#include #include "insns.inc" #include "internal.h" #include "vm_core.h" #include "vm_callinfo.h" #include "builtin.h" #include "insns_info.inc" #include "ujit_compile.h" #include "ujit_asm.h" // TODO: give ujit_examples.h some more meaningful file name #include "ujit_examples.h" static codeblock_t block; static codeblock_t* cb = NULL; // Hash table of encoded instructions extern st_table *rb_encoded_insn_data; static void ujit_init(); // Ruby instruction entry static void ujit_instr_entry(codeblock_t* cb) { for (size_t i = 0; i < sizeof(ujit_pre_call_bytes); ++i) cb_write_byte(cb, ujit_pre_call_bytes[i]); } // Ruby instruction exit static void ujit_instr_exit(codeblock_t* cb) { for (size_t i = 0; i < sizeof(ujit_post_call_bytes); ++i) cb_write_byte(cb, ujit_post_call_bytes[i]); } // Keep track of mapping from instructions to generated code // See comment for rb_encoded_insn_data in iseq.c static void addr2insn_bookkeeping(void *code_ptr, int insn) { const void * const *table = rb_vm_get_insns_address_table(); const void * const translated_address = table[insn]; st_data_t encoded_insn_data; if (st_lookup(rb_encoded_insn_data, (st_data_t)translated_address, &encoded_insn_data)) { st_insert(rb_encoded_insn_data, (st_data_t)code_ptr, encoded_insn_data); } else { rb_bug("ujit: failed to find info for original instruction while dealing with addr2insn"); } } // Generate a chunk of machinecode for one individual bytecode instruction // Eventually, this will handle multiple instructions in a sequence uint8_t * ujit_compile_insn(rb_iseq_t *iseq, size_t insn_idx) { // If not previously done, initialize ujit if (!cb) { ujit_init(); } int insn = (int)iseq->body->iseq_encoded[insn_idx]; int len = insn_len(insn); //const char* name = insn_name(insn); //printf("%s\n", name); // Compute the address of the next instruction void* next_pc = &iseq->body->iseq_encoded[insn_idx + len]; // Get a pointer to the current write position in the code block uint8_t* code_ptr = &cb->mem_block[cb->write_pos]; //printf("write pos: %ld\n", cb->write_pos); // TODO: encode individual instructions, eg // nop, putnil, putobject, putself, pop, dup, getlocal, setlocal, nilp // TODO: we should move the codegen for individual instructions // into separate functions if (insn == BIN(nop)) { // Write the pre call bytes ujit_instr_entry(cb); //add(cb, RSI, imm_opnd(8)); // increment PC //mov(cb, mem_opnd(64, RDI, 0), RSI); // write new PC to EC object, not necessary for nop bytecode? //mov(cb, RAX, RSI); // return new PC // Directly return the next PC, which is a constant mov(cb, RAX, const_ptr_opnd(next_pc)); // Write the post call bytes ujit_instr_exit(cb); addr2insn_bookkeeping(code_ptr, insn); return code_ptr; } if (insn == BIN(pop)) { // Write the pre call bytes ujit_instr_entry(cb); sub(cb, mem_opnd(64, RDI, 8), imm_opnd(8)); // decrement SP // Directly return the next PC, which is a constant mov(cb, RAX, const_ptr_opnd(next_pc)); // Write the post call bytes ujit_instr_exit(cb); addr2insn_bookkeeping(code_ptr, insn); return code_ptr; } return 0; } static void ujit_init() { // 4MB ought to be enough for anybody cb = █ cb_init(cb, 4000000); }