diff options
author | nobu <nobu@b2dd03c8-39d4-4d8f-98ff-823fe69b080e> | 2016-06-01 10:24:10 +0000 |
---|---|---|
committer | nobu <nobu@b2dd03c8-39d4-4d8f-98ff-823fe69b080e> | 2016-06-01 10:24:10 +0000 |
commit | 691556d7786de8330459e1e799e7a924bc96a3bb (patch) | |
tree | cab97fae4fe4533e8fce6bf65da8efe03da9668c /missing | |
parent | 8b823e95e5d438eb1245030c25c8406f68e081ef (diff) | |
download | ruby-691556d7786de8330459e1e799e7a924bc96a3bb.tar.gz |
crypt.h: get rid of conflict
* missing/crypt.h: move crypt.h to get rid of conflict with the
system header.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@55247 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
Diffstat (limited to 'missing')
-rw-r--r-- | missing/crypt.h | 238 |
1 files changed, 238 insertions, 0 deletions
diff --git a/missing/crypt.h b/missing/crypt.h new file mode 100644 index 0000000000..2048f76b1a --- /dev/null +++ b/missing/crypt.h @@ -0,0 +1,238 @@ +/* + * Copyright (c) 1989, 1993 + * The Regents of the University of California. All rights reserved. + * + * This code is derived from software contributed to Berkeley by + * Tom Truscott. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#ifndef CRYPT_H +#define CRYPT_H 1 + +/* ===== Configuration ==================== */ + +#ifdef CHAR_BITS +#if CHAR_BITS != 8 + #error C_block structure assumes 8 bit characters +#endif +#endif + +/* + * define "LONG_IS_32_BITS" only if sizeof(long)==4. + * This avoids use of bit fields (your compiler may be sloppy with them). + */ +#if SIZEOF_LONG == 4 +#define LONG_IS_32_BITS +#endif + +/* + * define "B64" to be the declaration for a 64 bit integer. + * XXX this feature is currently unused, see "endian" comment below. + */ +#if SIZEOF_LONG == 8 +#define B64 long +#elif SIZEOF_LONG_LONG == 8 +#define B64 long long +#endif + +/* + * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes + * of lookup tables. This speeds up des_setkey() and des_cipher(), but has + * little effect on crypt(). + */ +#if defined(notdef) +#define LARGEDATA +#endif + +/* compile with "-DSTATIC=int" when profiling */ +#ifndef STATIC +#define STATIC static +#endif + +/* ==================================== */ + +/* + * Cipher-block representation (Bob Baldwin): + * + * DES operates on groups of 64 bits, numbered 1..64 (sigh). One + * representation is to store one bit per byte in an array of bytes. Bit N of + * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array. + * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the + * first byte, 9..16 in the second, and so on. The DES spec apparently has + * bit 1 in the MSB of the first byte, but that is particularly noxious so we + * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is + * the MSB of the first byte. Specifically, the 64-bit input data and key are + * converted to LSB format, and the output 64-bit block is converted back into + * MSB format. + * + * DES operates internally on groups of 32 bits which are expanded to 48 bits + * by permutation E and shrunk back to 32 bits by the S boxes. To speed up + * the computation, the expansion is applied only once, the expanded + * representation is maintained during the encryption, and a compression + * permutation is applied only at the end. To speed up the S-box lookups, + * the 48 bits are maintained as eight 6 bit groups, one per byte, which + * directly feed the eight S-boxes. Within each byte, the 6 bits are the + * most significant ones. The low two bits of each byte are zero. (Thus, + * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the + * first byte in the eight byte representation, bit 2 of the 48 bit value is + * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is + * used, in which the output is the 64 bit result of an S-box lookup which + * has been permuted by P and expanded by E, and is ready for use in the next + * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this + * lookup. Since each byte in the 48 bit path is a multiple of four, indexed + * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and + * "salt" are also converted to this 8*(6+2) format. The SPE table size is + * 8*64*8 = 4K bytes. + * + * To speed up bit-parallel operations (such as XOR), the 8 byte + * representation is "union"ed with 32 bit values "i0" and "i1", and, on + * machines which support it, a 64 bit value "b64". This data structure, + * "C_block", has two problems. First, alignment restrictions must be + * honored. Second, the byte-order (e.g. little-endian or big-endian) of + * the architecture becomes visible. + * + * The byte-order problem is unfortunate, since on the one hand it is good + * to have a machine-independent C_block representation (bits 1..8 in the + * first byte, etc.), and on the other hand it is good for the LSB of the + * first byte to be the LSB of i0. We cannot have both these things, so we + * currently use the "little-endian" representation and avoid any multi-byte + * operations that depend on byte order. This largely precludes use of the + * 64-bit datatype since the relative order of i0 and i1 are unknown. It + * also inhibits grouping the SPE table to look up 12 bits at a time. (The + * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1 + * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the + * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup + * requires a 128 kilobyte table, so perhaps this is not a big loss. + * + * Permutation representation (Jim Gillogly): + * + * A transformation is defined by its effect on each of the 8 bytes of the + * 64-bit input. For each byte we give a 64-bit output that has the bits in + * the input distributed appropriately. The transformation is then the OR + * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for + * each transformation. Unless LARGEDATA is defined, however, a more compact + * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks. + * The smaller table uses 16*16*8 = 2K bytes for each transformation. This + * is slower but tolerable, particularly for password encryption in which + * the SPE transformation is iterated many times. The small tables total 9K + * bytes, the large tables total 72K bytes. + * + * The transformations used are: + * IE3264: MSB->LSB conversion, initial permutation, and expansion. + * This is done by collecting the 32 even-numbered bits and applying + * a 32->64 bit transformation, and then collecting the 32 odd-numbered + * bits and applying the same transformation. Since there are only + * 32 input bits, the IE3264 transformation table is half the size of + * the usual table. + * CF6464: Compression, final permutation, and LSB->MSB conversion. + * This is done by two trivial 48->32 bit compressions to obtain + * a 64-bit block (the bit numbering is given in the "CIFP" table) + * followed by a 64->64 bit "cleanup" transformation. (It would + * be possible to group the bits in the 64-bit block so that 2 + * identical 32->32 bit transformations could be used instead, + * saving a factor of 4 in space and possibly 2 in time, but + * byte-ordering and other complications rear their ugly head. + * Similar opportunities/problems arise in the key schedule + * transforms.) + * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation. + * This admittedly baroque 64->64 bit transformation is used to + * produce the first code (in 8*(6+2) format) of the key schedule. + * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation. + * It would be possible to define 15 more transformations, each + * with a different rotation, to generate the entire key schedule. + * To save space, however, we instead permute each code into the + * next by using a transformation that "undoes" the PC2 permutation, + * rotates the code, and then applies PC2. Unfortunately, PC2 + * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not + * invertible. We get around that problem by using a modified PC2 + * which retains the 8 otherwise-lost bits in the unused low-order + * bits of each byte. The low-order bits are cleared when the + * codes are stored into the key schedule. + * PC2ROT[1]: Same as PC2ROT[0], but with two rotations. + * This is faster than applying PC2ROT[0] twice, + * + * The Bell Labs "salt" (Bob Baldwin): + * + * The salting is a simple permutation applied to the 48-bit result of E. + * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and + * i+24 of the result are swapped. The salt is thus a 24 bit number, with + * 16777216 possible values. (The original salt was 12 bits and could not + * swap bits 13..24 with 36..48.) + * + * It is possible, but ugly, to warp the SPE table to account for the salt + * permutation. Fortunately, the conditional bit swapping requires only + * about four machine instructions and can be done on-the-fly with about an + * 8% performance penalty. + */ + +typedef union { + unsigned char b[8]; + struct { +#if defined(LONG_IS_32_BITS) + /* long is often faster than a 32-bit bit field */ + long i0; + long i1; +#else + long i0: 32; + long i1: 32; +#endif + } b32; +#if defined(B64) + B64 b64; +#endif +} C_block; + +#if defined(LARGEDATA) + /* Waste memory like crazy. Also, do permutations in line */ +#define LGCHUNKBITS 3 +#define CHUNKBITS (1<<LGCHUNKBITS) +#else + /* "small data" */ +#define LGCHUNKBITS 2 +#define CHUNKBITS (1<<LGCHUNKBITS) +#endif + +struct crypt_data { + /* The Key Schedule, filled in by des_setkey() or setkey(). */ +#define KS_SIZE 16 + C_block KS[KS_SIZE]; + + /* ==================================== */ + + char cryptresult[1+4+4+11+1]; /* encrypted result */ + int initialized; +}; + +char *crypt(const char *key, const char *setting); +void setkey(const char *key); +void encrypt(char *block, int flag); + +char *crypt_r(const char *key, const char *setting, struct crypt_data *data); +void setkey_r(const char *key, struct crypt_data *data); +void encrypt_r(char *block, int flag, struct crypt_data *data); + +#endif /* CRYPT_H */ |