/* * Routines used by the file-transfer code. * * Copyright (C) 1996 Andrew Tridgell * Copyright (C) 1996 Paul Mackerras * Copyright (C) 2003-2022 Wayne Davison * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, visit the http://fsf.org website. */ #include "rsync.h" #include "itypes.h" #include #ifdef SUPPORT_ZSTD #include #endif #ifdef SUPPORT_LZ4 #include #endif extern int do_compression; extern int protocol_version; extern int module_id; extern int do_compression_level; extern char *skip_compress; #ifndef Z_INSERT_ONLY #define Z_INSERT_ONLY Z_SYNC_FLUSH #endif static int skip_compression_level; /* The least possible compressing for handling skip-compress files. */ static int per_file_default_level; /* The default level that each new file gets prior to checking its suffix. */ struct suffix_tree { struct suffix_tree *sibling; struct suffix_tree *child; char letter, word_end; }; static char *match_list; static struct suffix_tree *suftree; void init_compression_level(void) { int min_level, max_level, def_level, off_level; switch (do_compression) { case CPRES_NONE: return; case CPRES_ZLIB: case CPRES_ZLIBX: min_level = 1; max_level = Z_BEST_COMPRESSION; def_level = 6; /* Z_DEFAULT_COMPRESSION is -1, so set it to the real default */ off_level = skip_compression_level = Z_NO_COMPRESSION; if (do_compression_level == Z_DEFAULT_COMPRESSION) do_compression_level = def_level; break; #ifdef SUPPORT_ZSTD case CPRES_ZSTD: min_level = skip_compression_level = ZSTD_minCLevel(); max_level = ZSTD_maxCLevel(); def_level = ZSTD_CLEVEL_DEFAULT; off_level = CLVL_NOT_SPECIFIED; if (do_compression_level == 0) do_compression_level = def_level; break; #endif #ifdef SUPPORT_LZ4 case CPRES_LZ4: min_level = skip_compression_level = 0; max_level = 0; def_level = 0; off_level = CLVL_NOT_SPECIFIED; break; #endif default: /* paranoia to prevent missing case values */ NOISY_DEATH("Unknown do_compression value"); } if (do_compression_level == CLVL_NOT_SPECIFIED) do_compression_level = def_level; else if (do_compression_level == off_level) { do_compression = CPRES_NONE; return; } /* We don't bother with any errors or warnings -- just make sure that the values are valid. */ if (do_compression_level < min_level) do_compression_level = min_level; else if (do_compression_level > max_level) do_compression_level = max_level; } static void add_suffix(struct suffix_tree **prior, char ltr, const char *str) { struct suffix_tree *node, *newnode; if (ltr == '[') { const char *after = strchr(str, ']'); /* Treat "[foo" and "[]" as having a literal '['. */ if (after && after++ != str+1) { while ((ltr = *str++) != ']') add_suffix(prior, ltr, after); return; } } for (node = *prior; node; prior = &node->sibling, node = node->sibling) { if (node->letter == ltr) { if (*str) add_suffix(&node->child, *str, str+1); else node->word_end = 1; return; } if (node->letter > ltr) break; } newnode = new(struct suffix_tree); newnode->sibling = node; newnode->child = NULL; newnode->letter = ltr; *prior = newnode; if (*str) { add_suffix(&newnode->child, *str, str+1); newnode->word_end = 0; } else newnode->word_end = 1; } static void add_nocompress_suffixes(const char *str) { char *buf, *t; const char *f = str; buf = new_array(char, strlen(f) + 1); while (*f) { if (*f == '/') { f++; continue; } t = buf; do { if (isUpper(f)) *t++ = toLower(f); else *t++ = *f; } while (*++f != '/' && *f); *t++ = '\0'; add_suffix(&suftree, *buf, buf+1); } free(buf); } static void init_set_compression(void) { const char *f; char *t, *start; if (skip_compress) add_nocompress_suffixes(skip_compress); /* A non-daemon transfer skips the default suffix list if the * user specified --skip-compress. */ if (skip_compress && module_id < 0) f = ""; else f = lp_dont_compress(module_id); match_list = t = new_array(char, strlen(f) + 2); per_file_default_level = do_compression_level; while (*f) { if (*f == ' ') { f++; continue; } start = t; do { if (isUpper(f)) *t++ = toLower(f); else *t++ = *f; } while (*++f != ' ' && *f); *t++ = '\0'; if (t - start == 1+1 && *start == '*') { /* Optimize a match-string of "*". */ *match_list = '\0'; suftree = NULL; per_file_default_level = skip_compression_level; break; } /* Move *.foo items into the stuffix tree. */ if (*start == '*' && start[1] == '.' && start[2] && !strpbrk(start+2, ".?*")) { add_suffix(&suftree, start[2], start+3); t = start; } } *t++ = '\0'; } /* determine the compression level based on a wildcard filename list */ void set_compression(const char *fname) { #if 0 /* No compression algorithms currently allow mid-stream changing of the level. */ const struct suffix_tree *node; const char *s; char ltr; #endif if (!do_compression) return; if (!match_list) init_set_compression(); #if 0 compression_level = per_file_default_level; if (!*match_list && !suftree) return; if ((s = strrchr(fname, '/')) != NULL) fname = s + 1; for (s = match_list; *s; s += strlen(s) + 1) { if (iwildmatch(s, fname)) { compression_level = skip_compression_level; return; } } if (!(node = suftree) || !(s = strrchr(fname, '.')) || s == fname || !(ltr = *++s)) return; while (1) { if (isUpper(<r)) ltr = toLower(<r); while (node->letter != ltr) { if (node->letter > ltr) return; if (!(node = node->sibling)) return; } if ((ltr = *++s) == '\0') { if (node->word_end) compression_level = skip_compression_level; return; } if (!(node = node->child)) return; } #else (void)fname; #endif } /* non-compressing recv token */ static int32 simple_recv_token(int f, char **data) { static int32 residue; static char *buf; int32 n; if (!buf) buf = new_array(char, CHUNK_SIZE); if (residue == 0) { int32 i = read_int(f); if (i <= 0) return i; residue = i; } *data = buf; n = MIN(CHUNK_SIZE,residue); residue -= n; read_buf(f,buf,n); return n; } /* non-compressing send token */ static void simple_send_token(int f, int32 token, struct map_struct *buf, OFF_T offset, int32 n) { if (n > 0) { int32 len = 0; while (len < n) { int32 n1 = MIN(CHUNK_SIZE, n-len); write_int(f, n1); write_buf(f, map_ptr(buf, offset+len, n1), n1); len += n1; } } /* a -2 token means to send data only and no token */ if (token != -2) write_int(f, -(token+1)); } /* Flag bytes in compressed stream are encoded as follows: */ #define END_FLAG 0 /* that's all folks */ #define TOKEN_LONG 0x20 /* followed by 32-bit token number */ #define TOKENRUN_LONG 0x21 /* ditto with 16-bit run count */ #define DEFLATED_DATA 0x40 /* + 6-bit high len, then low len byte */ #define TOKEN_REL 0x80 /* + 6-bit relative token number */ #define TOKENRUN_REL 0xc0 /* ditto with 16-bit run count */ #define MAX_DATA_COUNT 16383 /* fit 14 bit count into 2 bytes with flags */ /* zlib.h says that if we want to be able to compress something in a single * call, avail_out must be at least 0.1% larger than avail_in plus 12 bytes. * We'll add in 0.1%+16, just to be safe (and we'll avoid floating point, * to ensure that this is a compile-time value). */ #define AVAIL_OUT_SIZE(avail_in_size) ((avail_in_size)*1001/1000+16) /* For coding runs of tokens */ static int32 last_token = -1; static int32 run_start; static int32 last_run_end; /* Deflation state */ static z_stream tx_strm; /* Output buffer */ static char *obuf; /* We want obuf to be able to hold both MAX_DATA_COUNT+2 bytes as well as * AVAIL_OUT_SIZE(CHUNK_SIZE) bytes, so make sure that it's large enough. */ #if MAX_DATA_COUNT+2 > AVAIL_OUT_SIZE(CHUNK_SIZE) #define OBUF_SIZE (MAX_DATA_COUNT+2) #else #define OBUF_SIZE AVAIL_OUT_SIZE(CHUNK_SIZE) #endif /* Send a deflated token */ static void send_deflated_token(int f, int32 token, struct map_struct *buf, OFF_T offset, int32 nb, int32 toklen) { static int init_done, flush_pending; int32 n, r; if (last_token == -1) { /* initialization */ if (!init_done) { tx_strm.next_in = NULL; tx_strm.zalloc = NULL; tx_strm.zfree = NULL; if (deflateInit2(&tx_strm, per_file_default_level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY) != Z_OK) { rprintf(FERROR, "compression init failed\n"); exit_cleanup(RERR_PROTOCOL); } obuf = new_array(char, OBUF_SIZE); init_done = 1; } else deflateReset(&tx_strm); last_run_end = 0; run_start = token; flush_pending = 0; } else if (last_token == -2) { run_start = token; } else if (nb != 0 || token != last_token + 1 || token >= run_start + 65536) { /* output previous run */ r = run_start - last_run_end; n = last_token - run_start; if (r >= 0 && r <= 63) { write_byte(f, (n==0? TOKEN_REL: TOKENRUN_REL) + r); } else { write_byte(f, (n==0? TOKEN_LONG: TOKENRUN_LONG)); write_int(f, run_start); } if (n != 0) { write_byte(f, n); write_byte(f, n >> 8); } last_run_end = last_token; run_start = token; } last_token = token; if (nb != 0 || flush_pending) { /* deflate the data starting at offset */ int flush = Z_NO_FLUSH; tx_strm.avail_in = 0; tx_strm.avail_out = 0; do { if (tx_strm.avail_in == 0 && nb != 0) { /* give it some more input */ n = MIN(nb, CHUNK_SIZE); tx_strm.next_in = (Bytef *) map_ptr(buf, offset, n); tx_strm.avail_in = n; nb -= n; offset += n; } if (tx_strm.avail_out == 0) { tx_strm.next_out = (Bytef *)(obuf + 2); tx_strm.avail_out = MAX_DATA_COUNT; if (flush != Z_NO_FLUSH) { /* * We left the last 4 bytes in the * buffer, in case they are the * last 4. Move them to the front. */ memcpy(tx_strm.next_out, obuf+MAX_DATA_COUNT-2, 4); tx_strm.next_out += 4; tx_strm.avail_out -= 4; } } if (nb == 0 && token != -2) flush = Z_SYNC_FLUSH; r = deflate(&tx_strm, flush); if (r != Z_OK) { rprintf(FERROR, "deflate returned %d\n", r); exit_cleanup(RERR_STREAMIO); } if (nb == 0 || tx_strm.avail_out == 0) { n = MAX_DATA_COUNT - tx_strm.avail_out; if (flush != Z_NO_FLUSH) { /* * We have to trim off the last 4 * bytes of output when flushing * (they are just 0, 0, ff, ff). */ n -= 4; } if (n > 0) { obuf[0] = DEFLATED_DATA + (n >> 8); obuf[1] = n; write_buf(f, obuf, n+2); } } } while (nb != 0 || tx_strm.avail_out == 0); flush_pending = token == -2; } if (token == -1) { /* end of file - clean up */ write_byte(f, END_FLAG); } else if (token != -2 && do_compression == CPRES_ZLIB) { /* Add the data in the current block to the compressor's * history and hash table. */ do { /* Break up long sections in the same way that * see_deflate_token() does. */ int32 n1 = toklen > 0xffff ? 0xffff : toklen; toklen -= n1; tx_strm.next_in = (Bytef *)map_ptr(buf, offset, n1); tx_strm.avail_in = n1; if (protocol_version >= 31) /* Newer protocols avoid a data-duplicating bug */ offset += n1; tx_strm.next_out = (Bytef *) obuf; tx_strm.avail_out = AVAIL_OUT_SIZE(CHUNK_SIZE); r = deflate(&tx_strm, Z_INSERT_ONLY); if (r != Z_OK || tx_strm.avail_in != 0) { rprintf(FERROR, "deflate on token returned %d (%d bytes left)\n", r, tx_strm.avail_in); exit_cleanup(RERR_STREAMIO); } } while (toklen > 0); } } /* tells us what the receiver is in the middle of doing */ static enum { r_init, r_idle, r_running, r_inflating, r_inflated } recv_state; /* for inflating stuff */ static z_stream rx_strm; static char *cbuf; static char *dbuf; /* for decoding runs of tokens */ static int32 rx_token; static int32 rx_run; /* Receive a deflated token and inflate it */ static int32 recv_deflated_token(int f, char **data) { static int init_done; static int32 saved_flag; int32 n, flag; int r; for (;;) { switch (recv_state) { case r_init: if (!init_done) { rx_strm.next_out = NULL; rx_strm.zalloc = NULL; rx_strm.zfree = NULL; if (inflateInit2(&rx_strm, -15) != Z_OK) { rprintf(FERROR, "inflate init failed\n"); exit_cleanup(RERR_PROTOCOL); } cbuf = new_array(char, MAX_DATA_COUNT); dbuf = new_array(char, AVAIL_OUT_SIZE(CHUNK_SIZE)); init_done = 1; } else { inflateReset(&rx_strm); } recv_state = r_idle; rx_token = 0; break; case r_idle: case r_inflated: if (saved_flag) { flag = saved_flag & 0xff; saved_flag = 0; } else flag = read_byte(f); if ((flag & 0xC0) == DEFLATED_DATA) { n = ((flag & 0x3f) << 8) + read_byte(f); read_buf(f, cbuf, n); rx_strm.next_in = (Bytef *)cbuf; rx_strm.avail_in = n; recv_state = r_inflating; break; } if (recv_state == r_inflated) { /* check previous inflated stuff ended correctly */ rx_strm.avail_in = 0; rx_strm.next_out = (Bytef *)dbuf; rx_strm.avail_out = AVAIL_OUT_SIZE(CHUNK_SIZE); r = inflate(&rx_strm, Z_SYNC_FLUSH); n = AVAIL_OUT_SIZE(CHUNK_SIZE) - rx_strm.avail_out; /* * Z_BUF_ERROR just means no progress was * made, i.e. the decompressor didn't have * any pending output for us. */ if (r != Z_OK && r != Z_BUF_ERROR) { rprintf(FERROR, "inflate flush returned %d (%d bytes)\n", r, n); exit_cleanup(RERR_STREAMIO); } if (n != 0 && r != Z_BUF_ERROR) { /* have to return some more data and save the flag for later. */ saved_flag = flag + 0x10000; *data = dbuf; return n; } /* * At this point the decompressor should * be expecting to see the 0, 0, ff, ff bytes. */ if (!inflateSyncPoint(&rx_strm)) { rprintf(FERROR, "decompressor lost sync!\n"); exit_cleanup(RERR_STREAMIO); } rx_strm.avail_in = 4; rx_strm.next_in = (Bytef *)cbuf; cbuf[0] = cbuf[1] = 0; cbuf[2] = cbuf[3] = (char)0xff; inflate(&rx_strm, Z_SYNC_FLUSH); recv_state = r_idle; } if (flag == END_FLAG) { /* that's all folks */ recv_state = r_init; return 0; } /* here we have a token of some kind */ if (flag & TOKEN_REL) { rx_token += flag & 0x3f; flag >>= 6; } else rx_token = read_int(f); if (flag & 1) { rx_run = read_byte(f); rx_run += read_byte(f) << 8; recv_state = r_running; } return -1 - rx_token; case r_inflating: rx_strm.next_out = (Bytef *)dbuf; rx_strm.avail_out = AVAIL_OUT_SIZE(CHUNK_SIZE); r = inflate(&rx_strm, Z_NO_FLUSH); n = AVAIL_OUT_SIZE(CHUNK_SIZE) - rx_strm.avail_out; if (r != Z_OK) { rprintf(FERROR, "inflate returned %d (%d bytes)\n", r, n); exit_cleanup(RERR_STREAMIO); } if (rx_strm.avail_in == 0) recv_state = r_inflated; if (n != 0) { *data = dbuf; return n; } break; case r_running: ++rx_token; if (--rx_run == 0) recv_state = r_idle; return -1 - rx_token; } } } /* * put the data corresponding to a token that we've just returned * from recv_deflated_token into the decompressor's history buffer. */ static void see_deflate_token(char *buf, int32 len) { int r; int32 blklen; unsigned char hdr[5]; rx_strm.avail_in = 0; blklen = 0; hdr[0] = 0; do { if (rx_strm.avail_in == 0 && len != 0) { if (blklen == 0) { /* Give it a fake stored-block header. */ rx_strm.next_in = (Bytef *)hdr; rx_strm.avail_in = 5; blklen = len; if (blklen > 0xffff) blklen = 0xffff; hdr[1] = blklen; hdr[2] = blklen >> 8; hdr[3] = ~hdr[1]; hdr[4] = ~hdr[2]; } else { rx_strm.next_in = (Bytef *)buf; rx_strm.avail_in = blklen; if (protocol_version >= 31) /* Newer protocols avoid a data-duplicating bug */ buf += blklen; len -= blklen; blklen = 0; } } rx_strm.next_out = (Bytef *)dbuf; rx_strm.avail_out = AVAIL_OUT_SIZE(CHUNK_SIZE); r = inflate(&rx_strm, Z_SYNC_FLUSH); if (r != Z_OK && r != Z_BUF_ERROR) { rprintf(FERROR, "inflate (token) returned %d\n", r); exit_cleanup(RERR_STREAMIO); } } while (len || rx_strm.avail_out == 0); } #ifdef SUPPORT_ZSTD static ZSTD_inBuffer zstd_in_buff; static ZSTD_outBuffer zstd_out_buff; static ZSTD_CCtx *zstd_cctx; static void send_zstd_token(int f, int32 token, struct map_struct *buf, OFF_T offset, int32 nb) { static int comp_init_done, flush_pending; ZSTD_EndDirective flush = ZSTD_e_continue; int32 n, r; /* initialization */ if (!comp_init_done) { zstd_cctx = ZSTD_createCCtx(); if (!zstd_cctx) { rprintf(FERROR, "compression init failed\n"); exit_cleanup(RERR_PROTOCOL); } obuf = new_array(char, OBUF_SIZE); ZSTD_CCtx_setParameter(zstd_cctx, ZSTD_c_compressionLevel, do_compression_level); zstd_out_buff.dst = obuf + 2; comp_init_done = 1; } if (last_token == -1) { last_run_end = 0; run_start = token; flush_pending = 0; } else if (last_token == -2) { run_start = token; } else if (nb != 0 || token != last_token + 1 || token >= run_start + 65536) { /* output previous run */ r = run_start - last_run_end; n = last_token - run_start; if (r >= 0 && r <= 63) { write_byte(f, (n==0? TOKEN_REL: TOKENRUN_REL) + r); } else { write_byte(f, (n==0? TOKEN_LONG: TOKENRUN_LONG)); write_int(f, run_start); } if (n != 0) { write_byte(f, n); write_byte(f, n >> 8); } last_run_end = last_token; run_start = token; } last_token = token; if (nb || flush_pending) { zstd_in_buff.src = map_ptr(buf, offset, nb); zstd_in_buff.size = nb; zstd_in_buff.pos = 0; do { if (zstd_out_buff.size == 0) { zstd_out_buff.size = MAX_DATA_COUNT; zstd_out_buff.pos = 0; } /* File ended, flush */ if (token != -2) flush = ZSTD_e_flush; r = ZSTD_compressStream2(zstd_cctx, &zstd_out_buff, &zstd_in_buff, flush); if (ZSTD_isError(r)) { rprintf(FERROR, "ZSTD_compressStream returned %d\n", r); exit_cleanup(RERR_STREAMIO); } /* * Nothing is sent if the buffer isn't full so avoid smaller * transfers. If a file is finished then we flush the internal * state and send a smaller buffer so that the remote side can * finish the file. */ if (zstd_out_buff.pos == zstd_out_buff.size || flush == ZSTD_e_flush) { n = zstd_out_buff.pos; obuf[0] = DEFLATED_DATA + (n >> 8); obuf[1] = n; write_buf(f, obuf, n+2); zstd_out_buff.size = 0; } /* * Loop while the input buffer isn't full consumed or the * internal state isn't fully flushed. */ } while (zstd_in_buff.pos < zstd_in_buff.size || r > 0); flush_pending = token == -2; } if (token == -1) { /* end of file - clean up */ write_byte(f, END_FLAG); } } static ZSTD_DCtx *zstd_dctx; static int32 recv_zstd_token(int f, char **data) { static int decomp_init_done; static int out_buffer_size; int32 n, flag; int r; if (!decomp_init_done) { zstd_dctx = ZSTD_createDCtx(); if (!zstd_dctx) { rprintf(FERROR, "ZSTD_createDStream failed\n"); exit_cleanup(RERR_PROTOCOL); } /* Output buffer fits two decompressed blocks */ out_buffer_size = ZSTD_DStreamOutSize() * 2; cbuf = new_array(char, MAX_DATA_COUNT); dbuf = new_array(char, out_buffer_size); zstd_in_buff.src = cbuf; zstd_out_buff.dst = dbuf; decomp_init_done = 1; } for (;;) { switch (recv_state) { case r_init: recv_state = r_idle; rx_token = 0; break; case r_idle: flag = read_byte(f); if ((flag & 0xC0) == DEFLATED_DATA) { n = ((flag & 0x3f) << 8) + read_byte(f); read_buf(f, cbuf, n); zstd_in_buff.size = n; zstd_in_buff.pos = 0; recv_state = r_inflating; break; } if (flag == END_FLAG) { /* that's all folks */ recv_state = r_init; return 0; } /* here we have a token of some kind */ if (flag & TOKEN_REL) { rx_token += flag & 0x3f; flag >>= 6; } else rx_token = read_int(f); if (flag & 1) { rx_run = read_byte(f); rx_run += read_byte(f) << 8; recv_state = r_running; } return -1 - rx_token; case r_inflated: /* zstd doesn't get into this state */ break; case r_inflating: zstd_out_buff.size = out_buffer_size; zstd_out_buff.pos = 0; r = ZSTD_decompressStream(zstd_dctx, &zstd_out_buff, &zstd_in_buff); n = zstd_out_buff.pos; if (ZSTD_isError(r)) { rprintf(FERROR, "ZSTD decomp returned %d (%d bytes)\n", r, n); exit_cleanup(RERR_STREAMIO); } /* * If the input buffer is fully consumed and the output * buffer is not full then next step is to read more * data. */ if (zstd_in_buff.size == zstd_in_buff.pos && n < out_buffer_size) recv_state = r_idle; if (n != 0) { *data = dbuf; return n; } break; case r_running: ++rx_token; if (--rx_run == 0) recv_state = r_idle; return -1 - rx_token; } } } #endif /* SUPPORT_ZSTD */ #ifdef SUPPORT_LZ4 static void send_compressed_token(int f, int32 token, struct map_struct *buf, OFF_T offset, int32 nb) { static int init_done, flush_pending; int size = MAX(LZ4_compressBound(CHUNK_SIZE), MAX_DATA_COUNT+2); int32 n, r; if (last_token == -1) { if (!init_done) { obuf = new_array(char, size); init_done = 1; } last_run_end = 0; run_start = token; flush_pending = 0; } else if (last_token == -2) { run_start = token; } else if (nb != 0 || token != last_token + 1 || token >= run_start + 65536) { /* output previous run */ r = run_start - last_run_end; n = last_token - run_start; if (r >= 0 && r <= 63) { write_byte(f, (n==0? TOKEN_REL: TOKENRUN_REL) + r); } else { write_byte(f, (n==0? TOKEN_LONG: TOKENRUN_LONG)); write_int(f, run_start); } if (n != 0) { write_byte(f, n); write_byte(f, n >> 8); } last_run_end = last_token; run_start = token; } last_token = token; if (nb != 0 || flush_pending) { int available_in, available_out = 0; const char *next_in; do { char *next_out = obuf + 2; if (available_out == 0) { available_in = MIN(nb, MAX_DATA_COUNT); next_in = map_ptr(buf, offset, available_in); } else available_in /= 2; available_out = LZ4_compress_default(next_in, next_out, available_in, size - 2); if (!available_out) { rprintf(FERROR, "compress returned %d\n", available_out); exit_cleanup(RERR_STREAMIO); } if (available_out <= MAX_DATA_COUNT) { obuf[0] = DEFLATED_DATA + (available_out >> 8); obuf[1] = available_out; write_buf(f, obuf, available_out + 2); available_out = 0; nb -= available_in; offset += available_in; } } while (nb != 0); flush_pending = token == -2; } if (token == -1) { /* end of file - clean up */ write_byte(f, END_FLAG); } } static int32 recv_compressed_token(int f, char **data) { static int init_done; int32 n, flag; int size = MAX(LZ4_compressBound(CHUNK_SIZE), MAX_DATA_COUNT+2); static const char *next_in; static int avail_in; int avail_out; for (;;) { switch (recv_state) { case r_init: if (!init_done) { cbuf = new_array(char, MAX_DATA_COUNT); dbuf = new_array(char, size); init_done = 1; } recv_state = r_idle; rx_token = 0; break; case r_idle: flag = read_byte(f); if ((flag & 0xC0) == DEFLATED_DATA) { n = ((flag & 0x3f) << 8) + read_byte(f); read_buf(f, cbuf, n); next_in = (char *)cbuf; avail_in = n; recv_state = r_inflating; break; } if (flag == END_FLAG) { /* that's all folks */ recv_state = r_init; return 0; } /* here we have a token of some kind */ if (flag & TOKEN_REL) { rx_token += flag & 0x3f; flag >>= 6; } else rx_token = read_int(f); if (flag & 1) { rx_run = read_byte(f); rx_run += read_byte(f) << 8; recv_state = r_running; } return -1 - rx_token; case r_inflating: avail_out = LZ4_decompress_safe(next_in, dbuf, avail_in, size); if (avail_out < 0) { rprintf(FERROR, "uncompress failed: %d\n", avail_out); exit_cleanup(RERR_STREAMIO); } recv_state = r_idle; *data = dbuf; return avail_out; case r_inflated: /* lz4 doesn't get into this state */ break; case r_running: ++rx_token; if (--rx_run == 0) recv_state = r_idle; return -1 - rx_token; } } } #endif /* SUPPORT_LZ4 */ /** * Transmit a verbatim buffer of length @p n followed by a token. * If token == -1 then we have reached EOF * If n == 0 then don't send a buffer */ void send_token(int f, int32 token, struct map_struct *buf, OFF_T offset, int32 n, int32 toklen) { switch (do_compression) { case CPRES_NONE: simple_send_token(f, token, buf, offset, n); break; case CPRES_ZLIB: case CPRES_ZLIBX: send_deflated_token(f, token, buf, offset, n, toklen); break; #ifdef SUPPORT_ZSTD case CPRES_ZSTD: send_zstd_token(f, token, buf, offset, n); break; #endif #ifdef SUPPORT_LZ4 case CPRES_LZ4: send_compressed_token(f, token, buf, offset, n); break; #endif default: NOISY_DEATH("Unknown do_compression value"); } } /* * receive a token or buffer from the other end. If the return value is >0 then * it is a data buffer of that length, and *data will point at the data. * if the return value is -i then it represents token i-1 * if the return value is 0 then the end has been reached */ int32 recv_token(int f, char **data) { switch (do_compression) { case CPRES_NONE: return simple_recv_token(f,data); case CPRES_ZLIB: case CPRES_ZLIBX: return recv_deflated_token(f, data); #ifdef SUPPORT_ZSTD case CPRES_ZSTD: return recv_zstd_token(f, data); #endif #ifdef SUPPORT_LZ4 case CPRES_LZ4: return recv_compressed_token(f, data); #endif default: NOISY_DEATH("Unknown do_compression value"); } } /* * look at the data corresponding to a token, if necessary */ void see_token(char *data, int32 toklen) { switch (do_compression) { case CPRES_NONE: break; case CPRES_ZLIB: see_deflate_token(data, toklen); break; case CPRES_ZLIBX: break; #ifdef SUPPORT_ZSTD case CPRES_ZSTD: break; #endif #ifdef SUPPORT_LZ4 case CPRES_LZ4: /*see_uncompressed_token(data, toklen);*/ break; #endif default: NOISY_DEATH("Unknown do_compression value"); } }