/********************************************************************** marshal.c - $Author$ created at: Thu Apr 27 16:30:01 JST 1995 Copyright (C) 1993-2007 Yukihiro Matsumoto **********************************************************************/ #include "ruby/ruby.h" #include "ruby/io.h" #include "ruby/st.h" #include "ruby/util.h" #include "ruby/encoding.h" #include "internal.h" #include #ifdef HAVE_FLOAT_H #include #endif #ifdef HAVE_IEEEFP_H #include #endif #define BITSPERSHORT (2*CHAR_BIT) #define SHORTMASK ((1<newclass); rb_gc_mark(p->oldclass); return ST_CONTINUE; } static void mark_marshal_compat_t(void *tbl) { if (!tbl) return; st_foreach(tbl, mark_marshal_compat_i, 0); } void rb_marshal_define_compat(VALUE newclass, VALUE oldclass, VALUE (*dumper)(VALUE), VALUE (*loader)(VALUE, VALUE)) { marshal_compat_t *compat; rb_alloc_func_t allocator = rb_get_alloc_func(newclass); if (!allocator) { rb_raise(rb_eTypeError, "no allocator"); } compat = ALLOC(marshal_compat_t); compat->newclass = Qnil; compat->oldclass = Qnil; compat->newclass = newclass; compat->oldclass = oldclass; compat->dumper = dumper; compat->loader = loader; st_insert(compat_allocator_tbl, (st_data_t)allocator, (st_data_t)compat); } #define MARSHAL_INFECTION FL_TAINT typedef char ruby_check_marshal_viral_flags[MARSHAL_INFECTION == (int)MARSHAL_INFECTION ? 1 : -1]; struct dump_arg { VALUE str, dest; st_table *symbols; st_table *data; st_table *compat_tbl; st_table *encodings; int infection; }; struct dump_call_arg { VALUE obj; struct dump_arg *arg; int limit; }; static void check_dump_arg(struct dump_arg *arg, ID sym) { if (!arg->symbols) { rb_raise(rb_eRuntimeError, "Marshal.dump reentered at %s", rb_id2name(sym)); } } static void clear_dump_arg(struct dump_arg *arg); static void mark_dump_arg(void *ptr) { struct dump_arg *p = ptr; if (!p->symbols) return; rb_mark_set(p->data); rb_mark_hash(p->compat_tbl); rb_gc_mark(p->str); } static void free_dump_arg(void *ptr) { clear_dump_arg(ptr); xfree(ptr); } static size_t memsize_dump_arg(const void *ptr) { return ptr ? sizeof(struct dump_arg) : 0; } static const rb_data_type_t dump_arg_data = { "dump_arg", {mark_dump_arg, free_dump_arg, memsize_dump_arg,}, NULL, NULL, RUBY_TYPED_FREE_IMMEDIATELY }; static const char * must_not_be_anonymous(const char *type, VALUE path) { char *n = RSTRING_PTR(path); if (!rb_enc_asciicompat(rb_enc_get(path))) { /* cannot occur? */ rb_raise(rb_eTypeError, "can't dump non-ascii %s name", type); } if (n[0] == '#') { rb_raise(rb_eTypeError, "can't dump anonymous %s %.*s", type, (int)RSTRING_LEN(path), n); } return n; } static VALUE class2path(VALUE klass) { VALUE path = rb_class_path(klass); const char *n; n = must_not_be_anonymous((RB_TYPE_P(klass, T_CLASS) ? "class" : "module"), path); if (rb_path_to_class(path) != rb_class_real(klass)) { rb_raise(rb_eTypeError, "%s can't be referred to", n); } return path; } static void w_long(long, struct dump_arg*); static void w_encoding(VALUE obj, long num, struct dump_call_arg *arg); static void w_nbyte(const char *s, long n, struct dump_arg *arg) { VALUE buf = arg->str; rb_str_buf_cat(buf, s, n); RBASIC(buf)->flags |= arg->infection; if (arg->dest && RSTRING_LEN(buf) >= BUFSIZ) { rb_io_write(arg->dest, buf); rb_str_resize(buf, 0); } } static void w_byte(char c, struct dump_arg *arg) { w_nbyte(&c, 1, arg); } static void w_bytes(const char *s, long n, struct dump_arg *arg) { w_long(n, arg); w_nbyte(s, n, arg); } #define w_cstr(s, arg) w_bytes((s), strlen(s), (arg)) static void w_short(int x, struct dump_arg *arg) { w_byte((char)((x >> 0) & 0xff), arg); w_byte((char)((x >> 8) & 0xff), arg); } static void w_long(long x, struct dump_arg *arg) { char buf[sizeof(long)+1]; int i, len = 0; #if SIZEOF_LONG > 4 if (!(RSHIFT(x, 31) == 0 || RSHIFT(x, 31) == -1)) { /* big long does not fit in 4 bytes */ rb_raise(rb_eTypeError, "long too big to dump"); } #endif if (x == 0) { w_byte(0, arg); return; } if (0 < x && x < 123) { w_byte((char)(x + 5), arg); return; } if (-124 < x && x < 0) { w_byte((char)((x - 5)&0xff), arg); return; } for (i=1;i<(int)sizeof(long)+1;i++) { buf[i] = (char)(x & 0xff); x = RSHIFT(x,8); if (x == 0) { buf[0] = i; break; } if (x == -1) { buf[0] = -i; break; } } len = i; for (i=0;i<=len;i++) { w_byte(buf[i], arg); } } #ifdef DBL_MANT_DIG #define DECIMAL_MANT (53-16) /* from IEEE754 double precision */ #if DBL_MANT_DIG > 32 #define MANT_BITS 32 #elif DBL_MANT_DIG > 24 #define MANT_BITS 24 #elif DBL_MANT_DIG > 16 #define MANT_BITS 16 #else #define MANT_BITS 8 #endif static double load_mantissa(double d, const char *buf, long len) { if (!len) return d; if (--len > 0 && !*buf++) { /* binary mantissa mark */ int e, s = d < 0, dig = 0; unsigned long m; modf(ldexp(frexp(fabs(d), &e), DECIMAL_MANT), &d); do { m = 0; switch (len) { default: m = *buf++ & 0xff; #if MANT_BITS > 24 case 3: m = (m << 8) | (*buf++ & 0xff); #endif #if MANT_BITS > 16 case 2: m = (m << 8) | (*buf++ & 0xff); #endif #if MANT_BITS > 8 case 1: m = (m << 8) | (*buf++ & 0xff); #endif } dig -= len < MANT_BITS / 8 ? 8 * (unsigned)len : MANT_BITS; d += ldexp((double)m, dig); } while ((len -= MANT_BITS / 8) > 0); d = ldexp(d, e - DECIMAL_MANT); if (s) d = -d; } return d; } #else #define load_mantissa(d, buf, len) (d) #endif #ifdef DBL_DIG #define FLOAT_DIG (DBL_DIG+2) #else #define FLOAT_DIG 17 #endif static void w_float(double d, struct dump_arg *arg) { char *ruby_dtoa(double d_, int mode, int ndigits, int *decpt, int *sign, char **rve); char buf[FLOAT_DIG + (DECIMAL_MANT + 7) / 8 + 10]; if (isinf(d)) { if (d < 0) w_cstr("-inf", arg); else w_cstr("inf", arg); } else if (isnan(d)) { w_cstr("nan", arg); } else if (d == 0.0) { if (1.0/d < 0) w_cstr("-0", arg); else w_cstr("0", arg); } else { int decpt, sign, digs, len = 0; char *e, *p = ruby_dtoa(d, 0, 0, &decpt, &sign, &e); if (sign) buf[len++] = '-'; digs = (int)(e - p); if (decpt < -3 || decpt > digs) { buf[len++] = p[0]; if (--digs > 0) buf[len++] = '.'; memcpy(buf + len, p + 1, digs); len += digs; len += snprintf(buf + len, sizeof(buf) - len, "e%d", decpt - 1); } else if (decpt > 0) { memcpy(buf + len, p, decpt); len += decpt; if ((digs -= decpt) > 0) { buf[len++] = '.'; memcpy(buf + len, p + decpt, digs); len += digs; } } else { buf[len++] = '0'; buf[len++] = '.'; if (decpt) { memset(buf + len, '0', -decpt); len -= decpt; } memcpy(buf + len, p, digs); len += digs; } xfree(p); w_bytes(buf, len, arg); } } static void w_symbol(ID id, struct dump_arg *arg) { VALUE sym; st_data_t num; int encidx = -1; if (st_lookup(arg->symbols, id, &num)) { w_byte(TYPE_SYMLINK, arg); w_long((long)num, arg); } else { sym = rb_id2str(id); if (!sym) { rb_raise(rb_eTypeError, "can't dump anonymous ID %"PRIdVALUE, id); } encidx = rb_enc_get_index(sym); if (encidx == rb_usascii_encindex() || rb_enc_str_coderange(sym) == ENC_CODERANGE_7BIT) { encidx = -1; } else { w_byte(TYPE_IVAR, arg); } w_byte(TYPE_SYMBOL, arg); w_bytes(RSTRING_PTR(sym), RSTRING_LEN(sym), arg); st_add_direct(arg->symbols, id, arg->symbols->num_entries); if (encidx != -1) { struct dump_call_arg c_arg; c_arg.limit = 1; c_arg.arg = arg; w_encoding(sym, 0, &c_arg); } } } static void w_unique(VALUE s, struct dump_arg *arg) { must_not_be_anonymous("class", s); w_symbol(rb_intern_str(s), arg); } static void w_object(VALUE,struct dump_arg*,int); static int hash_each(VALUE key, VALUE value, struct dump_call_arg *arg) { w_object(key, arg->arg, arg->limit); w_object(value, arg->arg, arg->limit); return ST_CONTINUE; } #define SINGLETON_DUMP_UNABLE_P(klass) \ (RCLASS_M_TBL(klass)->num_entries || \ (RCLASS_IV_TBL(klass) && RCLASS_IV_TBL(klass)->num_entries > 1)) static void w_extended(VALUE klass, struct dump_arg *arg, int check) { if (check && FL_TEST(klass, FL_SINGLETON)) { VALUE origin = RCLASS_ORIGIN(klass); if (SINGLETON_DUMP_UNABLE_P(klass) || (origin != klass && SINGLETON_DUMP_UNABLE_P(origin))) { rb_raise(rb_eTypeError, "singleton can't be dumped"); } klass = RCLASS_SUPER(klass); } while (BUILTIN_TYPE(klass) == T_ICLASS) { VALUE path = rb_class_name(RBASIC(klass)->klass); w_byte(TYPE_EXTENDED, arg); w_unique(path, arg); klass = RCLASS_SUPER(klass); } } static void w_class(char type, VALUE obj, struct dump_arg *arg, int check) { VALUE path; st_data_t real_obj; VALUE klass; if (st_lookup(arg->compat_tbl, (st_data_t)obj, &real_obj)) { obj = (VALUE)real_obj; } klass = CLASS_OF(obj); w_extended(klass, arg, check); w_byte(type, arg); path = class2path(rb_class_real(klass)); w_unique(path, arg); } static void w_uclass(VALUE obj, VALUE super, struct dump_arg *arg) { VALUE klass = CLASS_OF(obj); w_extended(klass, arg, TRUE); klass = rb_class_real(klass); if (klass != super) { w_byte(TYPE_UCLASS, arg); w_unique(class2path(klass), arg); } } static int w_obj_each(st_data_t key, st_data_t val, st_data_t a) { ID id = (ID)key; VALUE value = (VALUE)val; struct dump_call_arg *arg = (struct dump_call_arg *)a; if (id == rb_id_encoding()) return ST_CONTINUE; if (id == rb_intern("E")) return ST_CONTINUE; w_symbol(id, arg->arg); w_object(value, arg->arg, arg->limit); return ST_CONTINUE; } static void w_encoding(VALUE obj, long num, struct dump_call_arg *arg) { int encidx = rb_enc_get_index(obj); rb_encoding *enc = 0; st_data_t name; if (encidx <= 0 || !(enc = rb_enc_from_index(encidx))) { w_long(num, arg->arg); return; } w_long(num + 1, arg->arg); /* special treatment for US-ASCII and UTF-8 */ if (encidx == rb_usascii_encindex()) { w_symbol(rb_intern("E"), arg->arg); w_object(Qfalse, arg->arg, arg->limit + 1); return; } else if (encidx == rb_utf8_encindex()) { w_symbol(rb_intern("E"), arg->arg); w_object(Qtrue, arg->arg, arg->limit + 1); return; } w_symbol(rb_id_encoding(), arg->arg); do { if (!arg->arg->encodings) arg->arg->encodings = st_init_strcasetable(); else if (st_lookup(arg->arg->encodings, (st_data_t)rb_enc_name(enc), &name)) break; name = (st_data_t)rb_str_new2(rb_enc_name(enc)); st_insert(arg->arg->encodings, (st_data_t)rb_enc_name(enc), name); } while (0); w_object(name, arg->arg, arg->limit + 1); } static void w_ivar(VALUE obj, st_table *tbl, struct dump_call_arg *arg) { long num = tbl ? tbl->num_entries : 0; w_encoding(obj, num, arg); if (tbl) { st_foreach_safe(tbl, w_obj_each, (st_data_t)arg); } } static void w_objivar(VALUE obj, struct dump_call_arg *arg) { VALUE *ptr; long i, len, num; len = ROBJECT_NUMIV(obj); ptr = ROBJECT_IVPTR(obj); num = 0; for (i = 0; i < len; i++) if (ptr[i] != Qundef) num += 1; w_encoding(obj, num, arg); if (num != 0) { rb_ivar_foreach(obj, w_obj_each, (st_data_t)arg); } } static void w_object(VALUE obj, struct dump_arg *arg, int limit) { struct dump_call_arg c_arg; st_table *ivtbl = 0; st_data_t num; int hasiv = 0; #define has_ivars(obj, ivtbl) ((((ivtbl) = rb_generic_ivar_table(obj)) != 0) || \ (!SPECIAL_CONST_P(obj) && !ENCODING_IS_ASCII8BIT(obj))) if (limit == 0) { rb_raise(rb_eArgError, "exceed depth limit"); } limit--; c_arg.limit = limit; c_arg.arg = arg; if (st_lookup(arg->data, obj, &num)) { w_byte(TYPE_LINK, arg); w_long((long)num, arg); return; } if (obj == Qnil) { w_byte(TYPE_NIL, arg); } else if (obj == Qtrue) { w_byte(TYPE_TRUE, arg); } else if (obj == Qfalse) { w_byte(TYPE_FALSE, arg); } else if (FIXNUM_P(obj)) { #if SIZEOF_LONG <= 4 w_byte(TYPE_FIXNUM, arg); w_long(FIX2INT(obj), arg); #else if (RSHIFT((long)obj, 31) == 0 || RSHIFT((long)obj, 31) == -1) { w_byte(TYPE_FIXNUM, arg); w_long(FIX2LONG(obj), arg); } else { w_object(rb_int2big(FIX2LONG(obj)), arg, limit); } #endif } else if (SYMBOL_P(obj)) { w_symbol(SYM2ID(obj), arg); } else if (FLONUM_P(obj)) { st_add_direct(arg->data, obj, arg->data->num_entries); w_byte(TYPE_FLOAT, arg); w_float(RFLOAT_VALUE(obj), arg); } else { VALUE v; arg->infection |= (int)FL_TEST(obj, MARSHAL_INFECTION); if (rb_obj_respond_to(obj, s_mdump, TRUE)) { st_add_direct(arg->data, obj, arg->data->num_entries); v = rb_funcall2(obj, s_mdump, 0, 0); check_dump_arg(arg, s_mdump); w_class(TYPE_USRMARSHAL, obj, arg, FALSE); w_object(v, arg, limit); return; } if (rb_obj_respond_to(obj, s_dump, TRUE)) { st_table *ivtbl2 = 0; int hasiv2; v = INT2NUM(limit); v = rb_funcall2(obj, s_dump, 1, &v); check_dump_arg(arg, s_dump); if (!RB_TYPE_P(v, T_STRING)) { rb_raise(rb_eTypeError, "_dump() must return string"); } hasiv = has_ivars(obj, ivtbl); if (hasiv) w_byte(TYPE_IVAR, arg); if ((hasiv2 = has_ivars(v, ivtbl2)) != 0 && !hasiv) { w_byte(TYPE_IVAR, arg); } w_class(TYPE_USERDEF, obj, arg, FALSE); w_bytes(RSTRING_PTR(v), RSTRING_LEN(v), arg); if (hasiv2) { w_ivar(v, ivtbl2, &c_arg); } else if (hasiv) { w_ivar(obj, ivtbl, &c_arg); } st_add_direct(arg->data, obj, arg->data->num_entries); return; } st_add_direct(arg->data, obj, arg->data->num_entries); hasiv = has_ivars(obj, ivtbl); { st_data_t compat_data; rb_alloc_func_t allocator = rb_get_alloc_func(RBASIC(obj)->klass); if (st_lookup(compat_allocator_tbl, (st_data_t)allocator, &compat_data)) { marshal_compat_t *compat = (marshal_compat_t*)compat_data; VALUE real_obj = obj; obj = compat->dumper(real_obj); st_insert(arg->compat_tbl, (st_data_t)obj, (st_data_t)real_obj); if (obj != real_obj && !ivtbl) hasiv = 0; } } if (hasiv) w_byte(TYPE_IVAR, arg); switch (BUILTIN_TYPE(obj)) { case T_CLASS: if (FL_TEST(obj, FL_SINGLETON)) { rb_raise(rb_eTypeError, "singleton class can't be dumped"); } w_byte(TYPE_CLASS, arg); { VALUE path = class2path(obj); w_bytes(RSTRING_PTR(path), RSTRING_LEN(path), arg); RB_GC_GUARD(path); } break; case T_MODULE: w_byte(TYPE_MODULE, arg); { VALUE path = class2path(obj); w_bytes(RSTRING_PTR(path), RSTRING_LEN(path), arg); RB_GC_GUARD(path); } break; case T_FLOAT: w_byte(TYPE_FLOAT, arg); w_float(RFLOAT_VALUE(obj), arg); break; case T_BIGNUM: w_byte(TYPE_BIGNUM, arg); { char sign = RBIGNUM_SIGN(obj) ? '+' : '-'; long len = RBIGNUM_LEN(obj); BDIGIT *d = RBIGNUM_DIGITS(obj); w_byte(sign, arg); w_long(SHORTLEN(len), arg); /* w_short? */ while (len--) { #if SIZEOF_BDIGITS > SIZEOF_SHORT BDIGIT num = *d; int i; for (i=0; isymbols) return; st_free_table(arg->symbols); arg->symbols = 0; st_free_table(arg->data); arg->data = 0; st_free_table(arg->compat_tbl); arg->compat_tbl = 0; if (arg->encodings) { st_free_table(arg->encodings); arg->encodings = 0; } } NORETURN(static inline void io_needed(void)); static inline void io_needed(void) { rb_raise(rb_eTypeError, "instance of IO needed"); } /* * call-seq: * dump( obj [, anIO] , limit=-1 ) -> anIO * * Serializes obj and all descendant objects. If anIO is * specified, the serialized data will be written to it, otherwise the * data will be returned as a String. If limit is specified, the * traversal of subobjects will be limited to that depth. If limit is * negative, no checking of depth will be performed. * * class Klass * def initialize(str) * @str = str * end * def say_hello * @str * end * end * * (produces no output) * * o = Klass.new("hello\n") * data = Marshal.dump(o) * obj = Marshal.load(data) * obj.say_hello #=> "hello\n" * * Marshal can't dump following objects: * * anonymous Class/Module. * * objects which are related to system (ex: Dir, File::Stat, IO, File, Socket * and so on) * * an instance of MatchData, Data, Method, UnboundMethod, Proc, Thread, * ThreadGroup, Continuation * * objects which define singleton methods */ static VALUE marshal_dump(int argc, VALUE *argv) { VALUE obj, port, a1, a2; int limit = -1; struct dump_arg *arg; volatile VALUE wrapper; port = Qnil; rb_scan_args(argc, argv, "12", &obj, &a1, &a2); if (argc == 3) { if (!NIL_P(a2)) limit = NUM2INT(a2); if (NIL_P(a1)) io_needed(); port = a1; } else if (argc == 2) { if (FIXNUM_P(a1)) limit = FIX2INT(a1); else if (NIL_P(a1)) io_needed(); else port = a1; } RB_GC_GUARD(wrapper) = TypedData_Make_Struct(rb_cData, struct dump_arg, &dump_arg_data, arg); arg->dest = 0; arg->symbols = st_init_numtable(); arg->data = st_init_numtable(); arg->infection = 0; arg->compat_tbl = st_init_numtable(); arg->encodings = 0; arg->str = rb_str_buf_new(0); if (!NIL_P(port)) { if (!rb_respond_to(port, s_write)) { io_needed(); } arg->dest = port; if (rb_check_funcall(port, s_binmode, 0, 0) != Qundef) { check_dump_arg(arg, s_binmode); } } else { port = arg->str; } w_byte(MARSHAL_MAJOR, arg); w_byte(MARSHAL_MINOR, arg); w_object(obj, arg, limit); if (arg->dest) { rb_io_write(arg->dest, arg->str); rb_str_resize(arg->str, 0); } clear_dump_arg(arg); RB_GC_GUARD(wrapper); return port; } struct load_arg { VALUE src; char *buf; long buflen; long readable; long offset; st_table *symbols; st_table *data; VALUE proc; st_table *compat_tbl; int infection; }; static void check_load_arg(struct load_arg *arg, ID sym) { if (!arg->symbols) { rb_raise(rb_eRuntimeError, "Marshal.load reentered at %s", rb_id2name(sym)); } } static void clear_load_arg(struct load_arg *arg); static void mark_load_arg(void *ptr) { struct load_arg *p = ptr; if (!p->symbols) return; rb_mark_tbl(p->data); rb_mark_hash(p->compat_tbl); } static void free_load_arg(void *ptr) { clear_load_arg(ptr); xfree(ptr); } static size_t memsize_load_arg(const void *ptr) { return ptr ? sizeof(struct load_arg) : 0; } static const rb_data_type_t load_arg_data = { "load_arg", {mark_load_arg, free_load_arg, memsize_load_arg,}, NULL, NULL, RUBY_TYPED_FREE_IMMEDIATELY }; #define r_entry(v, arg) r_entry0((v), (arg)->data->num_entries, (arg)) static VALUE r_entry0(VALUE v, st_index_t num, struct load_arg *arg); static VALUE r_object(struct load_arg *arg); static ID r_symbol(struct load_arg *arg); static VALUE path2class(VALUE path); NORETURN(static void too_short(void)); static void too_short(void) { rb_raise(rb_eArgError, "marshal data too short"); } static st_index_t r_prepare(struct load_arg *arg) { st_index_t idx = arg->data->num_entries; st_insert(arg->data, (st_data_t)idx, (st_data_t)Qundef); return idx; } static unsigned char r_byte1_buffered(struct load_arg *arg) { if (arg->buflen == 0) { long readable = arg->readable < BUFSIZ ? arg->readable : BUFSIZ; VALUE str, n = LONG2NUM(readable); str = rb_funcall2(arg->src, s_read, 1, &n); check_load_arg(arg, s_read); if (NIL_P(str)) too_short(); StringValue(str); arg->infection |= (int)FL_TEST(str, MARSHAL_INFECTION); memcpy(arg->buf, RSTRING_PTR(str), RSTRING_LEN(str)); arg->offset = 0; arg->buflen = RSTRING_LEN(str); } arg->buflen--; return arg->buf[arg->offset++]; } static int r_byte(struct load_arg *arg) { int c; if (RB_TYPE_P(arg->src, T_STRING)) { if (RSTRING_LEN(arg->src) > arg->offset) { c = (unsigned char)RSTRING_PTR(arg->src)[arg->offset++]; } else { too_short(); } } else { if (arg->readable >0 || arg->buflen > 0) { c = r_byte1_buffered(arg); } else { VALUE v = rb_funcall2(arg->src, s_getbyte, 0, 0); check_load_arg(arg, s_getbyte); if (NIL_P(v)) rb_eof_error(); c = (unsigned char)NUM2CHR(v); } } return c; } static void long_toobig(int size) { rb_raise(rb_eTypeError, "long too big for this architecture (size " STRINGIZE(SIZEOF_LONG)", given %d)", size); } #undef SIGN_EXTEND_CHAR #if __STDC__ # define SIGN_EXTEND_CHAR(c) ((signed char)(c)) #else /* not __STDC__ */ /* As in Harbison and Steele. */ # define SIGN_EXTEND_CHAR(c) ((((unsigned char)(c)) ^ 128) - 128) #endif static long r_long(struct load_arg *arg) { register long x; int c = SIGN_EXTEND_CHAR(r_byte(arg)); long i; if (c == 0) return 0; if (c > 0) { if (4 < c && c < 128) { return c - 5; } if (c > (int)sizeof(long)) long_toobig(c); x = 0; for (i=0;i (int)sizeof(long)) long_toobig(c); x = -1; for (i=0;isrc, s_read, 1, &n); check_load_arg(arg, s_read); if (NIL_P(str)) too_short(); StringValue(str); if (RSTRING_LEN(str) != len) too_short(); arg->infection |= (int)FL_TEST(str, MARSHAL_INFECTION); return str; } static VALUE r_bytes1_buffered(long len, struct load_arg *arg) { VALUE str; if (len <= arg->buflen) { str = rb_str_new(arg->buf+arg->offset, len); arg->offset += len; arg->buflen -= len; } else { long buflen = arg->buflen; long readable = arg->readable + 1; long tmp_len, read_len, need_len = len - buflen; VALUE tmp, n; readable = readable < BUFSIZ ? readable : BUFSIZ; read_len = need_len > readable ? need_len : readable; n = LONG2NUM(read_len); tmp = rb_funcall2(arg->src, s_read, 1, &n); check_load_arg(arg, s_read); if (NIL_P(tmp)) too_short(); StringValue(tmp); tmp_len = RSTRING_LEN(tmp); if (tmp_len < need_len) too_short(); arg->infection |= (int)FL_TEST(tmp, MARSHAL_INFECTION); str = rb_str_new(arg->buf+arg->offset, buflen); rb_str_cat(str, RSTRING_PTR(tmp), need_len); if (tmp_len > need_len) { buflen = tmp_len - need_len; memcpy(arg->buf, RSTRING_PTR(tmp)+need_len, buflen); arg->buflen = buflen; } else { arg->buflen = 0; } arg->offset = 0; } return str; } #define r_bytes(arg) r_bytes0(r_long(arg), (arg)) static VALUE r_bytes0(long len, struct load_arg *arg) { VALUE str; if (len == 0) return rb_str_new(0, 0); if (RB_TYPE_P(arg->src, T_STRING)) { if (RSTRING_LEN(arg->src) - arg->offset >= len) { str = rb_str_new(RSTRING_PTR(arg->src)+arg->offset, len); arg->offset += len; } else { too_short(); } } else { if (arg->readable > 0 || arg->buflen > 0) { str = r_bytes1_buffered(len, arg); } else { str = r_bytes1(len, arg); } } return str; } static int id2encidx(ID id, VALUE val) { if (id == rb_id_encoding()) { int idx = rb_enc_find_index(StringValueCStr(val)); return idx; } else if (id == rb_intern("E")) { if (val == Qfalse) return rb_usascii_encindex(); else if (val == Qtrue) return rb_utf8_encindex(); /* bogus ignore */ } return -1; } static ID r_symlink(struct load_arg *arg) { st_data_t id; long num = r_long(arg); if (!st_lookup(arg->symbols, num, &id)) { rb_raise(rb_eArgError, "bad symbol"); } return (ID)id; } static ID r_symreal(struct load_arg *arg, int ivar) { VALUE s = r_bytes(arg); ID id; int idx = -1; st_index_t n = arg->symbols->num_entries; st_insert(arg->symbols, (st_data_t)n, (st_data_t)0); if (ivar) { long num = r_long(arg); while (num-- > 0) { id = r_symbol(arg); idx = id2encidx(id, r_object(arg)); } } if (idx > 0) rb_enc_associate_index(s, idx); id = rb_intern_str(s); st_insert(arg->symbols, (st_data_t)n, (st_data_t)id); return id; } static ID r_symbol(struct load_arg *arg) { int type, ivar = 0; again: switch ((type = r_byte(arg))) { default: rb_raise(rb_eArgError, "dump format error for symbol(0x%x)", type); case TYPE_IVAR: ivar = 1; goto again; case TYPE_SYMBOL: return r_symreal(arg, ivar); case TYPE_SYMLINK: if (ivar) { rb_raise(rb_eArgError, "dump format error (symlink with encoding)"); } return r_symlink(arg); } } static VALUE r_unique(struct load_arg *arg) { return rb_id2str(r_symbol(arg)); } static VALUE r_string(struct load_arg *arg) { return r_bytes(arg); } static VALUE r_entry0(VALUE v, st_index_t num, struct load_arg *arg) { st_data_t real_obj = (VALUE)Qundef; if (st_lookup(arg->compat_tbl, v, &real_obj)) { st_insert(arg->data, num, (st_data_t)real_obj); } else { st_insert(arg->data, num, (st_data_t)v); } if (arg->infection && !RB_TYPE_P(v, T_CLASS) && !RB_TYPE_P(v, T_MODULE)) { FL_SET(v, arg->infection); if ((VALUE)real_obj != Qundef) FL_SET((VALUE)real_obj, arg->infection); } return v; } static VALUE r_fixup_compat(VALUE v, struct load_arg *arg) { st_data_t data; if (st_lookup(arg->compat_tbl, v, &data)) { VALUE real_obj = (VALUE)data; rb_alloc_func_t allocator = rb_get_alloc_func(CLASS_OF(real_obj)); st_data_t key = v; if (st_lookup(compat_allocator_tbl, (st_data_t)allocator, &data)) { marshal_compat_t *compat = (marshal_compat_t*)data; compat->loader(real_obj, v); } st_delete(arg->compat_tbl, &key, 0); v = real_obj; } return v; } static VALUE r_post_proc(VALUE v, struct load_arg *arg) { if (arg->proc) { v = rb_funcall(arg->proc, s_call, 1, v); check_load_arg(arg, s_call); } return v; } static VALUE r_leave(VALUE v, struct load_arg *arg) { v = r_fixup_compat(v, arg); v = r_post_proc(v, arg); return v; } static int copy_ivar_i(st_data_t key, st_data_t val, st_data_t arg) { VALUE obj = (VALUE)arg, value = (VALUE)val; ID vid = (ID)key; if (!rb_ivar_defined(obj, vid)) rb_ivar_set(obj, vid, value); return ST_CONTINUE; } static VALUE r_copy_ivar(VALUE v, VALUE data) { rb_ivar_foreach(data, copy_ivar_i, (st_data_t)v); return v; } static void r_ivar(VALUE obj, int *has_encoding, struct load_arg *arg) { long len; len = r_long(arg); if (len > 0) { do { ID id = r_symbol(arg); VALUE val = r_object(arg); int idx = id2encidx(id, val); if (idx >= 0) { rb_enc_associate_index(obj, idx); if (has_encoding) *has_encoding = TRUE; } else { rb_ivar_set(obj, id, val); } } while (--len > 0); } } static VALUE path2class(VALUE path) { VALUE v = rb_path_to_class(path); if (!RB_TYPE_P(v, T_CLASS)) { rb_raise(rb_eArgError, "%"PRIsVALUE" does not refer to class", path); } return v; } #define path2module(path) must_be_module(rb_path_to_class(path), path) static VALUE must_be_module(VALUE v, VALUE path) { if (!RB_TYPE_P(v, T_MODULE)) { rb_raise(rb_eArgError, "%"PRIsVALUE" does not refer to module", path); } return v; } static VALUE obj_alloc_by_klass(VALUE klass, struct load_arg *arg, VALUE *oldclass) { st_data_t data; rb_alloc_func_t allocator; allocator = rb_get_alloc_func(klass); if (st_lookup(compat_allocator_tbl, (st_data_t)allocator, &data)) { marshal_compat_t *compat = (marshal_compat_t*)data; VALUE real_obj = rb_obj_alloc(klass); VALUE obj = rb_obj_alloc(compat->oldclass); if (oldclass) *oldclass = compat->oldclass; st_insert(arg->compat_tbl, (st_data_t)obj, (st_data_t)real_obj); return obj; } return rb_obj_alloc(klass); } static VALUE obj_alloc_by_path(VALUE path, struct load_arg *arg) { return obj_alloc_by_klass(path2class(path), arg, 0); } static VALUE append_extmod(VALUE obj, VALUE extmod) { long i = RARRAY_LEN(extmod); while (i > 0) { VALUE m = RARRAY_AREF(extmod, --i); rb_extend_object(obj, m); } return obj; } #define prohibit_ivar(type, str) do { \ if (!ivp || !*ivp) break; \ rb_raise(rb_eTypeError, \ "can't override instance variable of "type" `%"PRIsVALUE"'", \ (str)); \ } while (0) static VALUE r_object0(struct load_arg *arg, int *ivp, VALUE extmod) { VALUE v = Qnil; int type = r_byte(arg); long id; st_data_t link; switch (type) { case TYPE_LINK: id = r_long(arg); if (!st_lookup(arg->data, (st_data_t)id, &link)) { rb_raise(rb_eArgError, "dump format error (unlinked)"); } v = (VALUE)link; r_post_proc(v, arg); break; case TYPE_IVAR: { int ivar = TRUE; v = r_object0(arg, &ivar, extmod); if (ivar) r_ivar(v, NULL, arg); } break; case TYPE_EXTENDED: { VALUE path = r_unique(arg); VALUE m = rb_path_to_class(path); if (RB_TYPE_P(m, T_CLASS)) { /* prepended */ VALUE c; v = r_object0(arg, 0, Qnil); c = CLASS_OF(v); if (c != m || FL_TEST(c, FL_SINGLETON)) { rb_raise(rb_eArgError, "prepended class %"PRIsVALUE" differs from class %"PRIsVALUE, path, rb_class_name(c)); } c = rb_singleton_class(v); while (RARRAY_LEN(extmod) > 0) { m = rb_ary_pop(extmod); rb_prepend_module(c, m); } } else { must_be_module(m, path); if (NIL_P(extmod)) extmod = rb_ary_tmp_new(0); rb_ary_push(extmod, m); v = r_object0(arg, 0, extmod); while (RARRAY_LEN(extmod) > 0) { m = rb_ary_pop(extmod); rb_extend_object(v, m); } } } break; case TYPE_UCLASS: { VALUE c = path2class(r_unique(arg)); if (FL_TEST(c, FL_SINGLETON)) { rb_raise(rb_eTypeError, "singleton can't be loaded"); } v = r_object0(arg, 0, extmod); if (rb_special_const_p(v) || RB_TYPE_P(v, T_OBJECT) || RB_TYPE_P(v, T_CLASS)) { format_error: rb_raise(rb_eArgError, "dump format error (user class)"); } if (RB_TYPE_P(v, T_MODULE) || !RTEST(rb_class_inherited_p(c, RBASIC(v)->klass))) { VALUE tmp = rb_obj_alloc(c); if (TYPE(v) != TYPE(tmp)) goto format_error; } RBASIC_SET_CLASS(v, c); } break; case TYPE_NIL: v = Qnil; v = r_leave(v, arg); break; case TYPE_TRUE: v = Qtrue; v = r_leave(v, arg); break; case TYPE_FALSE: v = Qfalse; v = r_leave(v, arg); break; case TYPE_FIXNUM: { long i = r_long(arg); v = LONG2FIX(i); } v = r_leave(v, arg); break; case TYPE_FLOAT: { double d; VALUE str = r_bytes(arg); const char *ptr = RSTRING_PTR(str); if (strcmp(ptr, "nan") == 0) { d = NAN; } else if (strcmp(ptr, "inf") == 0) { d = INFINITY; } else if (strcmp(ptr, "-inf") == 0) { d = -INFINITY; } else { char *e; d = strtod(ptr, &e); d = load_mantissa(d, e, RSTRING_LEN(str) - (e - ptr)); } v = DBL2NUM(d); v = r_entry(v, arg); v = r_leave(v, arg); } break; case TYPE_BIGNUM: { long len; VALUE data; int sign; sign = r_byte(arg); len = r_long(arg); data = r_bytes0(len * 2, arg); v = rb_integer_unpack(RSTRING_PTR(data), len, 2, 0, INTEGER_PACK_LITTLE_ENDIAN | (sign == '-' ? INTEGER_PACK_NEGATIVE : 0)); rb_str_resize(data, 0L); v = r_entry(v, arg); v = r_leave(v, arg); } break; case TYPE_STRING: v = r_entry(r_string(arg), arg); v = r_leave(v, arg); break; case TYPE_REGEXP: { VALUE str = r_bytes(arg); int options = r_byte(arg); int has_encoding = FALSE; st_index_t idx = r_prepare(arg); if (ivp) { r_ivar(str, &has_encoding, arg); *ivp = FALSE; } if (!has_encoding) { /* 1.8 compatibility; remove escapes undefined in 1.8 */ char *ptr = RSTRING_PTR(str), *dst = ptr, *src = ptr; long len = RSTRING_LEN(str); long bs = 0; for (; len-- > 0; *dst++ = *src++) { switch (*src) { case '\\': bs++; break; case 'g': case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'o': case 'p': case 'q': case 'u': case 'y': case 'E': case 'F': case 'H': case 'I': case 'J': case 'K': case 'L': case 'N': case 'O': case 'P': case 'Q': case 'R': case 'S': case 'T': case 'U': case 'V': case 'X': case 'Y': if (bs & 1) --dst; default: bs = 0; break; } } rb_str_set_len(str, dst - ptr); } v = r_entry0(rb_reg_new_str(str, options), idx, arg); v = r_leave(v, arg); } break; case TYPE_ARRAY: { volatile long len = r_long(arg); /* gcc 2.7.2.3 -O2 bug?? */ v = rb_ary_new2(len); v = r_entry(v, arg); arg->readable += len - 1; while (len--) { rb_ary_push(v, r_object(arg)); arg->readable--; } v = r_leave(v, arg); arg->readable++; } break; case TYPE_HASH: case TYPE_HASH_DEF: { long len = r_long(arg); v = rb_hash_new(); v = r_entry(v, arg); arg->readable += (len - 1) * 2; while (len--) { VALUE key = r_object(arg); VALUE value = r_object(arg); rb_hash_aset(v, key, value); arg->readable -= 2; } arg->readable += 2; if (type == TYPE_HASH_DEF) { RHASH_SET_IFNONE(v, r_object(arg)); } v = r_leave(v, arg); } break; case TYPE_STRUCT: { VALUE mem, values; volatile long i; /* gcc 2.7.2.3 -O2 bug?? */ ID slot; st_index_t idx = r_prepare(arg); VALUE klass = path2class(r_unique(arg)); long len = r_long(arg); v = rb_obj_alloc(klass); if (!RB_TYPE_P(v, T_STRUCT)) { rb_raise(rb_eTypeError, "class %s not a struct", rb_class2name(klass)); } mem = rb_struct_s_members(klass); if (RARRAY_LEN(mem) != len) { rb_raise(rb_eTypeError, "struct %s not compatible (struct size differs)", rb_class2name(klass)); } arg->readable += (len - 1) * 2; v = r_entry0(v, idx, arg); values = rb_ary_new2(len); for (i=0; ireadable -= 2; } rb_struct_initialize(v, values); v = r_leave(v, arg); arg->readable += 2; } break; case TYPE_USERDEF: { VALUE klass = path2class(r_unique(arg)); VALUE data; if (!rb_obj_respond_to(klass, s_load, TRUE)) { rb_raise(rb_eTypeError, "class %s needs to have method `_load'", rb_class2name(klass)); } data = r_string(arg); if (ivp) { r_ivar(data, NULL, arg); *ivp = FALSE; } v = rb_funcall2(klass, s_load, 1, &data); check_load_arg(arg, s_load); v = r_entry(v, arg); v = r_leave(v, arg); } break; case TYPE_USRMARSHAL: { VALUE klass = path2class(r_unique(arg)); VALUE oldclass = 0; VALUE data; v = obj_alloc_by_klass(klass, arg, &oldclass); if (!NIL_P(extmod)) { /* for the case marshal_load is overridden */ append_extmod(v, extmod); } if (!rb_obj_respond_to(v, s_mload, TRUE)) { rb_raise(rb_eTypeError, "instance of %s needs to have method `marshal_load'", rb_class2name(klass)); } v = r_entry(v, arg); data = r_object(arg); rb_funcall2(v, s_mload, 1, &data); check_load_arg(arg, s_mload); v = r_fixup_compat(v, arg); v = r_copy_ivar(v, data); v = r_post_proc(v, arg); if (!NIL_P(extmod)) { if (oldclass) append_extmod(v, extmod); rb_ary_clear(extmod); } } break; case TYPE_OBJECT: { st_index_t idx = r_prepare(arg); v = obj_alloc_by_path(r_unique(arg), arg); if (!RB_TYPE_P(v, T_OBJECT)) { rb_raise(rb_eArgError, "dump format error"); } v = r_entry0(v, idx, arg); r_ivar(v, NULL, arg); v = r_leave(v, arg); } break; case TYPE_DATA: { VALUE klass = path2class(r_unique(arg)); VALUE oldclass = 0; VALUE r; v = obj_alloc_by_klass(klass, arg, &oldclass); if (!RB_TYPE_P(v, T_DATA)) { rb_raise(rb_eArgError, "dump format error"); } v = r_entry(v, arg); if (!rb_obj_respond_to(v, s_load_data, TRUE)) { rb_raise(rb_eTypeError, "class %s needs to have instance method `_load_data'", rb_class2name(klass)); } r = r_object0(arg, 0, extmod); rb_funcall2(v, s_load_data, 1, &r); check_load_arg(arg, s_load_data); v = r_leave(v, arg); } break; case TYPE_MODULE_OLD: { VALUE str = r_bytes(arg); v = rb_path_to_class(str); prohibit_ivar("class/module", str); v = r_entry(v, arg); v = r_leave(v, arg); } break; case TYPE_CLASS: { VALUE str = r_bytes(arg); v = path2class(str); prohibit_ivar("class", str); v = r_entry(v, arg); v = r_leave(v, arg); } break; case TYPE_MODULE: { VALUE str = r_bytes(arg); v = path2module(str); prohibit_ivar("module", str); v = r_entry(v, arg); v = r_leave(v, arg); } break; case TYPE_SYMBOL: if (ivp) { v = ID2SYM(r_symreal(arg, *ivp)); *ivp = FALSE; } else { v = ID2SYM(r_symreal(arg, 0)); } v = r_leave(v, arg); break; case TYPE_SYMLINK: v = ID2SYM(r_symlink(arg)); break; default: rb_raise(rb_eArgError, "dump format error(0x%x)", type); break; } return v; } static VALUE r_object(struct load_arg *arg) { return r_object0(arg, 0, Qnil); } static void clear_load_arg(struct load_arg *arg) { if (arg->buf) { xfree(arg->buf); arg->buf = 0; } arg->buflen = 0; arg->offset = 0; arg->readable = 0; if (!arg->symbols) return; st_free_table(arg->symbols); arg->symbols = 0; st_free_table(arg->data); arg->data = 0; st_free_table(arg->compat_tbl); arg->compat_tbl = 0; } /* * call-seq: * load( source [, proc] ) -> obj * restore( source [, proc] ) -> obj * * Returns the result of converting the serialized data in source into a * Ruby object (possibly with associated subordinate objects). source * may be either an instance of IO or an object that responds to * to_str. If proc is specified, each object will be passed to the proc, as the object * is being deserialized. * * Never pass untrusted data (including user supplied input) to this method. * Please see the overview for further details. */ static VALUE marshal_load(int argc, VALUE *argv) { VALUE port, proc; int major, minor, infection = 0; VALUE v; volatile VALUE wrapper; struct load_arg *arg; rb_scan_args(argc, argv, "11", &port, &proc); v = rb_check_string_type(port); if (!NIL_P(v)) { infection = (int)FL_TEST(port, MARSHAL_INFECTION); /* original taintedness */ port = v; } else if (rb_respond_to(port, s_getbyte) && rb_respond_to(port, s_read)) { rb_check_funcall(port, s_binmode, 0, 0); infection = (int)FL_TAINT; } else { io_needed(); } RB_GC_GUARD(wrapper) = TypedData_Make_Struct(rb_cData, struct load_arg, &load_arg_data, arg); arg->infection = infection; arg->src = port; arg->offset = 0; arg->symbols = st_init_numtable(); arg->data = st_init_numtable(); arg->compat_tbl = st_init_numtable(); arg->proc = 0; arg->readable = 0; if (NIL_P(v)) arg->buf = xmalloc(BUFSIZ); else arg->buf = 0; major = r_byte(arg); minor = r_byte(arg); if (major != MARSHAL_MAJOR || minor > MARSHAL_MINOR) { clear_load_arg(arg); rb_raise(rb_eTypeError, "incompatible marshal file format (can't be read)\n\ \tformat version %d.%d required; %d.%d given", MARSHAL_MAJOR, MARSHAL_MINOR, major, minor); } if (RTEST(ruby_verbose) && minor != MARSHAL_MINOR) { rb_warn("incompatible marshal file format (can be read)\n\ \tformat version %d.%d required; %d.%d given", MARSHAL_MAJOR, MARSHAL_MINOR, major, minor); } if (!NIL_P(proc)) arg->proc = proc; v = r_object(arg); clear_load_arg(arg); RB_GC_GUARD(wrapper); return v; } /* * The marshaling library converts collections of Ruby objects into a * byte stream, allowing them to be stored outside the currently * active script. This data may subsequently be read and the original * objects reconstituted. * * Marshaled data has major and minor version numbers stored along * with the object information. In normal use, marshaling can only * load data written with the same major version number and an equal * or lower minor version number. If Ruby's ``verbose'' flag is set * (normally using -d, -v, -w, or --verbose) the major and minor * numbers must match exactly. Marshal versioning is independent of * Ruby's version numbers. You can extract the version by reading the * first two bytes of marshaled data. * * str = Marshal.dump("thing") * RUBY_VERSION #=> "1.9.0" * str[0].ord #=> 4 * str[1].ord #=> 8 * * Some objects cannot be dumped: if the objects to be dumped include * bindings, procedure or method objects, instances of class IO, or * singleton objects, a TypeError will be raised. * * If your class has special serialization needs (for example, if you * want to serialize in some specific format), or if it contains * objects that would otherwise not be serializable, you can implement * your own serialization strategy. * * There are two methods of doing this, your object can define either * marshal_dump and marshal_load or _dump and _load. marshal_dump will take * precedence over _dump if both are defined. marshal_dump may result in * smaller Marshal strings. * * == Security considerations * * By design, Marshal.load can deserialize almost any class loaded into the * Ruby process. In many cases this can lead to remote code execution if the * Marshal data is loaded from an untrusted source. * * As a result, Marshal.load is not suitable as a general purpose serialization * format and you should never unmarshal user supplied input or other untrusted * data. * * If you need to deserialize untrusted data, use JSON or another serialization * format that is only able to load simple, 'primitive' types such as String, * Array, Hash, etc. Never allow user input to specify arbitrary types to * deserialize into. * * == marshal_dump and marshal_load * * When dumping an object the method marshal_dump will be called. * marshal_dump must return a result containing the information necessary for * marshal_load to reconstitute the object. The result can be any object. * * When loading an object dumped using marshal_dump the object is first * allocated then marshal_load is called with the result from marshal_dump. * marshal_load must recreate the object from the information in the result. * * Example: * * class MyObj * def initialize name, version, data * @name = name * @version = version * @data = data * end * * def marshal_dump * [@name, @version] * end * * def marshal_load array * @name, @version = array * end * end * * == _dump and _load * * Use _dump and _load when you need to allocate the object you're restoring * yourself. * * When dumping an object the instance method _dump is called with an Integer * which indicates the maximum depth of objects to dump (a value of -1 implies * that you should disable depth checking). _dump must return a String * containing the information necessary to reconstitute the object. * * The class method _load should take a String and use it to return an object * of the same class. * * Example: * * class MyObj * def initialize name, version, data * @name = name * @version = version * @data = data * end * * def _dump level * [@name, @version].join ':' * end * * def self._load args * new(*args.split(':')) * end * end * * Since Marhsal.dump outputs a string you can have _dump return a Marshal * string which is Marshal.loaded in _load for complex objects. */ void Init_marshal(void) { #undef rb_intern #define rb_intern(str) rb_intern_const(str) VALUE rb_mMarshal = rb_define_module("Marshal"); s_dump = rb_intern("_dump"); s_load = rb_intern("_load"); s_mdump = rb_intern("marshal_dump"); s_mload = rb_intern("marshal_load"); s_dump_data = rb_intern("_dump_data"); s_load_data = rb_intern("_load_data"); s_alloc = rb_intern("_alloc"); s_call = rb_intern("call"); s_getbyte = rb_intern("getbyte"); s_read = rb_intern("read"); s_write = rb_intern("write"); s_binmode = rb_intern("binmode"); rb_define_module_function(rb_mMarshal, "dump", marshal_dump, -1); rb_define_module_function(rb_mMarshal, "load", marshal_load, -1); rb_define_module_function(rb_mMarshal, "restore", marshal_load, -1); /* major version */ rb_define_const(rb_mMarshal, "MAJOR_VERSION", INT2FIX(MARSHAL_MAJOR)); /* minor version */ rb_define_const(rb_mMarshal, "MINOR_VERSION", INT2FIX(MARSHAL_MINOR)); compat_allocator_tbl = st_init_numtable(); compat_allocator_tbl_wrapper = Data_Wrap_Struct(rb_cData, mark_marshal_compat_t, 0, compat_allocator_tbl); rb_gc_register_mark_object(compat_allocator_tbl_wrapper); } VALUE rb_marshal_dump(VALUE obj, VALUE port) { int argc = 1; VALUE argv[2]; argv[0] = obj; argv[1] = port; if (!NIL_P(port)) argc = 2; return marshal_dump(argc, argv); } VALUE rb_marshal_load(VALUE port) { return marshal_load(1, &port); }