'h' will point to the first node we
* can try to compress and 'parent' to its parent. */
raxNode *parent;
while(1) {
parent = raxStackPop(&ts);
if (!parent || parent->iskey ||
(!parent->iscompr && parent->size != 1)) break;
h = parent;
debugnode("Going up to",h);
}
raxNode *start = h; /* Compression starting node. */
/* Scan chain of nodes we can compress. */
size_t comprsize = h->size;
int nodes = 1;
while(h->size != 0) {
raxNode **cp = raxNodeLastChildPtr(h);
memcpy(&h,cp,sizeof(h));
if (h->iskey || (!h->iscompr && h->size != 1)) break;
/* Stop here if going to the next node would result into
* a compressed node larger than h->size can hold. */
if (comprsize + h->size > RAX_NODE_MAX_SIZE) break;
nodes++;
comprsize += h->size;
}
if (nodes > 1) {
/* If we can compress, create the new node and populate it. */
size_t nodesize =
sizeof(raxNode)+comprsize+sizeof(raxNode*);
raxNode *new = rax_malloc(nodesize);
/* An out of memory here just means we cannot optimize this
* node, but the tree is left in a consistent state. */
if (new == NULL) {
raxStackFree(&ts);
return 1;
}
new->iskey = 0;
new->isnull = 0;
new->iscompr = 1;
new->size = comprsize;
rax->numnodes++;
/* Scan again, this time to populate the new node content and
* to fix the new node child pointer. At the same time we free
* all the nodes that we'll no longer use. */
comprsize = 0;
h = start;
while(h->size != 0) {
memcpy(new->data+comprsize,h->data,h->size);
comprsize += h->size;
raxNode **cp = raxNodeLastChildPtr(h);
raxNode *tofree = h;
memcpy(&h,cp,sizeof(h));
rax_free(tofree); rax->numnodes--;
if (h->iskey || (!h->iscompr && h->size != 1)) break;
}
debugnode("New node",new);
/* Now 'h' points to the first node that we still need to use,
* so our new node child pointer will point to it. */
raxNode **cp = raxNodeLastChildPtr(new);
memcpy(cp,&h,sizeof(h));
/* Fix parent link. */
if (parent) {
raxNode **parentlink = raxFindParentLink(parent,start);
memcpy(parentlink,&new,sizeof(new));
} else {
rax->head = new;
}
debugf("Compressed %d nodes, %d total bytes\n",
nodes, (int)comprsize);
}
}
raxStackFree(&ts);
return 1;
}
/* This is the core of raxFree(): performs a depth-first scan of the
* tree and releases all the nodes found. */
void raxRecursiveFree(rax *rax, raxNode *n, void (*free_callback)(void*)) {
debugnode("free traversing",n);
int numchildren = n->iscompr ? 1 : n->size;
raxNode **cp = raxNodeLastChildPtr(n);
while(numchildren--) {
raxNode *child;
memcpy(&child,cp,sizeof(child));
raxRecursiveFree(rax,child,free_callback);
cp--;
}
debugnode("free depth-first",n);
if (free_callback && n->iskey && !n->isnull)
free_callback(raxGetData(n));
rax_free(n);
rax->numnodes--;
}
/* Free a whole radix tree, calling the specified callback in order to
* free the auxiliary data. */
void raxFreeWithCallback(rax *rax, void (*free_callback)(void*)) {
raxRecursiveFree(rax,rax->head,free_callback);
assert(rax->numnodes == 0);
rax_free(rax);
}
/* Free a whole radix tree. */
void raxFree(rax *rax) {
raxFreeWithCallback(rax,NULL);
}
/* ------------------------------- Iterator --------------------------------- */
/* Initialize a Rax iterator. This call should be performed a single time
* to initialize the iterator, and must be followed by a raxSeek() call,
* otherwise the raxPrev()/raxNext() functions will just return EOF. */
void raxStart(raxIterator *it, rax *rt) {
it->flags = RAX_ITER_EOF; /* No crash if the iterator is not seeked. */
it->rt = rt;
it->key_len = 0;
it->key = it->key_static_string;
it->key_max = RAX_ITER_STATIC_LEN;
it->data = NULL;
raxStackInit(&it->stack);
}
/* Append characters at the current key string of the iterator 'it'. This
* is a low level function used to implement the iterator, not callable by
* the user. Returns 0 on out of memory, otherwise 1 is returned. */
int raxIteratorAddChars(raxIterator *it, unsigned char *s, size_t len) {
if (it->key_max < it->key_len+len) {
unsigned char *old = (it->key == it->key_static_string) ? NULL :
it->key;
size_t new_max = (it->key_len+len)*2;
it->key = rax_realloc(old,new_max);
if (it->key == NULL) {
it->key = (!old) ? it->key_static_string : old;
errno = ENOMEM;
return 0;
}
if (old == NULL) memcpy(it->key,it->key_static_string,it->key_len);
it->key_max = new_max;
}
/* Use memmove since there could be an overlap between 's' and
* it->key when we use the current key in order to re-seek. */
memmove(it->key+it->key_len,s,len);
it->key_len += len;
return 1;
}
/* Remove the specified number of chars from the right of the current
* iterator key. */
void raxIteratorDelChars(raxIterator *it, size_t count) {
it->key_len -= count;
}
/* Do an iteration step towards the next element. At the end of the step the
* iterator key will represent the (new) current key. If it is not possible
* to step in the specified direction since there are no longer elements, the
* iterator is flagged with RAX_ITER_EOF.
*
* If 'noup' is true the function starts directly scanning for the next
* lexicographically smaller children, and the current node is already assumed
* to be the parent of the last key node, so the first operation to go back to
* the parent will be skipped. This option is used by raxSeek() when
* implementing seeking a non existing element with the ">" or "<" options:
* the starting node is not a key in that particular case, so we start the scan
* from a node that does not represent the key set.
*
* The function returns 1 on success or 0 on out of memory. */
int raxIteratorNextStep(raxIterator *it, int noup) {
if (it->flags & RAX_ITER_EOF) {
return 1;
} else if (it->flags & RAX_ITER_JUST_SEEKED) {
it->flags &= ~RAX_ITER_JUST_SEEKED;
return 1;
}
/* Save key len, stack items and the node where we are currently
* so that on iterator EOF we can restore the current key and state. */
size_t orig_key_len = it->key_len;
size_t orig_stack_items = it->stack.items;
raxNode *orig_node = it->node;
while(1) {
int children = it->node->iscompr ? 1 : it->node->size;
if (!noup && children) {
debugf("GO DEEPER\n");
/* Seek the lexicographically smaller key in this subtree, which
* is the first one found always going torwards the first child
* of every successive node. */
if (!raxStackPush(&it->stack,it->node)) return 0;
raxNode **cp = raxNodeFirstChildPtr(it->node);
if (!raxIteratorAddChars(it,it->node->data,
it->node->iscompr ? it->node->size : 1)) return 0;
memcpy(&it->node,cp,sizeof(it->node));
/* For "next" step, stop every time we find a key along the
* way, since the key is lexicograhically smaller compared to
* what follows in the sub-children. */
if (it->node->iskey) {
it->data = raxGetData(it->node);
return 1;
}
} else {
/* If we finished exporing the previous sub-tree, switch to the
* new one: go upper until a node is found where there are
* children representing keys lexicographically greater than the
* current key. */
while(1) {
int old_noup = noup;
/* Already on head? Can't go up, iteration finished. */
if (!noup && it->node == it->rt->head) {
it->flags |= RAX_ITER_EOF;
it->stack.items = orig_stack_items;
it->key_len = orig_key_len;
it->node = orig_node;
return 1;
}
/* If there are no children at the current node, try parent's
* next child. */
unsigned char prevchild = it->key[it->key_len-1];
if (!noup) {
it->node = raxStackPop(&it->stack);
} else {
noup = 0;
}
/* Adjust the current key to represent the node we are
* at. */
int todel = it->node->iscompr ? it->node->size : 1;
raxIteratorDelChars(it,todel);
/* Try visiting the next child if there was at least one
* additional child. */
if (!it->node->iscompr && it->node->size > (old_noup ? 0 : 1)) {
raxNode **cp = raxNodeFirstChildPtr(it->node);
int i = 0;
while (i < it->node->size) {
debugf("SCAN NEXT %c\n", it->node->data[i]);
if (it->node->data[i] > prevchild) break;
i++;
cp++;
}
if (i != it->node->size) {
debugf("SCAN found a new node\n");
raxIteratorAddChars(it,it->node->data+i,1);
if (!raxStackPush(&it->stack,it->node)) return 0;
memcpy(&it->node,cp,sizeof(it->node));
if (it->node->iskey) {
it->data = raxGetData(it->node);
return 1;
}
break;
}
}
}
}
}
}
/* Seek the grestest key in the subtree at the current node. Return 0 on
* out of memory, otherwise 1. This is an helper function for different
* iteration functions below. */
int raxSeekGreatest(raxIterator *it) {
while(it->node->size) {
if (it->node->iscompr) {
if (!raxIteratorAddChars(it,it->node->data,
it->node->size)) return 0;
} else {
if (!raxIteratorAddChars(it,it->node->data+it->node->size-1,1))
return 0;
}
raxNode **cp = raxNodeLastChildPtr(it->node);
if (!raxStackPush(&it->stack,it->node)) return 0;
memcpy(&it->node,cp,sizeof(it->node));
}
return 1;
}
/* Like raxIteratorNextStep() but implements an iteration step moving
* to the lexicographically previous element. The 'noup' option has a similar
* effect to the one of raxIteratorPrevSte(). */
int raxIteratorPrevStep(raxIterator *it, int noup) {
if (it->flags & RAX_ITER_EOF) {
return 1;
} else if (it->flags & RAX_ITER_JUST_SEEKED) {
it->flags &= ~RAX_ITER_JUST_SEEKED;
return 1;
}
/* Save key len, stack items and the node where we are currently
* so that on iterator EOF we can restore the current key and state. */
size_t orig_key_len = it->key_len;
size_t orig_stack_items = it->stack.items;
raxNode *orig_node = it->node;
while(1) {
int old_noup = noup;
/* Already on head? Can't go up, iteration finished. */
if (!noup && it->node == it->rt->head) {
it->flags |= RAX_ITER_EOF;
it->stack.items = orig_stack_items;
it->key_len = orig_key_len;
it->node = orig_node;
return 1;
}
unsigned char prevchild = it->key[it->key_len-1];
if (!noup) {
it->node = raxStackPop(&it->stack);
} else {
noup = 0;
}
/* Adjust the current key to represent the node we are
* at. */
int todel = it->node->iscompr ? it->node->size : 1;
raxIteratorDelChars(it,todel);
/* Try visiting the prev child if there is at least one
* child. */
if (!it->node->iscompr && it->node->size > (old_noup ? 0 : 1)) {
raxNode **cp = raxNodeLastChildPtr(it->node);
int i = it->node->size-1;
while (i >= 0) {
debugf("SCAN PREV %c\n", it->node->data[i]);
if (it->node->data[i] < prevchild) break;
i--;
cp--;
}
/* If we found a new subtree to explore in this node,
* go deeper following all the last children in order to
* find the key lexicographically greater. */
if (i != -1) {
debugf("SCAN found a new node\n");
/* Enter the node we just found. */
if (!raxIteratorAddChars(it,it->node->data+i,1)) return 0;
if (!raxStackPush(&it->stack,it->node)) return 0;
memcpy(&it->node,cp,sizeof(it->node));
/* Seek sub-tree max. */
if (!raxSeekGreatest(it)) return 0;
}
}
/* Return the key: this could be the key we found scanning a new
* subtree, or if we did not find a new subtree to explore here,
* before giving up with this node, check if it's a key itself. */
if (it->node->iskey) {
it->data = raxGetData(it->node);
return 1;
}
}
}
/* Seek an iterator at the specified element.
* Return 0 if the seek failed for syntax error or out of memory. Otherwise
* 1 is returned. When 0 is returned for out of memory, errno is set to
* the ENOMEM value. */
int raxSeek(raxIterator *it, const char *op, unsigned char *ele, size_t len) {
int eq = 0, lt = 0, gt = 0, first = 0, last = 0;
it->stack.items = 0; /* Just resetting. Intialized by raxStart(). */
it->flags |= RAX_ITER_JUST_SEEKED;
it->flags &= ~RAX_ITER_EOF;
it->key_len = 0;
it->node = NULL;
/* Set flags according to the operator used to perform the seek. */
if (op[0] == '>') {
gt = 1;
if (op[1] == '=') eq = 1;
} else if (op[0] == '<') {
lt = 1;
if (op[1] == '=') eq = 1;
} else if (op[0] == '=') {
eq = 1;
} else if (op[0] == '^') {
first = 1;
} else if (op[0] == '$') {
last = 1;
} else {
errno = 0;
return 0; /* Error. */
}
/* If there are no elements, set the EOF condition immediately and
* return. */
if (it->rt->numele == 0) {
it->flags |= RAX_ITER_EOF;
return 1;
}
if (first) {
/* Seeking the first key greater or equal to the empty string
* is equivalent to seeking the smaller key available. */
return raxSeek(it,">=",NULL,0);
}
if (last) {
/* Find the greatest key taking always the last child till a
* final node is found. */
it->node = it->rt->head;
if (!raxSeekGreatest(it)) return 0;
assert(it->node->iskey);
it->data = raxGetData(it->node);
return 1;
}
/* We need to seek the specified key. What we do here is to actually
* perform a lookup, and later invoke the prev/next key code that
* we already use for iteration. */
int splitpos = 0;
size_t i = raxLowWalk(it->rt,ele,len,&it->node,NULL,&splitpos,&it->stack);
/* Return OOM on incomplete stack info. */
if (it->stack.oom) return 0;
if (eq && i == len && (!it->node->iscompr || splitpos == 0) &&
it->node->iskey)
{
/* We found our node, since the key matches and we have an
* "equal" condition. */
if (!raxIteratorAddChars(it,ele,len)) return 0; /* OOM. */
it->data = raxGetData(it->node);
} else if (lt || gt) {
/* Exact key not found or eq flag not set. We have to set as current
* key the one represented by the node we stopped at, and perform
* a next/prev operation to seek. To reconstruct the key at this node
* we start from the parent and go to the current node, accumulating
* the characters found along the way. */
if (!raxStackPush(&it->stack,it->node)) return 0;
for (size_t j = 1; j < it->stack.items; j++) {
raxNode *parent = it->stack.stack[j-1];
raxNode *child = it->stack.stack[j];
if (parent->iscompr) {
if (!raxIteratorAddChars(it,parent->data,parent->size))
return 0;
} else {
raxNode **cp = raxNodeFirstChildPtr(parent);
unsigned char *p = parent->data;
while(1) {
raxNode *aux;
memcpy(&aux,cp,sizeof(aux));
if (aux == child) break;
cp++;
p++;
}
if (!raxIteratorAddChars(it,p,1)) return 0;
}
}
raxStackPop(&it->stack);
/* We need to set the iterator in the correct state to call next/prev
* step in order to seek the desired element. */
debugf("After initial seek: i=%d len=%d key=%.*s\n",
(int)i, (int)len, (int)it->key_len, it->key);
if (i != len && !it->node->iscompr) {
/* If we stopped in the middle of a normal node because of a
* mismatch, add the mismatching character to the current key
* and call the iterator with the 'noup' flag so that it will try
* to seek the next/prev child in the current node directly based
* on the mismatching character. */
if (!raxIteratorAddChars(it,ele+i,1)) return 0;
debugf("Seek normal node on mismatch: %.*s\n",
(int)it->key_len, (char*)it->key);
it->flags &= ~RAX_ITER_JUST_SEEKED;
if (lt && !raxIteratorPrevStep(it,1)) return 0;
if (gt && !raxIteratorNextStep(it,1)) return 0;
it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */
} else if (i != len && it->node->iscompr) {
debugf("Compressed mismatch: %.*s\n",
(int)it->key_len, (char*)it->key);
/* In case of a mismatch within a compressed node. */
int nodechar = it->node->data[splitpos];
int keychar = ele[i];
it->flags &= ~RAX_ITER_JUST_SEEKED;
if (gt) {
/* If the key the compressed node represents is greater
* than our seek element, continue forward, otherwise set the
* state in order to go back to the next sub-tree. */
if (nodechar > keychar) {
if (!raxIteratorNextStep(it,0)) return 0;
} else {
if (!raxIteratorAddChars(it,it->node->data,it->node->size))
return 0;
if (!raxIteratorNextStep(it,1)) return 0;
}
}
if (lt) {
/* If the key the compressed node represents is smaller
* than our seek element, seek the greater key in this
* subtree, otherwise set the state in order to go back to
* the previous sub-tree. */
if (nodechar < keychar) {
if (!raxSeekGreatest(it)) return 0;
it->data = raxGetData(it->node);
} else {
if (!raxIteratorAddChars(it,it->node->data,it->node->size))
return 0;
if (!raxIteratorPrevStep(it,1)) return 0;
}
}
it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */
} else {
debugf("No mismatch: %.*s\n",
(int)it->key_len, (char*)it->key);
/* If there was no mismatch we are into a node representing the
* key, (but which is not a key or the seek operator does not
* include 'eq'), or we stopped in the middle of a compressed node
* after processing all the key. Cotinue iterating as this was
* a legitimate key we stopped at. */
it->flags &= ~RAX_ITER_JUST_SEEKED;
if (gt && !raxIteratorNextStep(it,0)) return 0;
if (lt && !raxIteratorPrevStep(it,0)) return 0;
it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */
}
} else {
/* If we are here just eq was set but no match was found. */
it->flags |= RAX_ITER_EOF;
return 1;
}
return 1;
}
/* Go to the next element in the scope of the iterator 'it'.
* If EOF (or out of memory) is reached, 0 is returned, otherwise 1 is
* returned. In case 0 is returned because of OOM, errno is set to ENOMEM. */
int raxNext(raxIterator *it) {
if (!raxIteratorNextStep(it,0)) {
errno = ENOMEM;
return 0;
}
if (it->flags & RAX_ITER_EOF) {
errno = 0;
return 0;
}
return 1;
}
/* Go to the previous element in the scope of the iterator 'it'.
* If EOF (or out of memory) is reached, 0 is returned, otherwise 1 is
* returned. In case 0 is returned because of OOM, errno is set to ENOMEM. */
int raxPrev(raxIterator *it) {
if (!raxIteratorPrevStep(it,0)) {
errno = ENOMEM;
return 0;
}
if (it->flags & RAX_ITER_EOF) {
errno = 0;
return 0;
}
return 1;
}
/* Perform a random walk starting in the current position of the iterator.
* Return 0 if the tree is empty or on out of memory. Otherwise 1 is returned
* and the iterator is set to the node reached after doing a random walk
* of 'steps' steps. If the 'steps' argument is 0, the random walk is performed
* using a random number of steps between 1 and two times the logarithm of
* the number of elements.
*
* NOTE: if you use this function to generate random elements from the radix
* tree, expect a disappointing distribution. A random walk produces good
* random elements if the tree is not sparse, however in the case of a radix
* tree certain keys will be reported much more often than others. At least
* this function should be able to expore every possible element eventually. */
int raxRandomWalk(raxIterator *it, size_t steps) {
if (it->rt->numele == 0) {
it->flags |= RAX_ITER_EOF;
return 0;
}
if (steps == 0) {
size_t fle = floor(log(it->rt->numele));
fle *= 2;
steps = 1 + rand() % fle;
}
raxNode *n = it->node;
while(steps > 0 || !n->iskey) {
int numchildren = n->iscompr ? 1 : n->size;
int r = rand() % (numchildren+(n != it->rt->head));
if (r == numchildren) {
/* Go up to parent. */
n = raxStackPop(&it->stack);
int todel = n->iscompr ? n->size : 1;
raxIteratorDelChars(it,todel);
} else {
/* Select a random child. */
if (n->iscompr) {
if (!raxIteratorAddChars(it,n->data,n->size)) return 0;
} else {
if (!raxIteratorAddChars(it,n->data+r,1)) return 0;
}
raxNode **cp = raxNodeFirstChildPtr(n)+r;
if (!raxStackPush(&it->stack,n)) return 0;
memcpy(&n,cp,sizeof(n));
}
if (n->iskey) steps--;
}
it->node = n;
return 1;
}
/* Compare the key currently pointed by the iterator to the specified
* key according to the specified operator. Returns 1 if the comparison is
* true, otherwise 0 is returned. */
int raxCompare(raxIterator *iter, const char *op, unsigned char *key, size_t key_len) {
int eq = 0, lt = 0, gt = 0;
if (op[0] == '=' || op[1] == '=') eq = 1;
if (op[0] == '>') gt = 1;
else if (op[0] == '<') lt = 1;
else if (op[1] != '=') return 0; /* Syntax error. */
size_t minlen = key_len < iter->key_len ? key_len : iter->key_len;
int cmp = memcmp(iter->key,key,minlen);
/* Handle == */
if (lt == 0 && gt == 0) return cmp == 0 && key_len == iter->key_len;
/* Handle >, >=, <, <= */
if (cmp == 0) {
/* Same prefix: longer wins. */
if (eq && key_len == iter->key_len) return 1;
else if (lt) return iter->key_len < key_len;
else if (gt) return iter->key_len > key_len;
} if (cmp > 0) {
return gt ? 1 : 0;
} else /* (cmp < 0) */ {
return lt ? 1 : 0;
}
}
/* Free the iterator. */
void raxStop(raxIterator *it) {
if (it->key != it->key_static_string) rax_free(it->key);
raxStackFree(&it->stack);
}
/* Return if the iterator is in an EOF state. This happens when raxSeek()
* failed to seek an appropriate element, so that raxNext() or raxPrev()
* will return zero, or when an EOF condition was reached while iterating
* with raxNext() and raxPrev(). */
int raxEOF(raxIterator *it) {
return it->flags & RAX_ITER_EOF;
}
/* Return the number of elements inside the radix tree. */
uint64_t raxSize(rax *rax) {
return rax->numele;
}
/* ----------------------------- Introspection ------------------------------ */
/* This function is mostly used for debugging and learning purposes.
* It shows an ASCII representation of a tree on standard output, outling
* all the nodes and the contained keys.
*
* The representation is as follow:
*
* "foobar" (compressed node)
* [abc] (normal node with three children)
* [abc]=0x12345678 (node is a key, pointing to value 0x12345678)
* [] (a normal empty node)
*
* Children are represented in new idented lines, each children prefixed by
* the "`-(x)" string, where "x" is the edge byte.
*
* [abc]
* `-(a) "ladin"
* `-(b) [kj]
* `-(c) []
*
* However when a node has a single child the following representation
* is used instead:
*
* [abc] -> "ladin" -> []
*/
/* The actual implementation of raxShow(). */
void raxRecursiveShow(int level, int lpad, raxNode *n) {
char s = n->iscompr ? '"' : '[';
char e = n->iscompr ? '"' : ']';
int numchars = printf("%c%.*s%c", s, n->size, n->data, e);
if (n->iskey) {
numchars += printf("=%p",raxGetData(n));
}
int numchildren = n->iscompr ? 1 : n->size;
/* Note that 7 and 4 magic constants are the string length
* of " `-(x) " and " -> " respectively. */
if (level) {
lpad += (numchildren > 1) ? 7 : 4;
if (numchildren == 1) lpad += numchars;
}
raxNode **cp = raxNodeFirstChildPtr(n);
for (int i = 0; i < numchildren; i++) {
char *branch = " `-(%c) ";
if (numchildren > 1) {
printf("\n");
for (int j = 0; j < lpad; j++) putchar(' ');
printf(branch,n->data[i]);
} else {
printf(" -> ");
}
raxNode *child;
memcpy(&child,cp,sizeof(child));
raxRecursiveShow(level+1,lpad,child);
cp++;
}
}
/* Show a tree, as outlined in the comment above. */
void raxShow(rax *rax) {
raxRecursiveShow(0,0,rax->head);
putchar('\n');
}
/* Used by debugnode() macro to show info about a given node. */
void raxDebugShowNode(const char *msg, raxNode *n) {
printf("%s: %p [%.*s] key:%d size:%d children:",
msg, (void*)n, (int)n->size, (char*)n->data, n->iskey, n->size);
int numcld = n->iscompr ? 1 : n->size;
raxNode **cldptr = raxNodeLastChildPtr(n) - (numcld-1);
while(numcld--) {
raxNode *child;
memcpy(&child,cldptr,sizeof(child));
cldptr++;
printf("%p ", (void*)child);
}
printf("\n");
fflush(stdout);
}
|