/********************************************************************** enum.c - $Author$ $Date$ created at: Fri Oct 1 15:15:19 JST 1993 Copyright (C) 1993-2003 Yukihiro Matsumoto **********************************************************************/ #include "ruby.h" #include "node.h" #include "util.h" VALUE rb_mEnumerable; static ID id_each, id_eqq, id_cmp, id_size; struct iter_method_arg { VALUE obj; ID mid; int argc; VALUE *argv; }; static VALUE iterate_method _((VALUE obj)); static VALUE iterate_method(obj) VALUE obj; { struct iter_method_arg *arg; arg = (struct iter_method_arg *)obj; return rb_funcall2(arg->obj, arg->mid, arg->argc, arg->argv); } VALUE rb_block_call(obj, mid, argc, argv, bl_proc, data2) VALUE obj; ID mid; int argc; VALUE *argv; VALUE (*bl_proc) (ANYARGS); VALUE data2; { struct iter_method_arg arg; arg.obj = obj; arg.mid = mid; arg.argc = argc; arg.argv = argv; return rb_iterate(iterate_method, (VALUE)&arg, bl_proc, data2); } VALUE rb_each(obj) VALUE obj; { return rb_funcall(obj, id_each, 0, 0); } static VALUE grep_i(i, arg) VALUE i, *arg; { if (RTEST(rb_funcall(arg[0], id_eqq, 1, i))) { rb_ary_push(arg[1], i); } return Qnil; } static VALUE grep_iter_i(i, arg) VALUE i, *arg; { if (RTEST(rb_funcall(arg[0], id_eqq, 1, i))) { rb_ary_push(arg[1], rb_yield(i)); } return Qnil; } /* * call-seq: * enum.grep(pattern) => array * enum.grep(pattern) {| obj | block } => array * * Returns an array of every element in enum for which * Pattern === element. If the optional block is * supplied, each matching element is passed to it, and the block's * result is stored in the output array. * * (1..100).grep 38..44 #=> [38, 39, 40, 41, 42, 43, 44] * c = IO.constants * c.grep(/SEEK/) #=> ["SEEK_END", "SEEK_SET", "SEEK_CUR"] * res = c.grep(/SEEK/) {|v| IO.const_get(v) } * res #=> [2, 0, 1] * */ static VALUE enum_grep(obj, pat) VALUE obj, pat; { VALUE ary = rb_ary_new(); VALUE arg[2]; arg[0] = pat; arg[1] = ary; rb_iterate(rb_each, obj, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)arg); return ary; } static VALUE count_i _((VALUE, VALUE)); static VALUE count_i(i, memop) VALUE i, memop; { VALUE *memo = (VALUE*)memop; if (rb_equal(i, memo[1])) { memo[0]++; } return Qnil; } static VALUE count_iter_i _((VALUE, VALUE)); static VALUE count_iter_i(i, memop) VALUE i, memop; { VALUE *memo = (VALUE*)memop; if (RTEST(rb_yield(i))) { memo[0]++; } return Qnil; } static VALUE count_all_i _((VALUE, VALUE)); static VALUE count_all_i(i, memop) VALUE i, memop; { VALUE *memo = (VALUE*)memop; memo[0]++; return Qnil; } /* * call-seq: * enum.count => int * enum.count(item) => int * enum.count {| obj | block } => int * * Returns the number of items in enum, where #size is called * if it responds to it, otherwise the items are counted through * enumeration. If an argument is given, counts the number of items * in enum, for which equals to item. If a block is * given, counts the number of elements yielding a true value. * * ary = [1, 2, 4, 2] * ary.count # => 4 * ary.count(2) # => 2 * ary.count{|x|x%2==0} # => 3 * */ static VALUE enum_count(argc, argv, obj) int argc; VALUE *argv; VALUE obj; { VALUE memo[2]; /* [count, condition value] */ rb_block_call_func *func; if (argc == 0) { if (rb_block_given_p()) { func = count_iter_i; } else { if (rb_respond_to(obj, id_size)) { return rb_funcall(obj, id_size, 0, 0); } func = count_all_i; } } else { rb_scan_args(argc, argv, "1", &memo[1]); if (rb_block_given_p()) { rb_warn("given block not used"); } func = count_i; } memo[0] = 0; rb_block_call(obj, id_each, 0, 0, func, (VALUE)&memo); return INT2NUM(memo[0]); } static VALUE find_i(i, memo) VALUE i; VALUE *memo; { if (RTEST(rb_yield(i))) { *memo = i; rb_iter_break(); } return Qnil; } /* * call-seq: * enum.detect(ifnone = nil) {| obj | block } => obj or nil * enum.find(ifnone = nil) {| obj | block } => obj or nil * * Passes each entry in enum to block. Returns the * first for which block is not false. If no * object matches, calls ifnone and returns its result when it * is specified, or returns nil * * (1..10).detect {|i| i % 5 == 0 and i % 7 == 0 } #=> nil * (1..100).detect {|i| i % 5 == 0 and i % 7 == 0 } #=> 35 * */ static VALUE enum_find(argc, argv, obj) int argc; VALUE* argv; VALUE obj; { VALUE memo = Qundef; VALUE if_none; rb_scan_args(argc, argv, "01", &if_none); RETURN_ENUMERATOR(obj, argc, argv); rb_iterate(rb_each, obj, find_i, (VALUE)&memo); if (memo != Qundef) { return memo; } if (!NIL_P(if_none)) { return rb_funcall(if_none, rb_intern("call"), 0, 0); } return Qnil; } static VALUE find_index_i _((VALUE, VALUE)); static VALUE find_index_i(i, memop) VALUE i; VALUE memop; { VALUE *memo = (VALUE*)memop; if (rb_equal(i, memo[2])) { memo[0] = UINT2NUM(memo[1]); rb_iter_break(); } memo[1]++; return Qnil; } static VALUE find_index_iter_i _((VALUE, VALUE)); static VALUE find_index_iter_i(i, memop) VALUE i; VALUE memop; { VALUE *memo = (VALUE*)memop; if (RTEST(rb_yield(i))) { memo[0] = UINT2NUM(memo[1]); rb_iter_break(); } memo[1]++; return Qnil; } /* * call-seq: * enum.find_index(value) => int or nil * enum.find_index {| obj | block } => int or nil * * Compares each entry in enum with value or passes * to block. Returns the index for the first for which the * evaluated value is non-false. If no object matches, returns * nil * * (1..10).find_index {|i| i % 5 == 0 and i % 7 == 0 } #=> nil * (1..100).find_index {|i| i % 5 == 0 and i % 7 == 0 } #=> 34 * (1..100).find_index(50) #=> 49 * */ static VALUE enum_find_index(argc, argv, obj) int argc; VALUE *argv; VALUE obj; { VALUE memo[3]; /* [return value, current index, condition value] */ rb_block_call_func *func; if (argc == 0) { RETURN_ENUMERATOR(obj, 0, 0); func = find_index_iter_i; } else { rb_scan_args(argc, argv, "1", &memo[2]); if (rb_block_given_p()) { rb_warn("given block not used"); } func = find_index_i; } memo[0] = Qnil; memo[1] = 0; rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo); return memo[0]; } static VALUE find_all_i(i, ary) VALUE i, ary; { if (RTEST(rb_yield(i))) { rb_ary_push(ary, i); } return Qnil; } /* * call-seq: * enum.find_all {| obj | block } => array * enum.select {| obj | block } => array * * Returns an array containing all elements of enum for which * block is not false (see also * Enumerable#reject). * * (1..10).find_all {|i| i % 3 == 0 } #=> [3, 6, 9] * */ static VALUE enum_find_all(obj) VALUE obj; { VALUE ary = rb_ary_new(); RETURN_ENUMERATOR(obj, 0, 0); rb_iterate(rb_each, obj, find_all_i, ary); return ary; } static VALUE reject_i(i, ary) VALUE i, ary; { if (!RTEST(rb_yield(i))) { rb_ary_push(ary, i); } return Qnil; } /* * call-seq: * enum.reject {| obj | block } => array * * Returns an array for all elements of enum for which * block is false (see also Enumerable#find_all). * * (1..10).reject {|i| i % 3 == 0 } #=> [1, 2, 4, 5, 7, 8, 10] * */ static VALUE enum_reject(obj) VALUE obj; { VALUE ary = rb_ary_new(); RETURN_ENUMERATOR(obj, 0, 0); rb_iterate(rb_each, obj, reject_i, ary); return ary; } static VALUE collect_i(i, ary) VALUE i, ary; { rb_ary_push(ary, rb_yield(i)); return Qnil; } static VALUE collect_all(i, ary) VALUE i, ary; { rb_ary_push(ary, i); return Qnil; } /* * call-seq: * enum.collect {| obj | block } => array * enum.map {| obj | block } => array * * Returns a new array with the results of running block once * for every element in enum. * * (1..4).collect {|i| i*i } #=> [1, 4, 9, 16] * (1..4).collect { "cat" } #=> ["cat", "cat", "cat", "cat"] * */ static VALUE enum_collect(obj) VALUE obj; { VALUE ary = rb_ary_new(); if (!rb_block_given_p()) { rb_warning("Enumerable#%s without a block does not return an array in 1.9 and later", rb_id2name(rb_frame_last_func())); rb_iterate(rb_each, obj, collect_all, ary); } else { rb_iterate(rb_each, obj, collect_i, ary); } return ary; } /* * call-seq: * enum.to_a => array * enum.entries => array * * Returns an array containing the items in enum. * * (1..7).to_a #=> [1, 2, 3, 4, 5, 6, 7] * { 'a'=>1, 'b'=>2, 'c'=>3 }.to_a #=> [["a", 1], ["b", 2], ["c", 3]] */ static VALUE enum_to_a(argc, argv, obj) int argc; VALUE *argv; VALUE obj; { VALUE ary = rb_ary_new(); rb_block_call(obj, id_each, argc, argv, collect_all, ary); return ary; } static VALUE inject_i _((VALUE, VALUE)); static VALUE inject_i(i, p) VALUE i; VALUE p; { VALUE *memo = (VALUE *)p; if (memo[0] == Qundef) { memo[0] = i; } else { memo[0] = rb_yield_values(2, memo[0], i); } return Qnil; } static VALUE inject_op_i _((VALUE, VALUE)); static VALUE inject_op_i(i, p) VALUE i; VALUE p; { VALUE *memo = (VALUE *)p; if (memo[0] == Qundef) { memo[0] = i; } else { memo[0] = rb_funcall(memo[0], (ID)memo[1], 1, i); } return Qnil; } /* * call-seq: * enum.inject(initial, sym) => obj * enum.inject(sym) => obj * enum.inject(initial) {| memo, obj | block } => obj * enum.inject {| memo, obj | block } => obj * * enum.reduce(initial, sym) => obj * enum.reduce(sym) => obj * enum.reduce(initial) {| memo, obj | block } => obj * enum.reduce {| memo, obj | block } => obj * * Combines all elements of enum by applying a binary * operation, specified by a block or a symbol that names a * method or operator. * * If you specify a block, then for each element in enum * the block is passed an accumulator value (memo) and the element. * If you specify a symbol instead, then each element in the collection * will be passed to the named method of memo. * In either case, the result becomes the new value for memo. * At the end of the iteration, the final value of memo is the * return value fo the method. * * If you do not explicitly specify an initial value for memo, * then uses the first element of collection is used as the initial value * of memo. * * Examples: * * # Sum some numbers * (5..10).reduce(:+) #=> 45 * # Same using a block and inject * (5..10).inject {|sum, n| sum + n } #=> 45 * # Multiply some numbers * (5..10).reduce(1, :*) #=> 151200 * # Same using a block * (5..10).inject(1) {|product, n| product * n } #=> 151200 * # find the longest word * longest = %w{ cat sheep bear }.inject do |memo,word| * memo.length > word.length ? memo : word * end * longest #=> "sheep" * */ static VALUE enum_inject(argc, argv, obj) int argc; VALUE *argv; VALUE obj; { VALUE memo[2]; rb_block_call_func *iter = inject_i; switch (rb_scan_args(argc, argv, "02", &memo[0], &memo[1])) { case 0: memo[0] = Qundef; break; case 1: if (rb_block_given_p()) { break; } memo[1] = (VALUE)rb_to_id(memo[0]); memo[0] = Qundef; iter = inject_op_i; break; case 2: if (rb_block_given_p()) { rb_warning("given block not used"); } memo[1] = (VALUE)rb_to_id(memo[1]); iter = inject_op_i; break; } rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo); if (memo[0] == Qundef) return Qnil; return memo[0]; } static VALUE partition_i(i, ary) VALUE i, *ary; { if (RTEST(rb_yield(i))) { rb_ary_push(ary[0], i); } else { rb_ary_push(ary[1], i); } return Qnil; } /* * call-seq: * enum.partition {| obj | block } => [ true_array, false_array ] * * Returns two arrays, the first containing the elements of * enum for which the block evaluates to true, the second * containing the rest. * * (1..6).partition {|i| (i&1).zero?} #=> [[2, 4, 6], [1, 3, 5]] * */ static VALUE enum_partition(obj) VALUE obj; { VALUE ary[2]; RETURN_ENUMERATOR(obj, 0, 0); ary[0] = rb_ary_new(); ary[1] = rb_ary_new(); rb_iterate(rb_each, obj, partition_i, (VALUE)ary); return rb_assoc_new(ary[0], ary[1]); } static VALUE group_by_i(i, hash) VALUE i; VALUE hash; { VALUE group = rb_yield(i); VALUE values; values = rb_hash_aref(hash, group); if (NIL_P(values)) { values = rb_ary_new3(1, i); rb_hash_aset(hash, group, values); } else { rb_ary_push(values, i); } return Qnil; } /* * call-seq: * enum.group_by {| obj | block } => a_hash * * Returns a hash, which keys are evaluated result from the * block, and values are arrays of elements in enum * corresponding to the key. * * (1..6).group_by {|i| i%3} #=> {0=>[3, 6], 1=>[1, 4], 2=>[2, 5]} * */ static VALUE enum_group_by(obj) VALUE obj; { VALUE hash; RETURN_ENUMERATOR(obj, 0, 0); hash = rb_hash_new(); rb_block_call(obj, id_each, 0, 0, group_by_i, hash); return hash; } static VALUE first_i(i, ary) VALUE i; VALUE *ary; { if (NIL_P(ary[0])) { ary[1] = i; rb_iter_break(); } else { long n = NUM2LONG(ary[0]); rb_ary_push(ary[1], i); n--; if (n <= 0) { rb_iter_break(); } ary[0] = INT2NUM(n); } return Qnil; } /* * call-seq: * enum.first -> obj or nil * enum.first(n) -> an_array * * Returns the first element, or the first +n+ elements, of the enumerable. * If the enumerable is empty, the first form returns nil, and the * second form returns an empty array. * */ static VALUE enum_first(argc, argv, obj) int argc; VALUE *argv; VALUE obj; { VALUE n, ary[2]; if (argc == 0) { ary[0] = ary[1] = Qnil; } else { long len; rb_scan_args(argc, argv, "01", &n); len = NUM2LONG(n); if (len == 0) return rb_ary_new2(0); if (len < 0) { rb_raise(rb_eArgError, "negative length"); } ary[0] = INT2NUM(len); ary[1] = rb_ary_new2(len); } rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)ary); return ary[1]; } /* * call-seq: * enum.sort => array * enum.sort {| a, b | block } => array * * Returns an array containing the items in enum sorted, * either according to their own <=> method, or by using * the results of the supplied block. The block should return -1, 0, or * +1 depending on the comparison between a and b. As of * Ruby 1.8, the method Enumerable#sort_by implements a * built-in Schwartzian Transform, useful when key computation or * comparison is expensive.. * * %w(rhea kea flea).sort #=> ["flea", "kea", "rhea"] * (1..10).sort {|a,b| b <=> a} #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] */ static VALUE enum_sort(obj) VALUE obj; { return rb_ary_sort(enum_to_a(0, 0, obj)); } static VALUE sort_by_i(i, ary) VALUE i, ary; { VALUE v; NODE *memo; v = rb_yield(i); if (RBASIC(ary)->klass) { rb_raise(rb_eRuntimeError, "sort_by reentered"); } memo = rb_node_newnode(NODE_MEMO, v, i, 0); rb_ary_push(ary, (VALUE)memo); return Qnil; } static int sort_by_cmp(aa, bb, data) NODE **aa, **bb; void *data; { VALUE a = aa[0]->u1.value; VALUE b = bb[0]->u1.value; VALUE ary = (VALUE)data; if (RBASIC(ary)->klass) { rb_raise(rb_eRuntimeError, "sort_by reentered"); } return rb_cmpint(rb_funcall(a, id_cmp, 1, b), a, b); } /* * call-seq: * enum.sort_by {| obj | block } => array * * Sorts enum using a set of keys generated by mapping the * values in enum through the given block. * * %w{ apple pear fig }.sort_by {|word| word.length} #=> ["fig", "pear", "apple"] * * The current implementation of sort_by generates an * array of tuples containing the original collection element and the * mapped value. This makes sort_by fairly expensive when * the keysets are simple * * require 'benchmark' * include Benchmark * * a = (1..100000).map {rand(100000)} * * bm(10) do |b| * b.report("Sort") { a.sort } * b.report("Sort by") { a.sort_by {|a| a} } * end * * produces: * * user system total real * Sort 0.180000 0.000000 0.180000 ( 0.175469) * Sort by 1.980000 0.040000 2.020000 ( 2.013586) * * However, consider the case where comparing the keys is a non-trivial * operation. The following code sorts some files on modification time * using the basic sort method. * * files = Dir["*"] * sorted = files.sort {|a,b| File.new(a).mtime <=> File.new(b).mtime} * sorted #=> ["mon", "tues", "wed", "thurs"] * * This sort is inefficient: it generates two new File * objects during every comparison. A slightly better technique is to * use the Kernel#test method to generate the modification * times directly. * * files = Dir["*"] * sorted = files.sort { |a,b| * test(?M, a) <=> test(?M, b) * } * sorted #=> ["mon", "tues", "wed", "thurs"] * * This still generates many unnecessary Time objects. A * more efficient technique is to cache the sort keys (modification * times in this case) before the sort. Perl users often call this * approach a Schwartzian Transform, after Randal Schwartz. We * construct a temporary array, where each element is an array * containing our sort key along with the filename. We sort this array, * and then extract the filename from the result. * * sorted = Dir["*"].collect { |f| * [test(?M, f), f] * }.sort.collect { |f| f[1] } * sorted #=> ["mon", "tues", "wed", "thurs"] * * This is exactly what sort_by does internally. * * sorted = Dir["*"].sort_by {|f| test(?M, f)} * sorted #=> ["mon", "tues", "wed", "thurs"] */ static VALUE enum_sort_by(obj) VALUE obj; { VALUE ary; long i; RETURN_ENUMERATOR(obj, 0, 0); if (TYPE(obj) == T_ARRAY) { ary = rb_ary_new2(RARRAY(obj)->len); } else { ary = rb_ary_new(); } RBASIC(ary)->klass = 0; rb_iterate(rb_each, obj, sort_by_i, ary); if (RARRAY(ary)->len > 1) { qsort(RARRAY(ary)->ptr, RARRAY(ary)->len, sizeof(VALUE), sort_by_cmp, (void *)ary); } if (RBASIC(ary)->klass) { rb_raise(rb_eRuntimeError, "sort_by reentered"); } for (i=0; ilen; i++) { RARRAY(ary)->ptr[i] = RNODE(RARRAY(ary)->ptr[i])->u2.value; } RBASIC(ary)->klass = rb_cArray; return ary; } static VALUE all_i(i, memo) VALUE i; VALUE *memo; { if (!RTEST(i)) { *memo = Qfalse; rb_iter_break(); } return Qnil; } static VALUE all_iter_i(i, memo) VALUE i; VALUE *memo; { return all_i(rb_yield(i), memo); } /* * call-seq: * enum.all? [{|obj| block } ] => true or false * * Passes each element of the collection to the given block. The method * returns true if the block never returns * false or nil. If the block is not given, * Ruby adds an implicit block of {|obj| obj} (that is * all? will return true only if none of the * collection members are false or nil.) * * %w{ ant bear cat}.all? {|word| word.length >= 3} #=> true * %w{ ant bear cat}.all? {|word| word.length >= 4} #=> false * [ nil, true, 99 ].all? #=> false * */ static VALUE enum_all(obj) VALUE obj; { VALUE result = Qtrue; rb_iterate(rb_each, obj, rb_block_given_p() ? all_iter_i : all_i, (VALUE)&result); return result; } static VALUE any_i(i, memo) VALUE i; VALUE *memo; { if (RTEST(i)) { *memo = Qtrue; rb_iter_break(); } return Qnil; } static VALUE any_iter_i(i, memo) VALUE i; VALUE *memo; { return any_i(rb_yield(i), memo); } /* * call-seq: * enum.any? [{|obj| block } ] => true or false * * Passes each element of the collection to the given block. The method * returns true if the block ever returns a value other * than false or nil. If the block is not * given, Ruby adds an implicit block of {|obj| obj} (that * is any? will return true if at least one * of the collection members is not false or * nil. * * %w{ ant bear cat}.any? {|word| word.length >= 3} #=> true * %w{ ant bear cat}.any? {|word| word.length >= 4} #=> true * [ nil, true, 99 ].any? #=> true * */ static VALUE enum_any(obj) VALUE obj; { VALUE result = Qfalse; rb_iterate(rb_each, obj, rb_block_given_p() ? any_iter_i : any_i, (VALUE)&result); return result; } static VALUE one_i(i, memo) VALUE i; VALUE *memo; { if (RTEST(i)) { if (*memo == Qundef) { *memo = Qtrue; } else if (*memo == Qtrue) { *memo = Qfalse; rb_iter_break(); } } return Qnil; } static VALUE one_iter_i(i, memo) VALUE i; VALUE *memo; { return one_i(rb_yield(i), memo); } /* * call-seq: * enum.one? [{|obj| block }] => true or false * * Passes each element of the collection to the given block. The method * returns true if the block returns true * exactly once. If the block is not given, one? will return * true only if exactly one of the collection members is * true. * * %w{ant bear cat}.one? {|word| word.length == 4} #=> true * %w{ant bear cat}.one? {|word| word.length > 4} #=> false * %w{ant bear cat}.one? {|word| word.length < 4} #=> false * [ nil, true, 99 ].one? #=> false * [ nil, true, false ].one? #=> true * */ static VALUE enum_one(obj) VALUE obj; { VALUE result = Qundef; rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? one_iter_i : one_i, (VALUE)&result); if (result == Qundef) return Qfalse; return result; } static VALUE none_i(i, memo) VALUE i; VALUE *memo; { if (RTEST(i)) { *memo = Qfalse; rb_iter_break(); } return Qnil; } static VALUE none_iter_i(i, memo) VALUE i; VALUE *memo; { return none_i(rb_yield(i), memo); } /* * call-seq: * enum.none? [{|obj| block }] => true or false * * Passes each element of the collection to the given block. The method * returns true if the block never returns true * for all elements. If the block is not given, none? will return * true only if none of the collection members is true. * * %w{ant bear cat}.none? {|word| word.length == 5} #=> true * %w{ant bear cat}.none? {|word| word.length >= 4} #=> false * [].none? #=> true * [nil].none? #=> true * [nil,false].none? #=> true */ static VALUE enum_none(obj) VALUE obj; { VALUE result = Qtrue; rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? none_iter_i : none_i, (VALUE)&result); return result; } static VALUE min_i(i, memo) VALUE i; VALUE *memo; { VALUE cmp; if (*memo == Qundef) { *memo = i; } else { cmp = rb_funcall(i, id_cmp, 1, *memo); if (rb_cmpint(cmp, i, *memo) < 0) { *memo = i; } } return Qnil; } static VALUE min_ii(i, memo) VALUE i; VALUE *memo; { VALUE cmp; if (*memo == Qundef) { *memo = i; } else { cmp = rb_yield_values(2, i, *memo); if (rb_cmpint(cmp, i, *memo) < 0) { *memo = i; } } return Qnil; } /* * call-seq: * enum.min => obj * enum.min {| a,b | block } => obj * * Returns the object in enum with the minimum value. The * first form assumes all objects implement Comparable; * the second uses the block to return a <=> b. * * a = %w(albatross dog horse) * a.min #=> "albatross" * a.min {|a,b| a.length <=> b.length } #=> "dog" */ static VALUE enum_min(obj) VALUE obj; { VALUE result = Qundef; rb_iterate(rb_each, obj, rb_block_given_p() ? min_ii : min_i, (VALUE)&result); if (result == Qundef) return Qnil; return result; } /* * call-seq: * enum.max => obj * enum.max {| a,b | block } => obj * * Returns the object in enum with the maximum value. The * first form assumes all objects implement Comparable; * the second uses the block to return a <=> b. * * a = %w(albatross dog horse) * a.max #=> "horse" * a.max {|a,b| a.length <=> b.length } #=> "albatross" */ static VALUE max_i(i, memo) VALUE i; VALUE *memo; { VALUE cmp; if (*memo == Qundef) { *memo = i; } else { cmp = rb_funcall(i, id_cmp, 1, *memo); if (rb_cmpint(cmp, i, *memo) > 0) { *memo = i; } } return Qnil; } static VALUE max_ii(i, memo) VALUE i; VALUE *memo; { VALUE cmp; if (*memo == Qundef) { *memo = i; } else { cmp = rb_yield_values(2, i, *memo); if (rb_cmpint(cmp, i, *memo) > 0) { *memo = i; } } return Qnil; } /* * call-seq: * enum.max => obj * enum.max {|a,b| block } => obj * * Returns the object in _enum_ with the maximum value. The * first form assumes all objects implement Comparable; * the second uses the block to return a <=> b. * * a = %w(albatross dog horse) * a.max #=> "horse" * a.max {|a,b| a.length <=> b.length } #=> "albatross" */ static VALUE enum_max(obj) VALUE obj; { VALUE result = Qundef; rb_iterate(rb_each, obj, rb_block_given_p() ? max_ii : max_i, (VALUE)&result); if (result == Qundef) return Qnil; return result; } static VALUE minmax_i(i, memo) VALUE i; VALUE *memo; { int n; if (memo[0] == Qundef) { memo[0] = i; memo[1] = i; } else { n = rb_cmpint(rb_funcall(i, id_cmp, 1, memo[0]), i, memo[0]); if (n < 0) { memo[0] = i; } n = rb_cmpint(rb_funcall(i, id_cmp, 1, memo[1]), i, memo[1]); if (n > 0) { memo[1] = i; } } return Qnil; } static VALUE minmax_ii(i, memo) VALUE i; VALUE *memo; { int n; if (memo[0] == Qundef) { memo[0] = i; memo[1] = i; } else { VALUE ary = memo[2]; RARRAY(ary)->ptr[0] = i; RARRAY(ary)->ptr[1] = memo[0]; n = rb_cmpint(rb_yield(ary), i, memo[0]); if (n < 0) { memo[0] = i; } RARRAY(ary)->ptr[0] = i; RARRAY(ary)->ptr[1] = memo[1]; n = rb_cmpint(rb_yield(ary), i, memo[1]); if (n > 0) { memo[1] = i; } } return Qnil; } /* * call-seq: * enum.minmax => [min,max] * enum.minmax {|a,b| block } => [min,max] * * Returns two elements array which contains the minimum and the * maximum value in the enumerable. The first form assumes all * objects implement Comparable; the second uses the * block to return a <=> b. * * a = %w(albatross dog horse) * a.minmax #=> ["albatross", "horse"] * a.minmax {|a,b| a.length <=> b.length } #=> ["dog", "albatross"] */ static VALUE enum_minmax(obj) VALUE obj; { VALUE result[3]; VALUE ary = rb_ary_new3(2, Qnil, Qnil); result[0] = Qundef; if (rb_block_given_p()) { result[2] = ary; rb_block_call(obj, id_each, 0, 0, minmax_ii, (VALUE)result); } else { rb_block_call(obj, id_each, 0, 0, minmax_i, (VALUE)result); } if (result[0] != Qundef) { RARRAY(ary)->ptr[0] = result[0]; RARRAY(ary)->ptr[1] = result[1]; } return ary; } static VALUE min_by_i(i, memo) VALUE i; VALUE *memo; { VALUE v; v = rb_yield(i); if (memo[0] == Qundef) { memo[0] = v; memo[1] = i; } else if (rb_cmpint(rb_funcall(v, id_cmp, 1, memo[0]), v, memo[0]) < 0) { memo[0] = v; memo[1] = i; } return Qnil; } /* * call-seq: * enum.min_by {| obj| block } => obj * * Returns the object in enum that gives the minimum * value from the given block. * * a = %w(albatross dog horse) * a.min_by {|x| x.length } #=> "dog" */ static VALUE enum_min_by(obj) VALUE obj; { VALUE memo[2]; RETURN_ENUMERATOR(obj, 0, 0); memo[0] = Qundef; memo[1] = Qnil; rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo); return memo[1]; } static VALUE max_by_i(i, memo) VALUE i; VALUE *memo; { VALUE v; v = rb_yield(i); if (memo[0] == Qundef) { memo[0] = v; memo[1] = i; } else if (rb_cmpint(rb_funcall(v, id_cmp, 1, memo[0]), v, memo[0]) > 0) { memo[0] = v; memo[1] = i; } return Qnil; } /* * call-seq: * enum.max_by {| obj| block } => obj * * Returns the object in enum that gives the maximum * value from the given block. * * a = %w(albatross dog horse) * a.max_by {|x| x.length } #=> "albatross" */ static VALUE enum_max_by(obj) VALUE obj; { VALUE memo[2]; RETURN_ENUMERATOR(obj, 0, 0); memo[0] = Qundef; memo[1] = Qnil; rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo); return memo[1]; } static VALUE minmax_by_i(i, memo) VALUE i; VALUE *memo; { VALUE v; v = rb_yield(i); if (memo[0] == Qundef) { memo[0] = v; memo[1] = v; memo[2] = i; memo[3] = i; } else { if (rb_cmpint(rb_funcall(v, id_cmp, 1, memo[0]), v, memo[0]) < 0) { memo[0] = v; memo[2] = i; } if (rb_cmpint(rb_funcall(v, id_cmp, 1, memo[1]), v, memo[1]) > 0) { memo[1] = v; memo[3] = i; } } return Qnil; } /* * call-seq: * enum.minmax_by {| obj| block } => [min, max] * * Returns two elements array array containing the objects in * enum that gives the minimum and maximum values respectively * from the given block. * * a = %w(albatross dog horse) * a.minmax_by {|x| x.length } #=> ["dog", "albatross"] */ static VALUE enum_minmax_by(obj) VALUE obj; { VALUE memo[4]; RETURN_ENUMERATOR(obj, 0, 0); memo[0] = Qundef; memo[1] = Qundef; memo[2] = Qnil; memo[3] = Qnil; rb_block_call(obj, id_each, 0, 0, minmax_by_i, (VALUE)memo); return rb_assoc_new(memo[2], memo[3]); } static VALUE member_i(item, memo) VALUE item; VALUE *memo; { if (rb_equal(item, memo[0])) { memo[1] = Qtrue; rb_iter_break(); } return Qnil; } /* * call-seq: * enum.include?(obj) => true or false * enum.member?(obj) => true or false * * Returns true if any member of enum equals * obj. Equality is tested using ==. * * IO.constants.include? "SEEK_SET" #=> true * IO.constants.include? "SEEK_NO_FURTHER" #=> false * */ static VALUE enum_member(obj, val) VALUE obj, val; { VALUE memo[2]; memo[0] = val; memo[1] = Qfalse; rb_iterate(rb_each, obj, member_i, (VALUE)memo); return memo[1]; } static VALUE each_with_index_i(val, memo) VALUE val; VALUE *memo; { rb_yield_values(2, val, INT2FIX(*memo)); ++*memo; return Qnil; } /* * call-seq: * enum.each_with_index {|obj, i| block } -> enum * * Calls block with two arguments, the item and its index, for * each item in enum. * * hash = Hash.new * %w(cat dog wombat).each_with_index {|item, index| * hash[item] = index * } * hash #=> {"cat"=>0, "wombat"=>2, "dog"=>1} * */ static VALUE enum_each_with_index(obj) VALUE obj; { VALUE memo; RETURN_ENUMERATOR(obj, 0, 0); memo = 0; rb_iterate(rb_each, obj, each_with_index_i, (VALUE)&memo); return obj; } /* * call-seq: * enum.reverse_each {|item| block } * * Traverses enum in reverse order. */ static VALUE enum_reverse_each(int argc, VALUE *argv, VALUE obj) { VALUE ary; long i; RETURN_ENUMERATOR(obj, argc, argv); ary = enum_to_a(argc, argv, obj); for (i = RARRAY_LEN(ary); --i >= 0; ) { rb_yield(RARRAY_PTR(ary)[i]); } return obj; } static VALUE each_val_i(i, p) VALUE i, p; { rb_yield(i); return Qnil; } /* * call-seq: * enum.each_entry {|obj| block} => enum * * Calls block once for each element in self, passing that * element as a parameter, converting multiple values from yield to an * array. * * class Foo * include Enumerable * def each * yield 1 * yield 1,2 * end * end * Foo.new.each_entry{|o| print o, " -- "} * * produces: * * 1 -- [1, 2] -- */ static VALUE enum_each_entry(argc, argv, obj) int argc; VALUE *argv; VALUE obj; { RETURN_ENUMERATOR(obj, argc, argv); rb_block_call(obj, id_each, argc, argv, each_val_i, 0); return obj; } static VALUE zip_i(val, memo) VALUE val; VALUE *memo; { VALUE result = memo[0]; VALUE args = memo[1]; int idx = memo[2]++; VALUE tmp; int i; tmp = rb_ary_new2(RARRAY(args)->len + 1); rb_ary_store(tmp, 0, val); for (i=0; ilen; i++) { rb_ary_push(tmp, rb_ary_entry(RARRAY(args)->ptr[i], idx)); } if (rb_block_given_p()) { rb_yield(tmp); } else { rb_ary_push(result, tmp); } return Qnil; } /* * call-seq: * enum.zip(arg, ...) => array * enum.zip(arg, ...) {|arr| block } => nil * * Converts any arguments to arrays, then merges elements of * enum with corresponding elements from each argument. This * generates a sequence of enum#size n-element * arrays, where n is one more that the count of arguments. If * the size of any argument is less than enum#size, * nil values are supplied. If a block given, it is * invoked for each output array, otherwise an array of arrays is * returned. * * a = [ 4, 5, 6 ] * b = [ 7, 8, 9 ] * * (1..3).zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]] * "cat\ndog".zip([1]) #=> [["cat\n", 1], ["dog", nil]] * (1..3).zip #=> [[1], [2], [3]] * */ static VALUE enum_zip(argc, argv, obj) int argc; VALUE *argv; VALUE obj; { int i; VALUE result; VALUE memo[3]; for (i=0; i array * * Returns first n elements from enum. * * a = [1, 2, 3, 4, 5, 0] * a.take(3) # => [1, 2, 3] * */ static VALUE enum_take(obj, n) VALUE obj; VALUE n; { VALUE args[2]; long len = NUM2LONG(n); if (len < 0) { rb_raise(rb_eArgError, "attempt to take negative size"); } if (len == 0) return rb_ary_new2(0); args[1] = len; args[0] = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)args); return args[0]; } static VALUE take_while_i(i, ary) VALUE i; VALUE *ary; { if (!RTEST(rb_yield(i))) rb_iter_break(); rb_ary_push(*ary, i); return Qnil; } /* * call-seq: * enum.take_while {|arr| block } => array * * Passes elements to the block until the block returns nil or false, * then stops iterating and returns an array of all prior elements. * * a = [1, 2, 3, 4, 5, 0] * a.take_while {|i| i < 3 } # => [1, 2] * */ static VALUE enum_take_while(obj) VALUE obj; { VALUE ary; RETURN_ENUMERATOR(obj, 0, 0); ary = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, take_while_i, (VALUE)&ary); return ary; } static VALUE drop_i(i, arg) VALUE i; VALUE *arg; { if (arg[1] == 0) { rb_ary_push(arg[0], i); } else { arg[1]--; } return Qnil; } /* * call-seq: * enum.drop(n) => array * * Drops first n elements from enum, and returns rest elements * in an array. * * a = [1, 2, 3, 4, 5, 0] * a.drop(3) # => [4, 5, 0] * */ static VALUE enum_drop(obj, n) VALUE obj; VALUE n; { VALUE args[2]; long len = NUM2LONG(n); if (len < 0) { rb_raise(rb_eArgError, "attempt to drop negative size"); } args[1] = len; args[0] = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)args); return args[0]; } static VALUE drop_while_i(i, args) VALUE i; VALUE *args; { if (!args[1] && !RTEST(rb_yield(i))) { args[1] = Qtrue; } if (args[1]) { rb_ary_push(args[0], i); } return Qnil; } /* * call-seq: * enum.drop_while {|arr| block } => array * * Drops elements up to, but not including, the first element for * which the block returns nil or false and returns an array * containing the remaining elements. * * a = [1, 2, 3, 4, 5, 0] * a.drop_while {|i| i < 3 } # => [3, 4, 5, 0] * */ static VALUE enum_drop_while(obj) VALUE obj; { VALUE args[2]; RETURN_ENUMERATOR(obj, 0, 0); args[0] = rb_ary_new(); args[1] = Qfalse; rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)args); return args[0]; } static VALUE cycle_i(i, ary) VALUE i; VALUE ary; { rb_ary_push(ary, i); rb_yield(i); return Qnil; } /* * call-seq: * enum.cycle {|obj| block } * enum.cycle(n) {|obj| block } * * Calls block for each element of enum repeatedly _n_ * times or forever if none or nil is given. If a non-positive * number is given or the collection is empty, does nothing. Returns * nil if the loop has finished without getting interrupted. * * Enumerable#cycle saves elements in an internal array so changes * to enum after the first pass have no effect. * * a = ["a", "b", "c"] * a.cycle {|x| puts x } # print, a, b, c, a, b, c,.. forever. * a.cycle(2) {|x| puts x } # print, a, b, c, a, b, c. * */ static VALUE enum_cycle(argc, argv, obj) int argc; VALUE *argv; VALUE obj; { VALUE ary; VALUE nv = Qnil; long n, i, len; rb_scan_args(argc, argv, "01", &nv); RETURN_ENUMERATOR(obj, argc, argv); if (NIL_P(nv)) { n = -1; } else { n = NUM2LONG(nv); if (n <= 0) return Qnil; } ary = rb_ary_new(); RBASIC(ary)->klass = 0; rb_block_call(obj, id_each, 0, 0, cycle_i, ary); len = RARRAY(ary)->len; if (len == 0) return Qnil; while (n < 0 || 0 < --n) { for (i=0; iptr[i]); } } return Qnil; /* not reached */ } /* * The Enumerable mixin provides collection classes with * several traversal and searching methods, and with the ability to * sort. The class must provide a method each, which * yields successive members of the collection. If * Enumerable#max, #min, or * #sort is used, the objects in the collection must also * implement a meaningful <=> operator, as these methods * rely on an ordering between members of the collection. */ void Init_Enumerable() { rb_mEnumerable = rb_define_module("Enumerable"); rb_define_method(rb_mEnumerable, "to_a", enum_to_a, -1); rb_define_method(rb_mEnumerable, "entries", enum_to_a, -1); rb_define_method(rb_mEnumerable, "sort", enum_sort, 0); rb_define_method(rb_mEnumerable, "sort_by", enum_sort_by, 0); rb_define_method(rb_mEnumerable, "grep", enum_grep, 1); rb_define_method(rb_mEnumerable, "count", enum_count, -1); rb_define_method(rb_mEnumerable, "find", enum_find, -1); rb_define_method(rb_mEnumerable, "detect", enum_find, -1); rb_define_method(rb_mEnumerable, "find_index", enum_find_index, -1); rb_define_method(rb_mEnumerable, "find_all", enum_find_all, 0); rb_define_method(rb_mEnumerable, "select", enum_find_all, 0); rb_define_method(rb_mEnumerable, "reject", enum_reject, 0); rb_define_method(rb_mEnumerable, "collect", enum_collect, 0); rb_define_method(rb_mEnumerable, "map", enum_collect, 0); rb_define_method(rb_mEnumerable, "inject", enum_inject, -1); rb_define_method(rb_mEnumerable, "reduce", enum_inject, -1); rb_define_method(rb_mEnumerable, "partition", enum_partition, 0); rb_define_method(rb_mEnumerable, "group_by", enum_group_by, 0); rb_define_method(rb_mEnumerable, "first", enum_first, -1); rb_define_method(rb_mEnumerable, "all?", enum_all, 0); rb_define_method(rb_mEnumerable, "any?", enum_any, 0); rb_define_method(rb_mEnumerable, "one?", enum_one, 0); rb_define_method(rb_mEnumerable, "none?", enum_none, 0); rb_define_method(rb_mEnumerable, "min", enum_min, 0); rb_define_method(rb_mEnumerable, "max", enum_max, 0); rb_define_method(rb_mEnumerable, "minmax", enum_minmax, 0); rb_define_method(rb_mEnumerable, "min_by", enum_min_by, 0); rb_define_method(rb_mEnumerable, "max_by", enum_max_by, 0); rb_define_method(rb_mEnumerable, "minmax_by", enum_minmax_by, 0); rb_define_method(rb_mEnumerable, "member?", enum_member, 1); rb_define_method(rb_mEnumerable, "include?", enum_member, 1); rb_define_method(rb_mEnumerable, "each_with_index", enum_each_with_index, 0); rb_define_method(rb_mEnumerable, "enum_with_index", enum_each_with_index, 0); rb_define_method(rb_mEnumerable, "reverse_each", enum_reverse_each, -1); rb_define_method(rb_mEnumerable, "each_entry", enum_each_entry, -1); rb_define_method(rb_mEnumerable, "zip", enum_zip, -1); rb_define_method(rb_mEnumerable, "take", enum_take, 1); rb_define_method(rb_mEnumerable, "take_while", enum_take_while, 0); rb_define_method(rb_mEnumerable, "drop", enum_drop, 1); rb_define_method(rb_mEnumerable, "drop_while", enum_drop_while, 0); rb_define_method(rb_mEnumerable, "cycle", enum_cycle, -1); id_eqq = rb_intern("==="); id_each = rb_intern("each"); id_cmp = rb_intern("<=>"); id_size = rb_intern("size"); }