diff options
author | matz <matz@b2dd03c8-39d4-4d8f-98ff-823fe69b080e> | 2005-07-06 09:47:08 +0000 |
---|---|---|
committer | matz <matz@b2dd03c8-39d4-4d8f-98ff-823fe69b080e> | 2005-07-06 09:47:08 +0000 |
commit | 7b7c03717949dbe5c41631bbf02652b251d02636 (patch) | |
tree | d1a1f3477269afcf2712463ea131713c75bf44e1 /missing | |
parent | 2e0680f22100e8fc46c8efb43ff1a1b875a9e306 (diff) | |
download | ruby-7b7c03717949dbe5c41631bbf02652b251d02636.tar.gz |
* object.c (rb_obj_pattern_match): now returns nil.
[ruby-core:05391]
* sample/svr.rb: service can be stopped by ill-behaved client; use
tsvr.rb instead.
* missing/erf.c: original erf.c by prof. Okumura is confirmed to
be public domain. reverted BSD implementation.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@8732 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
Diffstat (limited to 'missing')
-rw-r--r-- | missing/erf.c | 557 |
1 files changed, 74 insertions, 483 deletions
diff --git a/missing/erf.c b/missing/erf.c index c0ab65f881..d9e7469024 100644 --- a/missing/erf.c +++ b/missing/erf.c @@ -1,501 +1,92 @@ -/*- - * Copyright (c) 1992, 1993 - * The Regents of the University of California. All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. Neither the name of the University nor the names of its contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - */ - -#ifndef lint -static char sccsid[] = "@(#)erf.c 8.1 (Berkeley) 6/4/93"; -#endif /* not lint */ +/* erf.c - public domain implementation of error function erf(3m) +reference - Haruhiko Okumura: C-gengo niyoru saishin algorithm jiten + (New Algorithm handbook in C language) (Gijyutsu hyouron + sha, Tokyo, 1991) p.227 [in Japanese] */ #include <stdio.h> -#include "config.h" -#include "defines.h" - -#if defined(vax)||defined(tahoe) +#include <math.h> -/* Deal with different ways to concatenate in cpp */ -# ifdef __STDC__ -# define cat3(a,b,c) a ## b ## c -# else -# define cat3(a,b,c) a/**/b/**/c +#ifdef _WIN32 +# include <float.h> +# if !defined __MINGW32__ || defined __NO_ISOCEXT +# ifndef isnan +# define isnan(x) _isnan(x) # endif - -/* Deal with vax/tahoe byte order issues */ -# ifdef vax -# define cat3t(a,b,c) cat3(a,b,c) -# else -# define cat3t(a,b,c) cat3(a,c,b) +# ifndef isinf +# define isinf(x) (!_finite(x) && !_isnan(x)) # endif +# ifndef finite +# define finite(x) _finite(x) +# endif +# endif +#endif -# define vccast(name) (*(const double *)(cat3(name,,x))) - - /* - * Define a constant to high precision on a Vax or Tahoe. - * - * Args are the name to define, the decimal floating point value, - * four 16-bit chunks of the float value in hex - * (because the vax and tahoe differ in float format!), the power - * of 2 of the hex-float exponent, and the hex-float mantissa. - * Most of these arguments are not used at compile time; they are - * used in a post-check to make sure the constants were compiled - * correctly. - * - * People who want to use the constant will have to do their own - * #define foo vccast(foo) - * since CPP cannot do this for them from inside another macro (sigh). - * We define "vccast" if this needs doing. - */ -# define vc(name, value, x1,x2,x3,x4, bexp, xval) \ - const static long cat3(name,,x)[] = {cat3t(0x,x1,x2), cat3t(0x,x3,x4)}; - -# define ic(name, value, bexp, xval) ; - -#else /* vax or tahoe */ - - /* Hooray, we have an IEEE machine */ -# undef vccast -# define vc(name, value, x1,x2,x3,x4, bexp, xval) ; - -# define ic(name, value, bexp, xval) \ - const static double name = value; - -#endif /* defined(vax)||defined(tahoe) */ - -const static double ln2hi = 6.9314718055829871446E-1; -const static double ln2lo = 1.6465949582897081279E-12; -const static double lnhuge = 9.4961163736712506989E1; -const static double lntiny = -9.5654310917272452386E1; -const static double invln2 = 1.4426950408889634148E0; -const static double ep1 = 1.6666666666666601904E-1; -const static double ep2 = -2.7777777777015593384E-3; -const static double ep3 = 6.6137563214379343612E-5; -const static double ep4 = -1.6533902205465251539E-6; -const static double ep5 = 4.1381367970572384604E-8; +static double q_gamma(double, double, double); -/* returns exp(r = x + c) for |c| < |x| with no overlap. */ -double __exp__D(x, c) -double x, c; +/* Incomplete gamma function + 1 / Gamma(a) * Int_0^x exp(-t) t^(a-1) dt */ +static double p_gamma(a, x, loggamma_a) + double a, x, loggamma_a; { - double z,hi,lo, t; - int k; - -#if !defined(vax)&&!defined(tahoe) - if (x!=x) return(x); /* x is NaN */ -#endif /* !defined(vax)&&!defined(tahoe) */ - if ( x <= lnhuge ) { - if ( x >= lntiny ) { - - /* argument reduction : x --> x - k*ln2 */ - z = invln2*x; - k = z + copysign(.5, x); - - /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */ - - hi=(x-k*ln2hi); /* Exact. */ - x= hi - (lo = k*ln2lo-c); - /* return 2^k*[1+x+x*c/(2+c)] */ - z=x*x; - c= x - z*(ep1+z*(ep2+z*(ep3+z*(ep4+z*ep5)))); - c = (x*c)/(2.0-c); - - return scalb(1.+(hi-(lo - c)), k); - } - /* end of x > lntiny */ - - else - /* exp(-big#) underflows to zero */ - if(finite(x)) return(scalb(1.0,-5000)); - - /* exp(-INF) is zero */ - else return(0.0); - } - /* end of x < lnhuge */ - - else - /* exp(INF) is INF, exp(+big#) overflows to INF */ - return( finite(x) ? scalb(1.0,5000) : x); + int k; + double result, term, previous; + + if (x >= 1 + a) return 1 - q_gamma(a, x, loggamma_a); + if (x == 0) return 0; + result = term = exp(a * log(x) - x - loggamma_a) / a; + for (k = 1; k < 1000; k++) { + term *= x / (a + k); + previous = result; result += term; + if (result == previous) return result; + } + fprintf(stderr, "erf.c:%d:p_gamma() could not converge.", __LINE__); + return result; } -/* Modified Nov 30, 1992 P. McILROY: - * Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp) - * Replaced even+odd with direct calculation for x < .84375, - * to avoid destructive cancellation. - * - * Performance of erfc(x): - * In 300000 trials in the range [.83, .84375] the - * maximum observed error was 3.6ulp. - * - * In [.84735,1.25] the maximum observed error was <2.5ulp in - * 100000 runs in the range [1.2, 1.25]. - * - * In [1.25,26] (Not including subnormal results) - * the error is < 1.7ulp. - */ - -/* double erf(double x) - * double erfc(double x) - * x - * 2 |\ - * erf(x) = --------- | exp(-t*t)dt - * sqrt(pi) \| - * 0 - * - * erfc(x) = 1-erf(x) - * - * Method: - * 1. Reduce x to |x| by erf(-x) = -erf(x) - * 2. For x in [0, 0.84375] - * erf(x) = x + x*P(x^2) - * erfc(x) = 1 - erf(x) if x<=0.25 - * = 0.5 + ((0.5-x)-x*P) if x in [0.25,0.84375] - * where - * 2 2 4 20 - * P = P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x ) - * is an approximation to (erf(x)-x)/x with precision - * - * -56.45 - * | P - (erf(x)-x)/x | <= 2 - * - * - * Remark. The formula is derived by noting - * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) - * and that - * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 - * is close to one. The interval is chosen because the fixed - * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is - * near 0.6174), and by some experiment, 0.84375 is chosen to - * guarantee the error is less than one ulp for erf. - * - * 3. For x in [0.84375,1.25], let s = x - 1, and - * c = 0.84506291151 rounded to single (24 bits) - * erf(x) = c + P1(s)/Q1(s) - * erfc(x) = (1-c) - P1(s)/Q1(s) - * |P1/Q1 - (erf(x)-c)| <= 2**-59.06 - * Remark: here we use the taylor series expansion at x=1. - * erf(1+s) = erf(1) + s*Poly(s) - * = 0.845.. + P1(s)/Q1(s) - * That is, we use rational approximation to approximate - * erf(1+s) - (c = (single)0.84506291151) - * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] - * where - * P1(s) = degree 6 poly in s - * Q1(s) = degree 6 poly in s - * - * 4. For x in [1.25, 2]; [2, 4] - * erf(x) = 1.0 - tiny - * erfc(x) = (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z)) - * - * Where z = 1/(x*x), R is degree 9, and S is degree 3; - * - * 5. For x in [4,28] - * erf(x) = 1.0 - tiny - * erfc(x) = (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z)) - * - * Where P is degree 14 polynomial in 1/(x*x). - * - * Notes: - * Here 4 and 5 make use of the asymptotic series - * exp(-x*x) - * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ); - * x*sqrt(pi) - * - * where for z = 1/(x*x) - * P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...)))) - * - * Thus we use rational approximation to approximate - * erfc*x*exp(x*x) ~ 1/sqrt(pi); - * - * The error bound for the target function, G(z) for - * the interval - * [4, 28]: - * |eps + 1/(z)P(z) - G(z)| < 2**(-56.61) - * for [2, 4]: - * |R(z)/S(z) - G(z)| < 2**(-58.24) - * for [1.25, 2]: - * |R(z)/S(z) - G(z)| < 2**(-58.12) - * - * 6. For inf > x >= 28 - * erf(x) = 1 - tiny (raise inexact) - * erfc(x) = tiny*tiny (raise underflow) - * - * 7. Special cases: - * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, - * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, - * erfc/erf(NaN) is NaN - */ - -#if defined(vax) || defined(tahoe) -#define _IEEE 0 -#define TRUNC(x) (double) (float) (x) -#else -#define _IEEE 1 -#define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000 -#define infnan(x) 0.0 -#endif - -#ifdef _IEEE_LIBM -/* - * redefining "___function" to "function" in _IEEE_LIBM mode - */ -#include "ieee_libm.h" -#endif +/* Incomplete gamma function + 1 / Gamma(a) * Int_x^inf exp(-t) t^(a-1) dt */ +static double q_gamma(a, x, loggamma_a) + double a, x, loggamma_a; +{ + int k; + double result, w, temp, previous; + double la = 1, lb = 1 + x - a; /* Laguerre polynomial */ + + if (x < 1 + a) return 1 - p_gamma(a, x, loggamma_a); + w = exp(a * log(x) - x - loggamma_a); + result = w / lb; + for (k = 2; k < 1000; k++) { + temp = ((k - 1 - a) * (lb - la) + (k + x) * lb) / k; + la = lb; lb = temp; + w *= (k - 1 - a) / k; + temp = w / (la * lb); + previous = result; result += temp; + if (result == previous) return result; + } + fprintf(stderr, "erf.c:%d:q_gamma() could not converge.", __LINE__); + return result; +} -const static double -tiny = 1e-300, -half = 0.5, -one = 1.0, -two = 2.0, -c = 8.45062911510467529297e-01, /* (float)0.84506291151 */ -/* - * Coefficients for approximation to erf in [0,0.84375] - */ -p0t8 = 1.02703333676410051049867154944018394163280, -p0 = 1.283791670955125638123339436800229927041e-0001, -p1 = -3.761263890318340796574473028946097022260e-0001, -p2 = 1.128379167093567004871858633779992337238e-0001, -p3 = -2.686617064084433642889526516177508374437e-0002, -p4 = 5.223977576966219409445780927846432273191e-0003, -p5 = -8.548323822001639515038738961618255438422e-0004, -p6 = 1.205520092530505090384383082516403772317e-0004, -p7 = -1.492214100762529635365672665955239554276e-0005, -p8 = 1.640186161764254363152286358441771740838e-0006, -p9 = -1.571599331700515057841960987689515895479e-0007, -p10= 1.073087585213621540635426191486561494058e-0008; -/* - * Coefficients for approximation to erf in [0.84375,1.25] - */ -static double -pa0 = -2.362118560752659485957248365514511540287e-0003, -pa1 = 4.148561186837483359654781492060070469522e-0001, -pa2 = -3.722078760357013107593507594535478633044e-0001, -pa3 = 3.183466199011617316853636418691420262160e-0001, -pa4 = -1.108946942823966771253985510891237782544e-0001, -pa5 = 3.547830432561823343969797140537411825179e-0002, -pa6 = -2.166375594868790886906539848893221184820e-0003, -qa1 = 1.064208804008442270765369280952419863524e-0001, -qa2 = 5.403979177021710663441167681878575087235e-0001, -qa3 = 7.182865441419627066207655332170665812023e-0002, -qa4 = 1.261712198087616469108438860983447773726e-0001, -qa5 = 1.363708391202905087876983523620537833157e-0002, -qa6 = 1.198449984679910764099772682882189711364e-0002; -/* - * log(sqrt(pi)) for large x expansions. - * The tail (lsqrtPI_lo) is included in the rational - * approximations. -*/ -static double - lsqrtPI_hi = .5723649429247000819387380943226; -/* - * lsqrtPI_lo = .000000000000000005132975581353913; - * - * Coefficients for approximation to erfc in [2, 4] -*/ -static double -rb0 = -1.5306508387410807582e-010, /* includes lsqrtPI_lo */ -rb1 = 2.15592846101742183841910806188e-008, -rb2 = 6.24998557732436510470108714799e-001, -rb3 = 8.24849222231141787631258921465e+000, -rb4 = 2.63974967372233173534823436057e+001, -rb5 = 9.86383092541570505318304640241e+000, -rb6 = -7.28024154841991322228977878694e+000, -rb7 = 5.96303287280680116566600190708e+000, -rb8 = -4.40070358507372993983608466806e+000, -rb9 = 2.39923700182518073731330332521e+000, -rb10 = -6.89257464785841156285073338950e-001, -sb1 = 1.56641558965626774835300238919e+001, -sb2 = 7.20522741000949622502957936376e+001, -sb3 = 9.60121069770492994166488642804e+001; -/* - * Coefficients for approximation to erfc in [1.25, 2] -*/ -static double -rc0 = -2.47925334685189288817e-007, /* includes lsqrtPI_lo */ -rc1 = 1.28735722546372485255126993930e-005, -rc2 = 6.24664954087883916855616917019e-001, -rc3 = 4.69798884785807402408863708843e+000, -rc4 = 7.61618295853929705430118701770e+000, -rc5 = 9.15640208659364240872946538730e-001, -rc6 = -3.59753040425048631334448145935e-001, -rc7 = 1.42862267989304403403849619281e-001, -rc8 = -4.74392758811439801958087514322e-002, -rc9 = 1.09964787987580810135757047874e-002, -rc10 = -1.28856240494889325194638463046e-003, -sc1 = 9.97395106984001955652274773456e+000, -sc2 = 2.80952153365721279953959310660e+001, -sc3 = 2.19826478142545234106819407316e+001; -/* - * Coefficients for approximation to erfc in [4,28] - */ -static double -rd0 = -2.1491361969012978677e-016, /* includes lsqrtPI_lo */ -rd1 = -4.99999999999640086151350330820e-001, -rd2 = 6.24999999772906433825880867516e-001, -rd3 = -1.54166659428052432723177389562e+000, -rd4 = 5.51561147405411844601985649206e+000, -rd5 = -2.55046307982949826964613748714e+001, -rd6 = 1.43631424382843846387913799845e+002, -rd7 = -9.45789244999420134263345971704e+002, -rd8 = 6.94834146607051206956384703517e+003, -rd9 = -5.27176414235983393155038356781e+004, -rd10 = 3.68530281128672766499221324921e+005, -rd11 = -2.06466642800404317677021026611e+006, -rd12 = 7.78293889471135381609201431274e+006, -rd13 = -1.42821001129434127360582351685e+007; +#define LOG_PI_OVER_2 0.572364942924700087071713675675 /* log_e(PI)/2 */ double erf(x) - double x; + double x; { - double R,S,P,Q,ax,s,y,z,r,fabs(),exp(); - if(!finite(x)) { /* erf(nan)=nan */ - if (isnan(x)) - return(x); - return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */ - } - if ((ax = x) < 0) - ax = - ax; - if (ax < .84375) { - if (ax < 3.7e-09) { - if (ax < 1.0e-308) - return 0.125*(8.0*x+p0t8*x); /*avoid underflow */ - return x + p0*x; - } - y = x*x; - r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+ - y*(p6+y*(p7+y*(p8+y*(p9+y*p10))))))))); - return x + x*(p0+r); - } - if (ax < 1.25) { /* 0.84375 <= |x| < 1.25 */ - s = fabs(x)-one; - P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); - Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); - if (x>=0) - return (c + P/Q); - else - return (-c - P/Q); - } - if (ax >= 6.0) { /* inf>|x|>=6 */ - if (x >= 0.0) - return (one-tiny); - else - return (tiny-one); - } - /* 1.25 <= |x| < 6 */ - z = -ax*ax; - s = -one/z; - if (ax < 2.0) { - R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+ - s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10))))))))); - S = one+s*(sc1+s*(sc2+s*sc3)); - } else { - R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+ - s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10))))))))); - S = one+s*(sb1+s*(sb2+s*sb3)); - } - y = (R/S -.5*s) - lsqrtPI_hi; - z += y; - z = exp(z)/ax; - if (x >= 0) - return (one-z); - else - return (z-one); + if (!finite(x)) { + if (isnan(x)) return x; /* erf(NaN) = NaN */ + return (x>0 ? 1.0 : -1.0); /* erf(+-inf) = +-1.0 */ + } + if (x >= 0) return p_gamma(0.5, x * x, LOG_PI_OVER_2); + else return - p_gamma(0.5, x * x, LOG_PI_OVER_2); } -double erfc(x) - double x; +double erfc(x) + double x; { - double R,S,P,Q,s,ax,y,z,r,fabs(); - if (!finite(x)) { - if (isnan(x)) /* erfc(NaN) = NaN */ - return(x); - else if (x > 0) /* erfc(+-inf)=0,2 */ - return 0.0; - else - return 2.0; - } - if ((ax = x) < 0) - ax = -ax; - if (ax < .84375) { /* |x|<0.84375 */ - if (ax < 1.38777878078144568e-17) /* |x|<2**-56 */ - return one-x; - y = x*x; - r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+ - y*(p6+y*(p7+y*(p8+y*(p9+y*p10))))))))); - if (ax < .0625) { /* |x|<2**-4 */ - return (one-(x+x*(p0+r))); - } else { - r = x*(p0+r); - r += (x-half); - return (half - r); - } - } - if (ax < 1.25) { /* 0.84375 <= |x| < 1.25 */ - s = ax-one; - P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); - Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); - if (x>=0) { - z = one-c; return z - P/Q; - } else { - z = c+P/Q; return one+z; - } - } - if (ax >= 28) /* Out of range */ - if (x>0) - return (tiny*tiny); - else - return (two-tiny); - z = ax; - TRUNC(z); - y = z - ax; y *= (ax+z); - z *= -z; /* Here z + y = -x^2 */ - s = one/(-z-y); /* 1/(x*x) */ - if (ax >= 4) { /* 6 <= ax */ - R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+ - s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10 - +s*(rd11+s*(rd12+s*rd13)))))))))))); - y += rd0; - } else if (ax >= 2) { - R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+ - s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10))))))))); - S = one+s*(sb1+s*(sb2+s*sb3)); - y += R/S; - R = -.5*s; - } else { - R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+ - s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10))))))))); - S = one+s*(sc1+s*(sc2+s*sc3)); - y += R/S; - R = -.5*s; - } - /* return exp(-x^2 - lsqrtPI_hi + R + y)/x; */ - s = ((R + y) - lsqrtPI_hi) + z; - y = (((z-s) - lsqrtPI_hi) + R) + y; - r = __exp__D(s, y)/x; - if (x>0) - return r; - else - return two-r; + if (!finite(x)) { + if (isnan(x)) return x; /* erfc(NaN) = NaN */ + return (x>0 ? 0.0 : 2.0); /* erfc(+-inf) = 0.0, 2.0 */ + } + if (x >= 0) return q_gamma(0.5, x * x, LOG_PI_OVER_2); + else return 1 + p_gamma(0.5, x * x, LOG_PI_OVER_2); } |