1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
|
#
# = prime.rb
#
# Prime numbers and factorization library.
#
# Copyright::
# Copyright (c) 1998-2008 Keiju ISHITSUKA(SHL Japan Inc.)
# Copyright (c) 2008 Yuki Sonoda (Yugui) <yugui@yugui.jp>
#
# Documentation::
# Yuki Sonoda
#
require "singleton"
require "forwardable"
class Integer
# Re-composes a prime factorization and returns the product.
#
# See Prime#int_from_prime_division for more details.
def Integer.from_prime_division(pd)
Prime.int_from_prime_division(pd)
end
# Returns the factorization of +self+.
#
# See Prime#prime_division for more details.
def prime_division(generator = Prime::Generator23.new)
Prime.prime_division(self, generator)
end
# Returns true if +self+ is a prime number, else returns false.
def prime?
Prime.prime?(self)
end
# Iterates the given block over all prime numbers.
#
# See +Prime+#each for more details.
def Integer.each_prime(ubound, &block) # :yields: prime
Prime.each(ubound, &block)
end
end
#
# The set of all prime numbers.
#
# == Example
#
# Prime.each(100) do |prime|
# p prime #=> 2, 3, 5, 7, 11, ...., 97
# end
#
# Prime is Enumerable:
#
# Prime.first 5 # => [2, 3, 5, 7, 11]
#
# == Retrieving the instance
#
# +Prime+.new is obsolete. Now +Prime+ has the default instance and you can
# access it as +Prime+.instance.
#
# For convenience, each instance method of +Prime+.instance can be accessed
# as a class method of +Prime+.
#
# e.g.
# Prime.instance.prime?(2) #=> true
# Prime.prime?(2) #=> true
#
# == Generators
#
# A "generator" provides an implementation of enumerating pseudo-prime
# numbers and it remembers the position of enumeration and upper bound.
# Furthermore, it is an external iterator of prime enumeration which is
# compatible with an Enumerator.
#
# +Prime+::+PseudoPrimeGenerator+ is the base class for generators.
# There are few implementations of generator.
#
# [+Prime+::+EratosthenesGenerator+]
# Uses eratosthenes' sieve.
# [+Prime+::+TrialDivisionGenerator+]
# Uses the trial division method.
# [+Prime+::+Generator23+]
# Generates all positive integers which are not divisible by either 2 or 3.
# This sequence is very bad as a pseudo-prime sequence. But this
# is faster and uses much less memory than the other generators. So,
# it is suitable for factorizing an integer which is not large but
# has many prime factors. e.g. for Prime#prime? .
class Prime
include Enumerable
@the_instance = Prime.new
# obsolete. Use +Prime+::+instance+ or class methods of +Prime+.
def initialize
@generator = EratosthenesGenerator.new
extend OldCompatibility
warn "Prime::new is obsolete. use Prime::instance or class methods of Prime."
end
class << self
extend Forwardable
include Enumerable
# Returns the default instance of Prime.
def instance; @the_instance end
def method_added(method) # :nodoc:
(class<< self;self;end).def_delegator :instance, method
end
end
# Iterates the given block over all prime numbers.
#
# == Parameters
#
# +ubound+::
# Optional. An arbitrary positive number.
# The upper bound of enumeration. The method enumerates
# prime numbers infinitely if +ubound+ is nil.
# +generator+::
# Optional. An implementation of pseudo-prime generator.
#
# == Return value
#
# An evaluated value of the given block at the last time.
# Or an enumerator which is compatible to an +Enumerator+
# if no block given.
#
# == Description
#
# Calls +block+ once for each prime number, passing the prime as
# a parameter.
#
# +ubound+::
# Upper bound of prime numbers. The iterator stops after it
# yields all prime numbers p <= +ubound+.
#
# == Note
#
# +Prime+.+new+ returns an object extended by +Prime+::+OldCompatibility+
# in order to be compatible with Ruby 1.8, and +Prime+#each is overwritten
# by +Prime+::+OldCompatibility+#+each+.
#
# +Prime+.+new+ is now obsolete. Use +Prime+.+instance+.+each+ or simply
# +Prime+.+each+.
def each(ubound = nil, generator = EratosthenesGenerator.new, &block)
generator.upper_bound = ubound
generator.each(&block)
end
# Returns true if +value+ is a prime number, else returns false.
#
# == Parameters
#
# +value+:: an arbitrary integer to be checked.
# +generator+:: optional. A pseudo-prime generator.
def prime?(value, generator = Prime::Generator23.new)
return false if value < 2
for num in generator
q,r = value.divmod num
return true if q < num
return false if r == 0
end
end
# Re-composes a prime factorization and returns the product.
#
# == Parameters
# +pd+:: Array of pairs of integers. The each internal
# pair consists of a prime number -- a prime factor --
# and a natural number -- an exponent.
#
# == Example
# For <tt>[[p_1, e_1], [p_2, e_2], ...., [p_n, e_n]]</tt>, it returns:
#
# p_1**e_1 * p_2**e_2 * .... * p_n**e_n.
#
# Prime.int_from_prime_division([[2,2], [3,1]]) #=> 12
def int_from_prime_division(pd)
pd.inject(1){|value, (prime, index)|
value * prime**index
}
end
# Returns the factorization of +value+.
#
# == Parameters
# +value+:: An arbitrary integer.
# +generator+:: Optional. A pseudo-prime generator.
# +generator+.succ must return the next
# pseudo-prime number in the ascending
# order. It must generate all prime numbers,
# but may also generate non prime numbers too.
#
# === Exceptions
# +ZeroDivisionError+:: when +value+ is zero.
#
# == Example
# For an arbitrary integer:
#
# n = p_1**e_1 * p_2**e_2 * .... * p_n**e_n,
#
# prime_division(n) returns:
#
# [[p_1, e_1], [p_2, e_2], ...., [p_n, e_n]].
#
# Prime.prime_division(12) #=> [[2,2], [3,1]]
#
def prime_division(value, generator = Prime::Generator23.new)
raise ZeroDivisionError if value == 0
if value < 0
value = -value
pv = [[-1, 1]]
else
pv = []
end
for prime in generator
count = 0
while (value1, mod = value.divmod(prime)
mod) == 0
value = value1
count += 1
end
if count != 0
pv.push [prime, count]
end
break if value1 <= prime
end
if value > 1
pv.push [value, 1]
end
return pv
end
# An abstract class for enumerating pseudo-prime numbers.
#
# Concrete subclasses should override succ, next, rewind.
class PseudoPrimeGenerator
include Enumerable
def initialize(ubound = nil)
@ubound = ubound
end
def upper_bound=(ubound)
@ubound = ubound
end
def upper_bound
@ubound
end
# returns the next pseudo-prime number, and move the internal
# position forward.
#
# +PseudoPrimeGenerator+#succ raises +NotImplementedError+.
def succ
raise NotImplementedError, "need to define `succ'"
end
# alias of +succ+.
def next
raise NotImplementedError, "need to define `next'"
end
# Rewinds the internal position for enumeration.
#
# See +Enumerator+#rewind.
def rewind
raise NotImplementedError, "need to define `rewind'"
end
# Iterates the given block for each prime number.
def each(&block)
return self.dup unless block
if @ubound
last_value = nil
loop do
prime = succ
break last_value if prime > @ubound
last_value = block.call(prime)
end
else
loop do
block.call(succ)
end
end
end
# see +Enumerator+#with_index.
alias with_index each_with_index
# see +Enumerator+#with_object.
def with_object(obj)
return enum_for(:with_object) unless block_given?
each do |prime|
yield prime, obj
end
end
end
# An implementation of +PseudoPrimeGenerator+.
#
# Uses +EratosthenesSieve+.
class EratosthenesGenerator < PseudoPrimeGenerator
def initialize
@last_prime_index = -1
super
end
def succ
@last_prime_index += 1
EratosthenesSieve.instance.get_nth_prime(@last_prime_index)
end
def rewind
initialize
end
alias next succ
end
# An implementation of +PseudoPrimeGenerator+ which uses
# a prime table generated by trial division.
class TrialDivisionGenerator<PseudoPrimeGenerator
def initialize
@index = -1
super
end
def succ
TrialDivision.instance[@index += 1]
end
def rewind
initialize
end
alias next succ
end
# Generates all integers which are greater than 2 and
# are not divisible by either 2 or 3.
#
# This is a pseudo-prime generator, suitable on
# checking primality of an integer by brute force
# method.
class Generator23<PseudoPrimeGenerator
def initialize
@prime = 1
@step = nil
super
end
def succ
loop do
if (@step)
@prime += @step
@step = 6 - @step
else
case @prime
when 1; @prime = 2
when 2; @prime = 3
when 3; @prime = 5; @step = 2
end
end
return @prime
end
end
alias next succ
def rewind
initialize
end
end
# Internal use. An implementation of prime table by trial division method.
class TrialDivision
include Singleton
def initialize # :nodoc:
# These are included as class variables to cache them for later uses. If memory
# usage is a problem, they can be put in Prime#initialize as instance variables.
# There must be no primes between @primes[-1] and @next_to_check.
@primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101]
# @next_to_check % 6 must be 1.
@next_to_check = 103 # @primes[-1] - @primes[-1] % 6 + 7
@ulticheck_index = 3 # @primes.index(@primes.reverse.find {|n|
# n < Math.sqrt(@@next_to_check) })
@ulticheck_next_squared = 121 # @primes[@ulticheck_index + 1] ** 2
end
# Returns the cached prime numbers.
def cache
return @primes
end
alias primes cache
alias primes_so_far cache
# Returns the +index+th prime number.
#
# +index+ is a 0-based index.
def [](index)
while index >= @primes.length
# Only check for prime factors up to the square root of the potential primes,
# but without the performance hit of an actual square root calculation.
if @next_to_check + 4 > @ulticheck_next_squared
@ulticheck_index += 1
@ulticheck_next_squared = @primes.at(@ulticheck_index + 1) ** 2
end
# Only check numbers congruent to one and five, modulo six. All others
# are divisible by two or three. This also allows us to skip checking against
# two and three.
@primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil?
@next_to_check += 4
@primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil?
@next_to_check += 2
end
return @primes[index]
end
end
# Internal use. An implementation of eratosthenes' sieve
class EratosthenesSieve
include Singleton
def initialize
@primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101]
# @max_checked must be an even number
@max_checked = @primes.last + 1
end
def get_nth_prime(n)
compute_primes while @primes.size <= n
@primes[n]
end
private
def compute_primes
# max_segment_size must be an even number
max_segment_size = 1e6.to_i
max_cached_prime = @primes.last
# do not double count primes if #compute_primes is interrupted
# by Timeout.timeout
@max_checked = max_cached_prime + 1 if max_cached_prime > @max_checked
segment_min = @max_checked
segment_max = [segment_min + max_segment_size, max_cached_prime * 2].min
root = Integer(Math.sqrt(segment_max).floor)
sieving_primes = @primes[1 .. -1].take_while { |prime| prime <= root }
offsets = Array.new(sieving_primes.size) do |i|
(-(segment_min + 1 + sieving_primes[i]) / 2) % sieving_primes[i]
end
segment = ((segment_min + 1) .. segment_max).step(2).to_a
sieving_primes.each_with_index do |prime, index|
composite_index = offsets[index]
while composite_index < segment.size do
segment[composite_index] = nil
composite_index += prime
end
end
segment.each do |prime|
@primes.push prime unless prime.nil?
end
@max_checked = segment_max
end
end
# Provides a +Prime+ object with compatibility to Ruby 1.8 when instantiated via +Prime+.+new+.
module OldCompatibility
# Returns the next prime number and forwards internal pointer.
def succ
@generator.succ
end
alias next succ
# Overwrites Prime#each.
#
# Iterates the given block over all prime numbers. Note that enumeration
# starts from the current position of internal pointer, not rewound.
def each(&block)
return @generator.dup unless block_given?
loop do
yield succ
end
end
end
end
|