# frozen_string_literal: false require 'test/unit' class ComplexSub < Complex; end class Complex_Test < Test::Unit::TestCase def test_rationalize assert_equal(1.quo(3), Complex(1/3.0, 0).rationalize, '[ruby-core:38885]') assert_equal(1.quo(5), Complex(0.2, 0).rationalize, '[ruby-core:38885]') assert_equal(5.quo(2), Complex(2.5, 0).rationalize(0), '[ruby-core:40667]') end def test_compsub c = ComplexSub.__send__(:convert, 1) assert_kind_of(Numeric, c) assert_instance_of(ComplexSub, c) c2 = c + 1 assert_instance_of(ComplexSub, c2) c2 = c - 1 assert_instance_of(ComplexSub, c2) c3 = c - c2 assert_instance_of(ComplexSub, c3) s = Marshal.dump(c) c5 = Marshal.load(s) assert_equal(c, c5) assert_instance_of(ComplexSub, c5) c1 = Complex(1) assert_equal(c1.hash, c.hash, '[ruby-dev:38850]') assert_equal([true, true], [c.eql?(c1), c1.eql?(c)]) end def test_eql_p c = Complex(0) c2 = Complex(0) c3 = Complex(1) assert_operator(c, :eql?, c2) assert_not_operator(c, :eql?, c3) assert_not_operator(c, :eql?, 0) end def test_hash h = Complex(1,2).hash assert_kind_of(Integer, h) assert_nothing_raised {h.to_s} h = Complex(1.0,2.0).hash assert_kind_of(Integer, h) assert_nothing_raised {h.to_s} h = {} h[Complex(0)] = 0 h[Complex(0,1)] = 1 h[Complex(1,0)] = 2 h[Complex(1,1)] = 3 assert_equal(4, h.size) assert_equal(2, h[Complex(1,0)]) h[Complex(0,0)] = 9 assert_equal(4, h.size) h[Complex(0.0,0.0)] = 9.0 assert_equal(5, h.size) if (0.0/0).nan? && !((0.0/0).eql?(0.0/0)) h = {} 3.times{h[Complex(0.0/0)] = 1} assert_equal(3, h.size) end end def test_freeze c = Complex(1) assert_predicate(c, :frozen?) assert_instance_of(String, c.to_s) end def test_conv c = Complex(0,0) assert_equal(Complex(0,0), c) c = Complex(2**32, 2**32) assert_equal(Complex(2**32,2**32), c) assert_equal([2**32,2**32], [c.real,c.imag]) c = Complex(-2**32, 2**32) assert_equal(Complex(-2**32,2**32), c) assert_equal([-2**32,2**32], [c.real,c.imag]) c = Complex(2**32, -2**32) assert_equal(Complex(2**32,-2**32), c) assert_equal([2**32,-2**32], [c.real,c.imag]) c = Complex(-2**32, -2**32) assert_equal(Complex(-2**32,-2**32), c) assert_equal([-2**32,-2**32], [c.real,c.imag]) c = Complex(Complex(1,2),2) assert_equal(Complex(1,4), c) c = Complex(2,Complex(1,2)) assert_equal(Complex(0,1), c) c = Complex(Complex(1,2),Complex(1,2)) assert_equal(Complex(-1,3), c) c = Complex::I assert_equal(Complex(0,1), c) assert_equal(Complex(1),Complex(1)) assert_equal(Complex(1),Complex('1')) assert_equal(Complex(3.0,3.0),Complex('3.0','3.0')) assert_equal(Complex(1,1),Complex('3/3','3/3')) assert_raise(TypeError){Complex(nil)} assert_raise(TypeError){Complex(Object.new)} assert_raise(ArgumentError){Complex()} assert_raise(ArgumentError){Complex(1,2,3)} c = Complex(1,0) assert_same(c, Complex(c)) assert_same(c, Complex(c, exception: false)) assert_raise(ArgumentError){Complex(c, bad_keyword: true)} if (0.0/0).nan? assert_nothing_raised{Complex(0.0/0)} end if (1.0/0).infinite? assert_nothing_raised{Complex(1.0/0)} end end def test_attr c = Complex(4) assert_equal(4, c.real) assert_equal(0, c.imag) c = Complex(4,5) assert_equal(4, c.real) assert_equal(5, c.imag) if -0.0.to_s == '-0.0' c = Complex(-0.0,-0.0) assert_equal('-0.0', c.real.to_s) assert_equal('-0.0', c.imag.to_s) end c = Complex(4) assert_equal(4, c.real) assert_equal(0, c.imag) assert_equal(c.imag, c.imaginary) c = Complex(4,5) assert_equal(4, c.real) assert_equal(5, c.imag) assert_equal(c.imag, c.imaginary) if -0.0.to_s == '-0.0' c = Complex(-0.0,-0.0) assert_equal('-0.0', c.real.to_s) assert_equal('-0.0', c.imag.to_s) assert_equal(c.imag.to_s, c.imaginary.to_s) end c = Complex(4) assert_equal(4, c.real) assert_equal(c.imag, c.imaginary) assert_equal(0, c.imag) c = Complex(4,5) assert_equal(4, c.real) assert_equal(5, c.imag) assert_equal(c.imag, c.imaginary) c = Complex(-0.0,-0.0) assert_equal('-0.0', c.real.to_s) assert_equal('-0.0', c.imag.to_s) assert_equal(c.imag.to_s, c.imaginary.to_s) end def test_attr2 c = Complex(1) assert_not_predicate(c, :integer?) assert_not_predicate(c, :real?) assert_predicate(Complex(0), :zero?) assert_predicate(Complex(0,0), :zero?) assert_not_predicate(Complex(1,0), :zero?) assert_not_predicate(Complex(0,1), :zero?) assert_not_predicate(Complex(1,1), :zero?) assert_equal(nil, Complex(0).nonzero?) assert_equal(nil, Complex(0,0).nonzero?) assert_equal(Complex(1,0), Complex(1,0).nonzero?) assert_equal(Complex(0,1), Complex(0,1).nonzero?) assert_equal(Complex(1,1), Complex(1,1).nonzero?) end def test_rect assert_equal([1,2], Complex.rectangular(1,2).rectangular) assert_equal([1,2], Complex.rect(1,2).rect) end def test_polar assert_equal([1,2], Complex.polar(1,2).polar) assert_equal(Complex.polar(1.0, Math::PI * 2 / 3), Complex.polar(1, Math::PI * 2 / 3)) assert_in_out_err([], <<-'end;', ['OK'], []) Complex.polar(1, Complex(1, 0)) puts :OK end; end def test_uplus assert_equal(Complex(1), +Complex(1)) assert_equal(Complex(-1), +Complex(-1)) assert_equal(Complex(1,1), +Complex(1,1)) assert_equal(Complex(-1,1), +Complex(-1,1)) assert_equal(Complex(1,-1), +Complex(1,-1)) assert_equal(Complex(-1,-1), +Complex(-1,-1)) if -0.0.to_s == '-0.0' c = +Complex(0.0,0.0) assert_equal('0.0', c.real.to_s) assert_equal('0.0', c.imag.to_s) c = +Complex(-0.0,-0.0) assert_equal('-0.0', c.real.to_s) assert_equal('-0.0', c.imag.to_s) end end def test_negate assert_equal(Complex(-1), -Complex(1)) assert_equal(Complex(1), -Complex(-1)) assert_equal(Complex(-1,-1), -Complex(1,1)) assert_equal(Complex(1,-1), -Complex(-1,1)) assert_equal(Complex(-1,1), -Complex(1,-1)) assert_equal(Complex(1,1), -Complex(-1,-1)) if -0.0.to_s == '-0.0' c = -Complex(0.0,0.0) assert_equal('-0.0', c.real.to_s) assert_equal('-0.0', c.imag.to_s) c = -Complex(-0.0,-0.0) assert_equal('0.0', c.real.to_s) assert_equal('0.0', c.imag.to_s) end end def test_add c = Complex(1,2) c2 = Complex(2,3) assert_equal(Complex(3,5), c + c2) assert_equal(Complex(3,2), c + 2) assert_equal(Complex(3.0,2), c + 2.0) assert_equal(Complex(Rational(3,1),Rational(2)), c + Rational(2)) assert_equal(Complex(Rational(5,3),Rational(2)), c + Rational(2,3)) end def test_add_with_redefining_int_plus assert_in_out_err([], <<-'end;', ['true'], []) class Integer remove_method :+ def +(other); 42; end end a = Complex(1, 2) + Complex(0, 1) puts a == Complex(42, 42) end; end def test_add_with_redefining_float_plus assert_in_out_err([], <<-'end;', ['true'], []) class Float remove_method :+ def +(other); 42.0; end end a = Complex(1.0, 2.0) + Complex(0, 1) puts a == Complex(42.0, 42.0) end; end def test_add_with_redefining_rational_plus assert_in_out_err([], <<-'end;', ['true'], []) class Rational remove_method :+ def +(other); 355/113r; end end a = Complex(1r, 2r) + Complex(0, 1) puts a == Complex(355/113r, 355/113r) end; end def test_sub c = Complex(1,2) c2 = Complex(2,3) assert_equal(Complex(-1,-1), c - c2) assert_equal(Complex(-1,2), c - 2) assert_equal(Complex(-1.0,2), c - 2.0) assert_equal(Complex(Rational(-1,1),Rational(2)), c - Rational(2)) assert_equal(Complex(Rational(1,3),Rational(2)), c - Rational(2,3)) end def test_sub_with_redefining_int_minus assert_in_out_err([], <<-'end;', ['true'], []) class Integer remove_method :- def -(other); 42; end end a = Complex(1, 2) - Complex(0, 1) puts a == Complex(42, 42) end; end def test_sub_with_redefining_float_minus assert_in_out_err([], <<-'end;', ['true'], []) class Float remove_method :- def -(other); 42.0; end end a = Complex(1.0, 2.0) - Complex(0, 1) puts a == Complex(42.0, 42.0) end; end def test_sub_with_redefining_rational_minus assert_in_out_err([], <<-'end;', ['true'], []) class Rational remove_method :- def -(other); 355/113r; end end a = Complex(1r, 2r) - Complex(0, 1) puts a == Complex(355/113r, 355/113r) end; end def test_mul c = Complex(1,2) c2 = Complex(2,3) assert_equal(Complex(-4,7), c * c2) assert_equal(Complex(2,4), c * 2) assert_equal(Complex(2.0,4.0), c * 2.0) assert_equal(Complex(Rational(2,1),Rational(4)), c * Rational(2)) assert_equal(Complex(Rational(2,3),Rational(4,3)), c * Rational(2,3)) c = Complex(Float::INFINITY, 0) assert_equal(Complex(Float::INFINITY, 0), c * Complex(1, 0)) assert_equal(Complex(0, Float::INFINITY), c * Complex(0, 1)) c = Complex(0, Float::INFINITY) assert_equal(Complex(0, Float::INFINITY), c * Complex(1, 0)) assert_equal(Complex(-Float::INFINITY, 0), c * Complex(0, 1)) assert_equal(Complex(-0.0, -0.0), Complex(-0.0, 0) * Complex(0, 0)) end def test_mul_with_redefining_int_mult assert_in_out_err([], <<-'end;', ['true'], []) class Integer remove_method :* def *(other); 42; end end a = Complex(2, 0) * Complex(1, 2) puts a == Complex(0, 84) end; end def test_mul_with_redefining_float_mult assert_in_out_err([], <<-'end;', ['true'], []) class Float remove_method :* def *(other); 42.0; end end a = Complex(2.0, 0.0) * Complex(1, 2) puts a == Complex(0.0, 84.0) end; end def test_mul_with_redefining_rational_mult assert_in_out_err([], <<-'end;', ['true'], []) class Rational remove_method :* def *(other); 355/113r; end end a = Complex(2r, 0r) * Complex(1, 2) puts a == Complex(0r, 2*355/113r) end; end def test_div c = Complex(1,2) c2 = Complex(2,3) assert_equal(Complex(Rational(8,13),Rational(1,13)), c / c2) c = Complex(1.0,2.0) c2 = Complex(2.0,3.0) r = c / c2 assert_in_delta(0.615, r.real, 0.001) assert_in_delta(0.076, r.imag, 0.001) c = Complex(1,2) c2 = Complex(2,3) assert_equal(Complex(Rational(1,2),1), c / 2) assert_equal(Complex(0.5,1.0), c / 2.0) assert_equal(Complex(Rational(1,2),Rational(1)), c / Rational(2)) assert_equal(Complex(Rational(3,2),Rational(3)), c / Rational(2,3)) c = Complex(1) [ 1, Rational(1), c ].each do |d| r = c / d assert_instance_of(Complex, r) assert_equal(1, r) assert_predicate(r.real, :integer?) assert_predicate(r.imag, :integer?) end end def test_quo c = Complex(1,2) c2 = Complex(2,3) assert_equal(Complex(Rational(8,13),Rational(1,13)), c.quo(c2)) c = Complex(1.0,2.0) c2 = Complex(2.0,3.0) r = c.quo(c2) assert_in_delta(0.615, r.real, 0.001) assert_in_delta(0.076, r.imag, 0.001) c = Complex(1,2) c2 = Complex(2,3) assert_equal(Complex(Rational(1,2),1), c.quo(2)) assert_equal(Complex(0.5,1.0), c.quo(2.0)) assert_equal(Complex(Rational(1,2),Rational(1)), c / Rational(2)) assert_equal(Complex(Rational(3,2),Rational(3)), c / Rational(2,3)) end def test_fdiv c = Complex(1,2) c2 = Complex(2,3) r = c.fdiv(c2) assert_in_delta(0.615, r.real, 0.001) assert_in_delta(0.076, r.imag, 0.001) c = Complex(1.0,2.0) c2 = Complex(2.0,3.0) r = c.fdiv(c2) assert_in_delta(0.615, r.real, 0.001) assert_in_delta(0.076, r.imag, 0.001) c = Complex(1,2) c2 = Complex(2,3) assert_equal(Complex(0.5,1.0), c.fdiv(2)) assert_equal(Complex(0.5,1.0), c.fdiv(2.0)) end def test_expt c = Complex(1,2) c2 = Complex(2,3) r = c ** c2 assert_in_delta(-0.015, r.real, 0.001) assert_in_delta(-0.179, r.imag, 0.001) assert_equal(Complex(-3,4), c ** 2) assert_equal(Complex(Rational(-3,25),Rational(-4,25)), c ** -2) r = c ** 2.0 assert_in_delta(-3.0, r.real, 0.001) assert_in_delta(4.0, r.imag, 0.001) r = c ** -2.0 assert_in_delta(-0.12, r.real, 0.001) assert_in_delta(-0.16, r.imag, 0.001) assert_equal(Complex(-3,4), c ** Rational(2)) assert_equal(Complex(Rational(-3,25),Rational(-4,25)), c ** Rational(-2)) # why failed? r = c ** Rational(2,3) assert_in_delta(1.264, r.real, 0.001) assert_in_delta(1.150, r.imag, 0.001) r = c ** Rational(-2,3) assert_in_delta(0.432, r.real, 0.001) assert_in_delta(-0.393, r.imag, 0.001) c = Complex(0.0, -888888888888888.0)**8888 assert_not_predicate(c.real, :nan?) assert_not_predicate(c.imag, :nan?) end def test_cmp assert_nil(Complex(5, 1) <=> Complex(2)) assert_nil(5 <=> Complex(2, 1)) assert_equal(1, Complex(5) <=> Complex(2)) assert_equal(-1, Complex(2) <=> Complex(3)) assert_equal(0, Complex(2) <=> Complex(2)) assert_equal(1, Complex(5) <=> 2) assert_equal(-1, Complex(2) <=> 3) assert_equal(0, Complex(2) <=> 2) end def test_eqeq assert_equal(Complex(1), Complex(1,0)) assert_equal(Complex(-1), Complex(-1,0)) assert_not_equal(Complex(1), Complex(2,1)) assert_operator(Complex(2,1), :!=, Complex(1)) assert_not_equal(nil, Complex(1)) assert_not_equal('', Complex(1)) nan = 0.0 / 0 if nan.nan? && nan != nan assert_not_equal(Complex(nan, 0), Complex(nan, 0)) assert_not_equal(Complex(0, nan), Complex(0, nan)) assert_not_equal(Complex(nan, nan), Complex(nan, nan)) end end def test_coerce assert_equal([Complex(2),Complex(1)], Complex(1).coerce(2)) assert_equal([Complex(2.2),Complex(1)], Complex(1).coerce(2.2)) assert_equal([Complex(Rational(2)),Complex(1)], Complex(1).coerce(Rational(2))) assert_equal([Complex(2),Complex(1)], Complex(1).coerce(Complex(2))) obj = eval("class C\u{1f5ff}; self; end").new assert_raise_with_message(TypeError, /C\u{1f5ff}/) { Complex(1).coerce(obj) } end class ObjectX < Numeric def initialize(real = true, n = 1) @n = n; @real = real; end def +(x) Rational(@n) end alias - + alias * + alias / + alias quo + alias ** + def coerce(x) [x, Complex(@n)] end def real?; @real; end end def test_coerce2 x = ObjectX.new y = ObjectX.new(false) %w(+ - * / quo ** <=>).each do |op| assert_kind_of(Numeric, Complex(1).__send__(op, x), op) assert_kind_of(Numeric, Complex(1).__send__(op, y), op) end end def test_math c = Complex(1,2) assert_in_delta(2.236, c.abs, 0.001) assert_in_delta(2.236, c.magnitude, 0.001) assert_equal(5, c.abs2) assert_equal(c.abs, Math.sqrt(c * c.conj)) assert_equal(c.abs, Math.sqrt(c.real**2 + c.imag**2)) assert_equal(c.abs2, c * c.conj) assert_equal(c.abs2, c.real**2 + c.imag**2) assert_in_delta(1.107, c.arg, 0.001) assert_in_delta(1.107, c.angle, 0.001) assert_in_delta(1.107, c.phase, 0.001) r = c.polar assert_in_delta(2.236, r[0], 0.001) assert_in_delta(1.107, r[1], 0.001) assert_equal(Complex(1,-2), c.conjugate) assert_equal(Complex(1,-2), c.conj) assert_equal(Complex(1,2), c.numerator) assert_equal(1, c.denominator) end def test_to_s c = Complex(1,2) assert_instance_of(String, c.to_s) assert_equal('1+2i', c.to_s) assert_equal('0+2i', Complex(0,2).to_s) assert_equal('0-2i', Complex(0,-2).to_s) assert_equal('1+2i', Complex(1,2).to_s) assert_equal('-1+2i', Complex(-1,2).to_s) assert_equal('-1-2i', Complex(-1,-2).to_s) assert_equal('1-2i', Complex(1,-2).to_s) assert_equal('-1-2i', Complex(-1,-2).to_s) assert_equal('0+2.0i', Complex(0,2.0).to_s) assert_equal('0-2.0i', Complex(0,-2.0).to_s) assert_equal('1.0+2.0i', Complex(1.0,2.0).to_s) assert_equal('-1.0+2.0i', Complex(-1.0,2.0).to_s) assert_equal('-1.0-2.0i', Complex(-1.0,-2.0).to_s) assert_equal('1.0-2.0i', Complex(1.0,-2.0).to_s) assert_equal('-1.0-2.0i', Complex(-1.0,-2.0).to_s) assert_equal('0+2/1i', Complex(0,Rational(2)).to_s) assert_equal('0-2/1i', Complex(0,Rational(-2)).to_s) assert_equal('1+2/1i', Complex(1,Rational(2)).to_s) assert_equal('-1+2/1i', Complex(-1,Rational(2)).to_s) assert_equal('-1-2/1i', Complex(-1,Rational(-2)).to_s) assert_equal('1-2/1i', Complex(1,Rational(-2)).to_s) assert_equal('-1-2/1i', Complex(-1,Rational(-2)).to_s) assert_equal('0+2/3i', Complex(0,Rational(2,3)).to_s) assert_equal('0-2/3i', Complex(0,Rational(-2,3)).to_s) assert_equal('1+2/3i', Complex(1,Rational(2,3)).to_s) assert_equal('-1+2/3i', Complex(-1,Rational(2,3)).to_s) assert_equal('-1-2/3i', Complex(-1,Rational(-2,3)).to_s) assert_equal('1-2/3i', Complex(1,Rational(-2,3)).to_s) assert_equal('-1-2/3i', Complex(-1,Rational(-2,3)).to_s) nan = 0.0 / 0 inf = 1.0 / 0 if nan.nan? assert_equal('NaN+NaN*i', Complex(nan,nan).to_s) end if inf.infinite? assert_equal('Infinity+Infinity*i', Complex(inf,inf).to_s) assert_equal('Infinity-Infinity*i', Complex(inf,-inf).to_s) end end def test_inspect c = Complex(1,2) assert_instance_of(String, c.inspect) assert_equal('(1+2i)', c.inspect) end def test_marshal c = Complex(1,2) s = Marshal.dump(c) c2 = Marshal.load(s) assert_equal(c, c2) assert_instance_of(Complex, c2) c = Complex(Rational(1,2),Rational(2,3)) s = Marshal.dump(c) c2 = Marshal.load(s) assert_equal(c, c2) assert_instance_of(Complex, c2) bug3656 = '[ruby-core:31622]' c = Complex(1,2) assert_predicate(c, :frozen?) result = c.marshal_load([2,3]) rescue :fail assert_equal(:fail, result, bug3656) assert_equal(Complex(1,2), c) end def test_marshal_compatibility bug6625 = '[ruby-core:45775]' dump = "\x04\x08o:\x0cComplex\x07:\x0a@reali\x06:\x0b@imagei\x07" assert_nothing_raised(bug6625) do assert_equal(Complex(1, 2), Marshal.load(dump), bug6625) end end def test_parse assert_equal(Complex(5), '5'.to_c) assert_equal(Complex(-5), '-5'.to_c) assert_equal(Complex(5,3), '5+3i'.to_c) assert_equal(Complex(-5,3), '-5+3i'.to_c) assert_equal(Complex(5,-3), '5-3i'.to_c) assert_equal(Complex(-5,-3), '-5-3i'.to_c) assert_equal(Complex(0,3), '3i'.to_c) assert_equal(Complex(0,-3), '-3i'.to_c) assert_equal(Complex(5,1), '5+i'.to_c) assert_equal(Complex(0,1), 'i'.to_c) assert_equal(Complex(0,1), '+i'.to_c) assert_equal(Complex(0,-1), '-i'.to_c) assert_equal(Complex(5,3), '5+3I'.to_c) assert_equal(Complex(5,3), '5+3j'.to_c) assert_equal(Complex(5,3), '5+3J'.to_c) assert_equal(Complex(0,3), '3I'.to_c) assert_equal(Complex(0,3), '3j'.to_c) assert_equal(Complex(0,3), '3J'.to_c) assert_equal(Complex(0,1), 'I'.to_c) assert_equal(Complex(0,1), 'J'.to_c) assert_equal(Complex(5.0), '5.0'.to_c) assert_equal(Complex(-5.0), '-5.0'.to_c) assert_equal(Complex(5.0,3.0), '5.0+3.0i'.to_c) assert_equal(Complex(-5.0,3.0), '-5.0+3.0i'.to_c) assert_equal(Complex(5.0,-3.0), '5.0-3.0i'.to_c) assert_equal(Complex(-5.0,-3.0), '-5.0-3.0i'.to_c) assert_equal(Complex(0.0,3.0), '3.0i'.to_c) assert_equal(Complex(0.0,-3.0), '-3.0i'.to_c) assert_equal(Complex(5.1), '5.1'.to_c) assert_equal(Complex(-5.2), '-5.2'.to_c) assert_equal(Complex(5.3,3.4), '5.3+3.4i'.to_c) assert_equal(Complex(-5.5,3.6), '-5.5+3.6i'.to_c) assert_equal(Complex(5.3,-3.4), '5.3-3.4i'.to_c) assert_equal(Complex(-5.5,-3.6), '-5.5-3.6i'.to_c) assert_equal(Complex(0.0,3.1), '3.1i'.to_c) assert_equal(Complex(0.0,-3.2), '-3.2i'.to_c) assert_equal(Complex(5.0), '5e0'.to_c) assert_equal(Complex(-5.0), '-5e0'.to_c) assert_equal(Complex(5.0,3.0), '5e0+3e0i'.to_c) assert_equal(Complex(-5.0,3.0), '-5e0+3e0i'.to_c) assert_equal(Complex(5.0,-3.0), '5e0-3e0i'.to_c) assert_equal(Complex(-5.0,-3.0), '-5e0-3e0i'.to_c) assert_equal(Complex(0.0,3.0), '3e0i'.to_c) assert_equal(Complex(0.0,-3.0), '-3e0i'.to_c) assert_equal(Complex(5e1), '5e1'.to_c) assert_equal(Complex(-5e2), '-5e2'.to_c) assert_equal(Complex(5e3,3e4), '5e003+3e4i'.to_c) assert_equal(Complex(-5e5,3e6), '-5e5+3e006i'.to_c) assert_equal(Complex(5e3,-3e4), '5e003-3e4i'.to_c) assert_equal(Complex(-5e5,-3e6), '-5e5-3e006i'.to_c) assert_equal(Complex(0.0,3e1), '3e1i'.to_c) assert_equal(Complex(0.0,-3e2), '-3e2i'.to_c) assert_equal(Complex(0.33), '.33'.to_c) assert_equal(Complex(0.33), '0.33'.to_c) assert_equal(Complex(-0.33), '-.33'.to_c) assert_equal(Complex(-0.33), '-0.33'.to_c) assert_equal(Complex(-0.33), '-0.3_3'.to_c) assert_equal(Complex.polar(10,10), '10@10'.to_c) assert_equal(Complex.polar(-10,-10), '-10@-10'.to_c) assert_equal(Complex.polar(10.5,10.5), '10.5@10.5'.to_c) assert_equal(Complex.polar(-10.5,-10.5), '-10.5@-10.5'.to_c) assert_equal(Complex(5), Complex('5')) assert_equal(Complex(-5), Complex('-5')) assert_equal(Complex(5,3), Complex('5+3i')) assert_equal(Complex(-5,3), Complex('-5+3i')) assert_equal(Complex(5,-3), Complex('5-3i')) assert_equal(Complex(-5,-3), Complex('-5-3i')) assert_equal(Complex(0,3), Complex('3i')) assert_equal(Complex(0,-3), Complex('-3i')) assert_equal(Complex(5,1), Complex('5+i')) assert_equal(Complex(0,1), Complex('i')) assert_equal(Complex(0,1), Complex('+i')) assert_equal(Complex(0,-1), Complex('-i')) assert_equal(Complex(5,3), Complex('5+3I')) assert_equal(Complex(5,3), Complex('5+3j')) assert_equal(Complex(5,3), Complex('5+3J')) assert_equal(Complex(0,3), Complex('3I')) assert_equal(Complex(0,3), Complex('3j')) assert_equal(Complex(0,3), Complex('3J')) assert_equal(Complex(0,1), Complex('I')) assert_equal(Complex(0,1), Complex('J')) assert_equal(Complex(5.0), Complex('5.0')) assert_equal(Complex(-5.0), Complex('-5.0')) assert_equal(Complex(5.0,3.0), Complex('5.0+3.0i')) assert_equal(Complex(-5.0,3.0), Complex('-5.0+3.0i')) assert_equal(Complex(5.0,-3.0), Complex('5.0-3.0i')) assert_equal(Complex(-5.0,-3.0), Complex('-5.0-3.0i')) assert_equal(Complex(0.0,3.0), Complex('3.0i')) assert_equal(Complex(0.0,-3.0), Complex('-3.0i')) assert_equal(Complex(5.1), Complex('5.1')) assert_equal(Complex(-5.2), Complex('-5.2')) assert_equal(Complex(5.3,3.4), Complex('5.3+3.4i')) assert_equal(Complex(-5.5,3.6), Complex('-5.5+3.6i')) assert_equal(Complex(5.3,-3.4), Complex('5.3-3.4i')) assert_equal(Complex(-5.5,-3.6), Complex('-5.5-3.6i')) assert_equal(Complex(0.0,3.1), Complex('3.1i')) assert_equal(Complex(0.0,-3.2), Complex('-3.2i')) assert_equal(Complex(5.0), Complex('5e0')) assert_equal(Complex(-5.0), Complex('-5e0')) assert_equal(Complex(5.0,3.0), Complex('5e0+3e0i')) assert_equal(Complex(-5.0,3.0), Complex('-5e0+3e0i')) assert_equal(Complex(5.0,-3.0), Complex('5e0-3e0i')) assert_equal(Complex(-5.0,-3.0), Complex('-5e0-3e0i')) assert_equal(Complex(0.0,3.0), Complex('3e0i')) assert_equal(Complex(0.0,-3.0), Complex('-3e0i')) assert_equal(Complex(5e1), Complex('5e1')) assert_equal(Complex(-5e2), Complex('-5e2')) assert_equal(Complex(5e3,3e4), Complex('5e003+3e4i')) assert_equal(Complex(-5e5,3e6), Complex('-5e5+3e006i')) assert_equal(Complex(5e3,-3e4), Complex('5e003-3e4i')) assert_equal(Complex(-5e5,-3e6), Complex('-5e5-3e006i')) assert_equal(Complex(0.0,3e1), Complex('3e1i')) assert_equal(Complex(0.0,-3e2), Complex('-3e2i')) assert_equal(Complex(0.33), Complex('.33')) assert_equal(Complex(0.33), Complex('0.33')) assert_equal(Complex(-0.33), Complex('-.33')) assert_equal(Complex(-0.33), Complex('-0.33')) assert_equal(Complex(-0.33), Complex('-0.3_3')) assert_equal(Complex.polar(10,10), Complex('10@10')) assert_equal(Complex.polar(-10,-10), Complex('-10@-10')) assert_equal(Complex.polar(10.5,10.5), Complex('10.5@10.5')) assert_equal(Complex.polar(-10.5,-10.5), Complex('-10.5@-10.5')) assert_equal(Complex(0), ''.to_c) assert_equal(Complex(0), ' '.to_c) assert_equal(Complex(5), "\f\n\r\t\v5\0".to_c) assert_equal(Complex(0), '_'.to_c) assert_equal(Complex(0), '_5'.to_c) assert_equal(Complex(5), '5_'.to_c) assert_equal(Complex(5), '5x'.to_c) assert_equal(Complex(5), '5+_3i'.to_c) assert_equal(Complex(5), '5+3_i'.to_c) assert_equal(Complex(5,3), '5+3i_'.to_c) assert_equal(Complex(5,3), '5+3ix'.to_c) assert_raise(ArgumentError){ Complex('')} assert_raise(ArgumentError){ Complex('_')} assert_raise(ArgumentError){ Complex("\f\n\r\t\v5\0")} assert_raise(ArgumentError){ Complex('_5')} assert_raise(ArgumentError){ Complex('5_')} assert_raise(ArgumentError){ Complex('5x')} assert_raise(ArgumentError){ Complex('5+_3i')} assert_raise(ArgumentError){ Complex('5+3_i')} assert_raise(ArgumentError){ Complex('5+3i_')} assert_raise(ArgumentError){ Complex('5+3ix')} assert_equal(Complex(Rational(1,5)), '1/5'.to_c) assert_equal(Complex(Rational(-1,5)), '-1/5'.to_c) assert_equal(Complex(Rational(1,5),3), '1/5+3i'.to_c) assert_equal(Complex(Rational(1,5),-3), '1/5-3i'.to_c) assert_equal(Complex(Rational(-1,5),3), '-1/5+3i'.to_c) assert_equal(Complex(Rational(-1,5),-3), '-1/5-3i'.to_c) assert_equal(Complex(Rational(1,5),Rational(3,2)), '1/5+3/2i'.to_c) assert_equal(Complex(Rational(1,5),Rational(-3,2)), '1/5-3/2i'.to_c) assert_equal(Complex(Rational(-1,5),Rational(3,2)), '-1/5+3/2i'.to_c) assert_equal(Complex(Rational(-1,5),Rational(-3,2)), '-1/5-3/2i'.to_c) assert_equal(Complex(Rational(1,5),Rational(3,2)), '1/5+3/2i'.to_c) assert_equal(Complex(Rational(1,5),Rational(-3,2)), '1/5-3/2i'.to_c) assert_equal(Complex(Rational(-1,5),Rational(3,2)), '-1/5+3/2i'.to_c) assert_equal(Complex(Rational(-1,5),Rational(-3,2)), '-1/5-3/2i'.to_c) assert_equal(Complex.polar(Rational(1,5),Rational(3,2)), Complex('1/5@3/2')) assert_equal(Complex.polar(Rational(-1,5),Rational(-3,2)), Complex('-1/5@-3/2')) end def test_Complex_with_invalid_exception assert_raise(ArgumentError) { Complex("0", exception: 1) } end def test_Complex_without_exception assert_nothing_raised(ArgumentError){ assert_equal(nil, Complex('5x', exception: false)) } assert_nothing_raised(ArgumentError){ assert_equal(nil, Complex(nil, exception: false)) } assert_nothing_raised(ArgumentError){ assert_equal(nil, Complex(Object.new, exception: false)) } assert_nothing_raised(ArgumentError){ assert_equal(nil, Complex(1, nil, exception: false)) } assert_nothing_raised(ArgumentError){ assert_equal(nil, Complex(1, Object.new, exception: false)) } o = Object.new def o.to_c; raise; end assert_nothing_raised(ArgumentError){ assert_equal(nil, Complex(o, exception: false)) } assert_nothing_raised(ArgumentError){ assert_equal(nil, Complex(1, o, exception: false)) } end def test_respond c = Complex(1,1) assert_not_respond_to(c, :%) assert_not_respond_to(c, :div) assert_not_respond_to(c, :divmod) assert_not_respond_to(c, :floor) assert_not_respond_to(c, :ceil) assert_not_respond_to(c, :modulo) assert_not_respond_to(c, :remainder) assert_not_respond_to(c, :round) assert_not_respond_to(c, :step) assert_not_respond_to(c, :tunrcate) assert_not_respond_to(c, :positive?) assert_not_respond_to(c, :negative?) assert_not_respond_to(c, :sign) assert_not_respond_to(c, :quotient) assert_not_respond_to(c, :quot) assert_not_respond_to(c, :quotrem) assert_not_respond_to(c, :gcd) assert_not_respond_to(c, :lcm) assert_not_respond_to(c, :gcdlcm) (Comparable.instance_methods(false) - Complex.instance_methods(false)).each do |n| assert_not_respond_to(c, n, "Complex##{n}") end end def test_to_i assert_equal(3, Complex(3).to_i) assert_equal(3, Integer(Complex(3))) assert_raise(RangeError){Complex(3,2).to_i} assert_raise(RangeError){Integer(Complex(3,2))} end def test_to_f assert_equal(3.0, Complex(3).to_f) assert_equal(3.0, Float(Complex(3))) assert_raise(RangeError){Complex(3,2).to_f} assert_raise(RangeError){Float(Complex(3,2))} end def test_to_r assert_equal(Rational(3), Complex(3).to_r) assert_equal(Rational(3), Rational(Complex(3))) assert_raise(RangeError){Complex(3,2).to_r} assert_raise(RangeError){Rational(Complex(3,2))} end def test_to_c c = nil.to_c assert_equal([0,0], [c.real, c.imag]) c = 0.to_c assert_equal([0,0], [c.real, c.imag]) c = 1.to_c assert_equal([1,0], [c.real, c.imag]) c = 1.1.to_c assert_equal([1.1, 0], [c.real, c.imag]) c = Rational(1,2).to_c assert_equal([Rational(1,2), 0], [c.real, c.imag]) c = Complex(1,2).to_c assert_equal([1, 2], [c.real, c.imag]) if (0.0/0).nan? assert_nothing_raised{(0.0/0).to_c} end if (1.0/0).infinite? assert_nothing_raised{(1.0/0).to_c} end end def test_finite_p assert_predicate(1+1i, :finite?) assert_predicate(1-1i, :finite?) assert_predicate(-1+1i, :finite?) assert_predicate(-1-1i, :finite?) assert_not_predicate(Float::INFINITY + 1i, :finite?) assert_not_predicate(Complex(1, Float::INFINITY), :finite?) assert_predicate(Complex(Float::MAX, 0.0), :finite?) assert_predicate(Complex(0.0, Float::MAX), :finite?) assert_predicate(Complex(Float::MAX, Float::MAX), :finite?) assert_not_predicate(Complex(Float::NAN, 0), :finite?) assert_not_predicate(Complex(0, Float::NAN), :finite?) assert_not_predicate(Complex(Float::NAN, Float::NAN), :finite?) end def test_infinite_p assert_nil((1+1i).infinite?) assert_nil((1-1i).infinite?) assert_nil((-1+1i).infinite?) assert_nil((-1-1i).infinite?) assert_equal(1, (Float::INFINITY + 1i).infinite?) assert_equal(1, (Float::INFINITY - 1i).infinite?) assert_equal(1, (-Float::INFINITY + 1i).infinite?) assert_equal(1, (-Float::INFINITY - 1i).infinite?) assert_equal(1, Complex(1, Float::INFINITY).infinite?) assert_equal(1, Complex(-1, Float::INFINITY).infinite?) assert_equal(1, Complex(1, -Float::INFINITY).infinite?) assert_equal(1, Complex(-1, -Float::INFINITY).infinite?) assert_nil(Complex(Float::MAX, 0.0).infinite?) assert_nil(Complex(0.0, Float::MAX).infinite?) assert_nil(Complex(Float::MAX, Float::MAX).infinite?) assert_nil(Complex(Float::NAN, 0).infinite?) assert_nil(Complex(0, Float::NAN).infinite?) assert_nil(Complex(Float::NAN, Float::NAN).infinite?) end def test_supp assert_predicate(1, :real?) assert_predicate(1.1, :real?) assert_equal(1, 1.real) assert_equal(0, 1.imag) assert_equal(0, 1.imaginary) assert_equal(1.1, 1.1.real) assert_equal(0, 1.1.imag) assert_equal(0, 1.1.imaginary) assert_equal(1, 1.magnitude) assert_equal(1, -1.magnitude) assert_equal(1, 1.0.magnitude) assert_equal(1, -1.0.magnitude) assert_equal(4, 2.abs2) assert_equal(4, -2.abs2) assert_equal(4.0, 2.0.abs2) assert_equal(4.0, -2.0.abs2) assert_equal(0, 1.arg) assert_equal(0, 1.angle) assert_equal(0, 1.phase) assert_equal(0, 1.0.arg) assert_equal(0, 1.0.angle) assert_equal(0, 1.0.phase) if (0.0/0).nan? nan = 0.0/0 assert_same(nan, nan.arg) assert_same(nan, nan.angle) assert_same(nan, nan.phase) end assert_equal(Math::PI, -1.arg) assert_equal(Math::PI, -1.angle) assert_equal(Math::PI, -1.phase) assert_equal(Math::PI, -1.0.arg) assert_equal(Math::PI, -1.0.angle) assert_equal(Math::PI, -1.0.phase) assert_equal([1,0], 1.rect) assert_equal([-1,0], -1.rect) assert_equal([1,0], 1.rectangular) assert_equal([-1,0], -1.rectangular) assert_equal([1.0,0], 1.0.rect) assert_equal([-1.0,0], -1.0.rect) assert_equal([1.0,0], 1.0.rectangular) assert_equal([-1.0,0], -1.0.rectangular) assert_equal([1,0], 1.polar) assert_equal([1, Math::PI], -1.polar) assert_equal([1.0,0], 1.0.polar) assert_equal([1.0, Math::PI], -1.0.polar) assert_equal(1, 1.conjugate) assert_equal(-1, -1.conjugate) assert_equal(1, 1.conj) assert_equal(-1, -1.conj) assert_equal(1.1, 1.1.conjugate) assert_equal(-1.1, -1.1.conjugate) assert_equal(1.1, 1.1.conj) assert_equal(-1.1, -1.1.conj) assert_equal(Complex(Rational(1,2),Rational(1)), Complex(1,2).quo(2)) assert_equal(0.5, 1.fdiv(2)) assert_equal(5000000000.0, 10000000000.fdiv(2)) assert_equal(0.5, 1.0.fdiv(2)) assert_equal(0.25, Rational(1,2).fdiv(2)) assert_equal(Complex(0.5,1.0), Complex(1,2).quo(2)) end def test_ruby19 assert_raise(NoMethodError){ Complex.new(1) } assert_raise(NoMethodError){ Complex.new!(1) } assert_raise(NoMethodError){ Complex.reduce(1) } end def test_fixed_bug assert_equal(Complex(1), 1 ** Complex(1)) assert_equal('-1.0-0.0i', Complex(-1.0, -0.0).to_s) assert_in_delta(Math::PI, Complex(-0.0).arg, 0.001) assert_equal(Complex(2e3, 2e4), '2e3+2e4i'.to_c) assert_raise(ArgumentError){ Complex('--8i')} end def test_known_bug end def test_canonicalize_internal obj = Class.new(Numeric) do attr_accessor :real alias real? real end.new obj.real = true c = Complex.rect(obj, 1); obj.real = false c = c.conj assert_equal(obj, c.real) assert_equal(-1, c.imag) end def test_canonicalize_polar obj = Class.new(Numeric) do def initialize @x = 2 end def real? (@x -= 1) > 0 end end.new assert_raise(TypeError) do Complex.polar(1, obj) end end end