summaryrefslogtreecommitdiff
path: root/tests/unit/type/set.tcl
blob: 091ef7f0f899dc43b50ceaa5b28d0425518d28b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
start_server {
    tags {"set"}
    overrides {
        "set-max-intset-entries" 512
    }
} {
    proc create_set {key entries} {
        r del $key
        foreach entry $entries { r sadd $key $entry }
    }

    test {SADD, SCARD, SISMEMBER, SMISMEMBER, SMEMBERS basics - regular set} {
        create_set myset {foo}
        assert_encoding hashtable myset
        assert_equal 1 [r sadd myset bar]
        assert_equal 0 [r sadd myset bar]
        assert_equal 2 [r scard myset]
        assert_equal 1 [r sismember myset foo]
        assert_equal 1 [r sismember myset bar]
        assert_equal 0 [r sismember myset bla]
        assert_equal {1} [r smismember myset foo]
        assert_equal {1 1} [r smismember myset foo bar]
        assert_equal {1 0} [r smismember myset foo bla]
        assert_equal {0 1} [r smismember myset bla foo]
        assert_equal {0} [r smismember myset bla]
        assert_equal {bar foo} [lsort [r smembers myset]]
    }

    test {SADD, SCARD, SISMEMBER, SMISMEMBER, SMEMBERS basics - intset} {
        create_set myset {17}
        assert_encoding intset myset
        assert_equal 1 [r sadd myset 16]
        assert_equal 0 [r sadd myset 16]
        assert_equal 2 [r scard myset]
        assert_equal 1 [r sismember myset 16]
        assert_equal 1 [r sismember myset 17]
        assert_equal 0 [r sismember myset 18]
        assert_equal {1} [r smismember myset 16]
        assert_equal {1 1} [r smismember myset 16 17]
        assert_equal {1 0} [r smismember myset 16 18]
        assert_equal {0 1} [r smismember myset 18 16]
        assert_equal {0} [r smismember myset 18]
        assert_equal {16 17} [lsort [r smembers myset]]
    }

    test {SMISMEMBER against non set} {
        r lpush mylist foo
        assert_error WRONGTYPE* {r smismember mylist bar}
    }

    test {SMISMEMBER non existing key} {
        assert_equal {0} [r smismember myset1 foo]
        assert_equal {0 0} [r smismember myset1 foo bar]
    }

    test {SMISMEMBER requires one or more members} {
        r del zmscoretest
        r zadd zmscoretest 10 x
        r zadd zmscoretest 20 y
        
        catch {r smismember zmscoretest} e
        assert_match {*ERR*wrong*number*arg*} $e
    }

    test {SADD against non set} {
        r lpush mylist foo
        assert_error WRONGTYPE* {r sadd mylist bar}
    }

    test "SADD a non-integer against an intset" {
        create_set myset {1 2 3}
        assert_encoding intset myset
        assert_equal 1 [r sadd myset a]
        assert_encoding hashtable myset
    }

    test "SADD an integer larger than 64 bits" {
        create_set myset {213244124402402314402033402}
        assert_encoding hashtable myset
        assert_equal 1 [r sismember myset 213244124402402314402033402]
        assert_equal {1} [r smismember myset 213244124402402314402033402]
    }

    test "SADD overflows the maximum allowed integers in an intset" {
        r del myset
        for {set i 0} {$i < 512} {incr i} { r sadd myset $i }
        assert_encoding intset myset
        assert_equal 1 [r sadd myset 512]
        assert_encoding hashtable myset
    }

    test {Variadic SADD} {
        r del myset
        assert_equal 3 [r sadd myset a b c]
        assert_equal 2 [r sadd myset A a b c B]
        assert_equal [lsort {A a b c B}] [lsort [r smembers myset]]
    }

    test "Set encoding after DEBUG RELOAD" {
        r del myintset myhashset mylargeintset
        for {set i 0} {$i <  100} {incr i} { r sadd myintset $i }
        for {set i 0} {$i < 1280} {incr i} { r sadd mylargeintset $i }
        for {set i 0} {$i <  256} {incr i} { r sadd myhashset [format "i%03d" $i] }
        assert_encoding intset myintset
        assert_encoding hashtable mylargeintset
        assert_encoding hashtable myhashset

        r debug reload
        assert_encoding intset myintset
        assert_encoding hashtable mylargeintset
        assert_encoding hashtable myhashset
    }

    test {SREM basics - regular set} {
        create_set myset {foo bar ciao}
        assert_encoding hashtable myset
        assert_equal 0 [r srem myset qux]
        assert_equal 1 [r srem myset foo]
        assert_equal {bar ciao} [lsort [r smembers myset]]
    }

    test {SREM basics - intset} {
        create_set myset {3 4 5}
        assert_encoding intset myset
        assert_equal 0 [r srem myset 6]
        assert_equal 1 [r srem myset 4]
        assert_equal {3 5} [lsort [r smembers myset]]
    }

    test {SREM with multiple arguments} {
        r del myset
        r sadd myset a b c d
        assert_equal 0 [r srem myset k k k]
        assert_equal 2 [r srem myset b d x y]
        lsort [r smembers myset]
    } {a c}

    test {SREM variadic version with more args needed to destroy the key} {
        r del myset
        r sadd myset 1 2 3
        r srem myset 1 2 3 4 5 6 7 8
    } {3}

    foreach {type} {hashtable intset} {
        for {set i 1} {$i <= 5} {incr i} {
            r del [format "set%d" $i]
        }
        for {set i 0} {$i < 200} {incr i} {
            r sadd set1 $i
            r sadd set2 [expr $i+195]
        }
        foreach i {199 195 1000 2000} {
            r sadd set3 $i
        }
        for {set i 5} {$i < 200} {incr i} {
            r sadd set4 $i
        }
        r sadd set5 0

        # To make sure the sets are encoded as the type we are testing -- also
        # when the VM is enabled and the values may be swapped in and out
        # while the tests are running -- an extra element is added to every
        # set that determines its encoding.
        set large 200
        if {$type eq "hashtable"} {
            set large foo
        }

        for {set i 1} {$i <= 5} {incr i} {
            r sadd [format "set%d" $i] $large
        }

        test "Generated sets must be encoded as $type" {
            for {set i 1} {$i <= 5} {incr i} {
                assert_encoding $type [format "set%d" $i]
            }
        }

        test "SINTER with two sets - $type" {
            assert_equal [list 195 196 197 198 199 $large] [lsort [r sinter set1 set2]]
        }

        test "SINTERSTORE with two sets - $type" {
            r sinterstore setres set1 set2
            assert_encoding $type setres
            assert_equal [list 195 196 197 198 199 $large] [lsort [r smembers setres]]
        }

        test "SINTERSTORE with two sets, after a DEBUG RELOAD - $type" {
            r debug reload
            r sinterstore setres set1 set2
            assert_encoding $type setres
            assert_equal [list 195 196 197 198 199 $large] [lsort [r smembers setres]]
        }

        test "SUNION with two sets - $type" {
            set expected [lsort -uniq "[r smembers set1] [r smembers set2]"]
            assert_equal $expected [lsort [r sunion set1 set2]]
        }

        test "SUNIONSTORE with two sets - $type" {
            r sunionstore setres set1 set2
            assert_encoding $type setres
            set expected [lsort -uniq "[r smembers set1] [r smembers set2]"]
            assert_equal $expected [lsort [r smembers setres]]
        }

        test "SINTER against three sets - $type" {
            assert_equal [list 195 199 $large] [lsort [r sinter set1 set2 set3]]
        }

        test "SINTERSTORE with three sets - $type" {
            r sinterstore setres set1 set2 set3
            assert_equal [list 195 199 $large] [lsort [r smembers setres]]
        }

        test "SUNION with non existing keys - $type" {
            set expected [lsort -uniq "[r smembers set1] [r smembers set2]"]
            assert_equal $expected [lsort [r sunion nokey1 set1 set2 nokey2]]
        }

        test "SDIFF with two sets - $type" {
            assert_equal {0 1 2 3 4} [lsort [r sdiff set1 set4]]
        }

        test "SDIFF with three sets - $type" {
            assert_equal {1 2 3 4} [lsort [r sdiff set1 set4 set5]]
        }

        test "SDIFFSTORE with three sets - $type" {
            r sdiffstore setres set1 set4 set5
            # When we start with intsets, we should always end with intsets.
            if {$type eq {intset}} {
                assert_encoding intset setres
            }
            assert_equal {1 2 3 4} [lsort [r smembers setres]]
        }
    }

    test "SDIFF with first set empty" {
        r del set1 set2 set3
        r sadd set2 1 2 3 4
        r sadd set3 a b c d
        r sdiff set1 set2 set3
    } {}

    test "SDIFF with same set two times" {
        r del set1
        r sadd set1 a b c 1 2 3 4 5 6
        r sdiff set1 set1
    } {}

    test "SDIFF fuzzing" {
        for {set j 0} {$j < 100} {incr j} {
            unset -nocomplain s
            array set s {}
            set args {}
            set num_sets [expr {[randomInt 10]+1}]
            for {set i 0} {$i < $num_sets} {incr i} {
                set num_elements [randomInt 100]
                r del set_$i
                lappend args set_$i
                while {$num_elements} {
                    set ele [randomValue]
                    r sadd set_$i $ele
                    if {$i == 0} {
                        set s($ele) x
                    } else {
                        unset -nocomplain s($ele)
                    }
                    incr num_elements -1
                }
            }
            set result [lsort [r sdiff {*}$args]]
            assert_equal $result [lsort [array names s]]
        }
    }

    test "SINTER against non-set should throw error" {
        r set key1 x
        assert_error "WRONGTYPE*" {r sinter key1 noset}
    }

    test "SUNION against non-set should throw error" {
        r set key1 x
        assert_error "WRONGTYPE*" {r sunion key1 noset}
    }

    test "SINTER should handle non existing key as empty" {
        r del set1 set2 set3
        r sadd set1 a b c
        r sadd set2 b c d
        r sinter set1 set2 set3
    } {}

    test "SINTER with same integer elements but different encoding" {
        r del set1 set2
        r sadd set1 1 2 3
        r sadd set2 1 2 3 a
        r srem set2 a
        assert_encoding intset set1
        assert_encoding hashtable set2
        lsort [r sinter set1 set2]
    } {1 2 3}

    test "SINTERSTORE against non existing keys should delete dstkey" {
        r set setres xxx
        assert_equal 0 [r sinterstore setres foo111 bar222]
        assert_equal 0 [r exists setres]
    }

    test "SUNIONSTORE against non existing keys should delete dstkey" {
        r set setres xxx
        assert_equal 0 [r sunionstore setres foo111 bar222]
        assert_equal 0 [r exists setres]
    }

    foreach {type contents} {hashtable {a b c} intset {1 2 3}} {
        test "SPOP basics - $type" {
            create_set myset $contents
            assert_encoding $type myset
            assert_equal $contents [lsort [list [r spop myset] [r spop myset] [r spop myset]]]
            assert_equal 0 [r scard myset]
        }

        test "SPOP with <count>=1 - $type" {
            create_set myset $contents
            assert_encoding $type myset
            assert_equal $contents [lsort [list [r spop myset 1] [r spop myset 1] [r spop myset 1]]]
            assert_equal 0 [r scard myset]
        }

        test "SRANDMEMBER - $type" {
            create_set myset $contents
            unset -nocomplain myset
            array set myset {}
            for {set i 0} {$i < 100} {incr i} {
                set myset([r srandmember myset]) 1
            }
            assert_equal $contents [lsort [array names myset]]
        }
    }

    foreach {type contents} {
        hashtable {a b c d e f g h i j k l m n o p q r s t u v w x y z} 
        intset {1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 3 4 5 6 7 8 9}
    } {
        test "SPOP with <count>" {
            create_set myset $contents
            assert_encoding $type myset
            assert_equal $contents [lsort [concat [r spop myset 11] [r spop myset 9] [r spop myset 0] [r spop myset 4] [r spop myset 1] [r spop myset 0] [r spop myset 1] [r spop myset 0]]]
            assert_equal 0 [r scard myset]
        }
    }

    # As seen in intsetRandomMembers
    test "SPOP using integers, testing Knuth's and Floyd's algorithm" {
        create_set myset {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}
        assert_encoding intset myset
        assert_equal 20 [r scard myset]
        r spop myset 1
        assert_equal 19 [r scard myset]
        r spop myset 2
        assert_equal 17 [r scard myset]
        r spop myset 3
        assert_equal 14 [r scard myset]
        r spop myset 10
        assert_equal 4 [r scard myset]
        r spop myset 10
        assert_equal 0 [r scard myset]
        r spop myset 1
        assert_equal 0 [r scard myset]
    } {}

    test "SPOP using integers with Knuth's algorithm" {
        r spop nonexisting_key 100
    } {}

    test "SPOP new implementation: code path #1" {
        set content {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}
        create_set myset $content
        set res [r spop myset 30]
        assert {[lsort $content] eq [lsort $res]}
    }

    test "SPOP new implementation: code path #2" {
        set content {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}
        create_set myset $content
        set res [r spop myset 2]
        assert {[llength $res] == 2}
        assert {[r scard myset] == 18}
        set union [concat [r smembers myset] $res]
        assert {[lsort $union] eq [lsort $content]}
    }

    test "SPOP new implementation: code path #3" {
        set content {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}
        create_set myset $content
        set res [r spop myset 18]
        assert {[llength $res] == 18}
        assert {[r scard myset] == 2}
        set union [concat [r smembers myset] $res]
        assert {[lsort $union] eq [lsort $content]}
    }

    test "SRANDMEMBER with <count> against non existing key" {
        r srandmember nonexisting_key 100
    } {}

    foreach {type contents} {
        hashtable {
            1 5 10 50 125 50000 33959417 4775547 65434162
            12098459 427716 483706 2726473884 72615637475
            MARY PATRICIA LINDA BARBARA ELIZABETH JENNIFER MARIA
            SUSAN MARGARET DOROTHY LISA NANCY KAREN BETTY HELEN
            SANDRA DONNA CAROL RUTH SHARON MICHELLE LAURA SARAH
            KIMBERLY DEBORAH JESSICA SHIRLEY CYNTHIA ANGELA MELISSA
            BRENDA AMY ANNA REBECCA VIRGINIA KATHLEEN
        }
        intset {
            0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
            20 21 22 23 24 25 26 27 28 29
            30 31 32 33 34 35 36 37 38 39
            40 41 42 43 44 45 46 47 48 49
        }
    } {
        test "SRANDMEMBER with <count> - $type" {
            create_set myset $contents
            unset -nocomplain myset
            array set myset {}
            foreach ele [r smembers myset] {
                set myset($ele) 1
            }
            assert_equal [lsort $contents] [lsort [array names myset]]

            # Make sure that a count of 0 is handled correctly.
            assert_equal [r srandmember myset 0] {}

            # We'll stress different parts of the code, see the implementation
            # of SRANDMEMBER for more information, but basically there are
            # four different code paths.
            #
            # PATH 1: Use negative count.
            #
            # 1) Check that it returns repeated elements.
            set res [r srandmember myset -100]
            assert_equal [llength $res] 100

            # 2) Check that all the elements actually belong to the
            # original set.
            foreach ele $res {
                assert {[info exists myset($ele)]}
            }

            # 3) Check that eventually all the elements are returned.
            unset -nocomplain auxset
            set iterations 1000
            while {$iterations != 0} {
                incr iterations -1
                set res [r srandmember myset -10]
                foreach ele $res {
                    set auxset($ele) 1
                }
                if {[lsort [array names myset]] eq
                    [lsort [array names auxset]]} {
                    break;
                }
            }
            assert {$iterations != 0}

            # PATH 2: positive count (unique behavior) with requested size
            # equal or greater than set size.
            foreach size {50 100} {
                set res [r srandmember myset $size]
                assert_equal [llength $res] 50
                assert_equal [lsort $res] [lsort [array names myset]]
            }

            # PATH 3: Ask almost as elements as there are in the set.
            # In this case the implementation will duplicate the original
            # set and will remove random elements up to the requested size.
            #
            # PATH 4: Ask a number of elements definitely smaller than
            # the set size.
            #
            # We can test both the code paths just changing the size but
            # using the same code.

            foreach size {45 5} {
                set res [r srandmember myset $size]
                assert_equal [llength $res] $size

                # 1) Check that all the elements actually belong to the
                # original set.
                foreach ele $res {
                    assert {[info exists myset($ele)]}
                }

                # 2) Check that eventually all the elements are returned.
                unset -nocomplain auxset
                set iterations 1000
                while {$iterations != 0} {
                    incr iterations -1
                    set res [r srandmember myset $size]
                    foreach ele $res {
                        set auxset($ele) 1
                    }
                    if {[lsort [array names myset]] eq
                        [lsort [array names auxset]]} {
                        break;
                    }
                }
                assert {$iterations != 0}
            }
        }
    }

    proc setup_move {} {
        r del myset3 myset4
        create_set myset1 {1 a b}
        create_set myset2 {2 3 4}
        assert_encoding hashtable myset1
        assert_encoding intset myset2
    }

    test "SMOVE basics - from regular set to intset" {
        # move a non-integer element to an intset should convert encoding
        setup_move
        assert_equal 1 [r smove myset1 myset2 a]
        assert_equal {1 b} [lsort [r smembers myset1]]
        assert_equal {2 3 4 a} [lsort [r smembers myset2]]
        assert_encoding hashtable myset2

        # move an integer element should not convert the encoding
        setup_move
        assert_equal 1 [r smove myset1 myset2 1]
        assert_equal {a b} [lsort [r smembers myset1]]
        assert_equal {1 2 3 4} [lsort [r smembers myset2]]
        assert_encoding intset myset2
    }

    test "SMOVE basics - from intset to regular set" {
        setup_move
        assert_equal 1 [r smove myset2 myset1 2]
        assert_equal {1 2 a b} [lsort [r smembers myset1]]
        assert_equal {3 4} [lsort [r smembers myset2]]
    }

    test "SMOVE non existing key" {
        setup_move
        assert_equal 0 [r smove myset1 myset2 foo]
        assert_equal 0 [r smove myset1 myset1 foo]
        assert_equal {1 a b} [lsort [r smembers myset1]]
        assert_equal {2 3 4} [lsort [r smembers myset2]]
    }

    test "SMOVE non existing src set" {
        setup_move
        assert_equal 0 [r smove noset myset2 foo]
        assert_equal {2 3 4} [lsort [r smembers myset2]]
    }

    test "SMOVE from regular set to non existing destination set" {
        setup_move
        assert_equal 1 [r smove myset1 myset3 a]
        assert_equal {1 b} [lsort [r smembers myset1]]
        assert_equal {a} [lsort [r smembers myset3]]
        assert_encoding hashtable myset3
    }

    test "SMOVE from intset to non existing destination set" {
        setup_move
        assert_equal 1 [r smove myset2 myset3 2]
        assert_equal {3 4} [lsort [r smembers myset2]]
        assert_equal {2} [lsort [r smembers myset3]]
        assert_encoding intset myset3
    }

    test "SMOVE wrong src key type" {
        r set x 10
        assert_error "WRONGTYPE*" {r smove x myset2 foo}
    }

    test "SMOVE wrong dst key type" {
        r set x 10
        assert_error "WRONGTYPE*" {r smove myset2 x foo}
    }

    test "SMOVE with identical source and destination" {
        r del set
        r sadd set a b c
        r smove set set b
        lsort [r smembers set]
    } {a b c}

    tags {slow} {
        test {intsets implementation stress testing} {
            for {set j 0} {$j < 20} {incr j} {
                unset -nocomplain s
                array set s {}
                r del s
                set len [randomInt 1024]
                for {set i 0} {$i < $len} {incr i} {
                    randpath {
                        set data [randomInt 65536]
                    } {
                        set data [randomInt 4294967296]
                    } {
                        set data [randomInt 18446744073709551616]
                    }
                    set s($data) {}
                    r sadd s $data
                }
                assert_equal [lsort [r smembers s]] [lsort [array names s]]
                set len [array size s]
                for {set i 0} {$i < $len} {incr i} {
                    set e [r spop s]
                    if {![info exists s($e)]} {
                        puts "Can't find '$e' on local array"
                        puts "Local array: [lsort [r smembers s]]"
                        puts "Remote array: [lsort [array names s]]"
                        error "exception"
                    }
                    array unset s $e
                }
                assert_equal [r scard s] 0
                assert_equal [array size s] 0
            }
        }
    }
}