//! Finds crate binaries and loads their metadata //! //! Might I be the first to welcome you to a world of platform differences, //! version requirements, dependency graphs, conflicting desires, and fun! This //! is the major guts (along with metadata::creader) of the compiler for loading //! crates and resolving dependencies. Let's take a tour! //! //! # The problem //! //! Each invocation of the compiler is immediately concerned with one primary //! problem, to connect a set of crates to resolved crates on the filesystem. //! Concretely speaking, the compiler follows roughly these steps to get here: //! //! 1. Discover a set of `extern crate` statements. //! 2. Transform these directives into crate names. If the directive does not //! have an explicit name, then the identifier is the name. //! 3. For each of these crate names, find a corresponding crate on the //! filesystem. //! //! Sounds easy, right? Let's walk into some of the nuances. //! //! ## Transitive Dependencies //! //! Let's say we've got three crates: A, B, and C. A depends on B, and B depends //! on C. When we're compiling A, we primarily need to find and locate B, but we //! also end up needing to find and locate C as well. //! //! The reason for this is that any of B's types could be composed of C's types, //! any function in B could return a type from C, etc. To be able to guarantee //! that we can always type-check/translate any function, we have to have //! complete knowledge of the whole ecosystem, not just our immediate //! dependencies. //! //! So now as part of the "find a corresponding crate on the filesystem" step //! above, this involves also finding all crates for *all upstream //! dependencies*. This includes all dependencies transitively. //! //! ## Rlibs and Dylibs //! //! The compiler has two forms of intermediate dependencies. These are dubbed //! rlibs and dylibs for the static and dynamic variants, respectively. An rlib //! is a rustc-defined file format (currently just an ar archive) while a dylib //! is a platform-defined dynamic library. Each library has a metadata somewhere //! inside of it. //! //! A third kind of dependency is an rmeta file. These are metadata files and do //! not contain any code, etc. To a first approximation, these are treated in the //! same way as rlibs. Where there is both an rlib and an rmeta file, the rlib //! gets priority (even if the rmeta file is newer). An rmeta file is only //! useful for checking a downstream crate, attempting to link one will cause an //! error. //! //! When translating a crate name to a crate on the filesystem, we all of a //! sudden need to take into account both rlibs and dylibs! Linkage later on may //! use either one of these files, as each has their pros/cons. The job of crate //! loading is to discover what's possible by finding all candidates. //! //! Most parts of this loading systems keep the dylib/rlib as just separate //! variables. //! //! ## Where to look? //! //! We can't exactly scan your whole hard drive when looking for dependencies, //! so we need to places to look. Currently the compiler will implicitly add the //! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation, //! and otherwise all -L flags are added to the search paths. //! //! ## What criterion to select on? //! //! This is a pretty tricky area of loading crates. Given a file, how do we know //! whether it's the right crate? Currently, the rules look along these lines: //! //! 1. Does the filename match an rlib/dylib pattern? That is to say, does the //! filename have the right prefix/suffix? //! 2. Does the filename have the right prefix for the crate name being queried? //! This is filtering for files like `libfoo*.rlib` and such. If the crate //! we're looking for was originally compiled with -C extra-filename, the //! extra filename will be included in this prefix to reduce reading //! metadata from crates that would otherwise share our prefix. //! 3. Is the file an actual rust library? This is done by loading the metadata //! from the library and making sure it's actually there. //! 4. Does the name in the metadata agree with the name of the library? //! 5. Does the target in the metadata agree with the current target? //! 6. Does the SVH match? (more on this later) //! //! If the file answers `yes` to all these questions, then the file is //! considered as being *candidate* for being accepted. It is illegal to have //! more than two candidates as the compiler has no method by which to resolve //! this conflict. Additionally, rlib/dylib candidates are considered //! separately. //! //! After all this has happened, we have 1 or two files as candidates. These //! represent the rlib/dylib file found for a library, and they're returned as //! being found. //! //! ### What about versions? //! //! A lot of effort has been put forth to remove versioning from the compiler. //! There have been forays in the past to have versioning baked in, but it was //! largely always deemed insufficient to the point that it was recognized that //! it's probably something the compiler shouldn't do anyway due to its //! complicated nature and the state of the half-baked solutions. //! //! With a departure from versioning, the primary criterion for loading crates //! is just the name of a crate. If we stopped here, it would imply that you //! could never link two crates of the same name from different sources //! together, which is clearly a bad state to be in. //! //! To resolve this problem, we come to the next section! //! //! # Expert Mode //! //! A number of flags have been added to the compiler to solve the "version //! problem" in the previous section, as well as generally enabling more //! powerful usage of the crate loading system of the compiler. The goal of //! these flags and options are to enable third-party tools to drive the //! compiler with prior knowledge about how the world should look. //! //! ## The `--extern` flag //! //! The compiler accepts a flag of this form a number of times: //! //! ```text //! --extern crate-name=path/to/the/crate.rlib //! ``` //! //! This flag is basically the following letter to the compiler: //! //! > Dear rustc, //! > //! > When you are attempting to load the immediate dependency `crate-name`, I //! > would like you to assume that the library is located at //! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not //! > assume that the path I specified has the name `crate-name`. //! //! This flag basically overrides most matching logic except for validating that //! the file is indeed a rust library. The same `crate-name` can be specified //! twice to specify the rlib/dylib pair. //! //! ## Enabling "multiple versions" //! //! This basically boils down to the ability to specify arbitrary packages to //! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it //! would look something like: //! //! ```compile_fail,E0463 //! extern crate b1; //! extern crate b2; //! //! fn main() {} //! ``` //! //! and the compiler would be invoked as: //! //! ```text //! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib //! ``` //! //! In this scenario there are two crates named `b` and the compiler must be //! manually driven to be informed where each crate is. //! //! ## Frobbing symbols //! //! One of the immediate problems with linking the same library together twice //! in the same problem is dealing with duplicate symbols. The primary way to //! deal with this in rustc is to add hashes to the end of each symbol. //! //! In order to force hashes to change between versions of a library, if //! desired, the compiler exposes an option `-C metadata=foo`, which is used to //! initially seed each symbol hash. The string `foo` is prepended to each //! string-to-hash to ensure that symbols change over time. //! //! ## Loading transitive dependencies //! //! Dealing with same-named-but-distinct crates is not just a local problem, but //! one that also needs to be dealt with for transitive dependencies. Note that //! in the letter above `--extern` flags only apply to the *local* set of //! dependencies, not the upstream transitive dependencies. Consider this //! dependency graph: //! //! ```text //! A.1 A.2 //! | | //! | | //! B C //! \ / //! \ / //! D //! ``` //! //! In this scenario, when we compile `D`, we need to be able to distinctly //! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these //! transitive dependencies. //! //! Note that the key idea here is that `B` and `C` are both *already compiled*. //! That is, they have already resolved their dependencies. Due to unrelated //! technical reasons, when a library is compiled, it is only compatible with //! the *exact same* version of the upstream libraries it was compiled against. //! We use the "Strict Version Hash" to identify the exact copy of an upstream //! library. //! //! With this knowledge, we know that `B` and `C` will depend on `A` with //! different SVH values, so we crawl the normal `-L` paths looking for //! `liba*.rlib` and filter based on the contained SVH. //! //! In the end, this ends up not needing `--extern` to specify upstream //! transitive dependencies. //! //! # Wrapping up //! //! That's the general overview of loading crates in the compiler, but it's by //! no means all of the necessary details. Take a look at the rest of //! metadata::locator or metadata::creader for all the juicy details! use crate::creader::Library; use crate::errors; use crate::rmeta::{rustc_version, MetadataBlob, METADATA_HEADER}; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::memmap::Mmap; use rustc_data_structures::owned_slice::slice_owned; use rustc_data_structures::svh::Svh; use rustc_errors::{DiagnosticArgValue, FatalError, IntoDiagnosticArg}; use rustc_fs_util::try_canonicalize; use rustc_session::config::{self, CrateType}; use rustc_session::cstore::{CrateSource, MetadataLoader}; use rustc_session::filesearch::FileSearch; use rustc_session::search_paths::PathKind; use rustc_session::utils::CanonicalizedPath; use rustc_session::Session; use rustc_span::symbol::Symbol; use rustc_span::Span; use rustc_target::spec::{Target, TargetTriple}; use snap::read::FrameDecoder; use std::borrow::Cow; use std::io::{Read, Result as IoResult, Write}; use std::ops::Deref; use std::path::{Path, PathBuf}; use std::{cmp, fmt}; #[derive(Clone)] pub(crate) struct CrateLocator<'a> { // Immutable per-session configuration. only_needs_metadata: bool, sysroot: &'a Path, metadata_loader: &'a dyn MetadataLoader, // Immutable per-search configuration. crate_name: Symbol, exact_paths: Vec, pub hash: Option, extra_filename: Option<&'a str>, pub target: &'a Target, pub triple: TargetTriple, pub filesearch: FileSearch<'a>, pub is_proc_macro: bool, // Mutable in-progress state or output. crate_rejections: CrateRejections, } #[derive(Clone)] pub(crate) struct CratePaths { name: Symbol, source: CrateSource, } impl CratePaths { pub(crate) fn new(name: Symbol, source: CrateSource) -> CratePaths { CratePaths { name, source } } } #[derive(Copy, Clone, PartialEq)] pub(crate) enum CrateFlavor { Rlib, Rmeta, Dylib, } impl fmt::Display for CrateFlavor { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_str(match *self { CrateFlavor::Rlib => "rlib", CrateFlavor::Rmeta => "rmeta", CrateFlavor::Dylib => "dylib", }) } } impl IntoDiagnosticArg for CrateFlavor { fn into_diagnostic_arg(self) -> rustc_errors::DiagnosticArgValue<'static> { match self { CrateFlavor::Rlib => DiagnosticArgValue::Str(Cow::Borrowed("rlib")), CrateFlavor::Rmeta => DiagnosticArgValue::Str(Cow::Borrowed("rmeta")), CrateFlavor::Dylib => DiagnosticArgValue::Str(Cow::Borrowed("dylib")), } } } impl<'a> CrateLocator<'a> { pub(crate) fn new( sess: &'a Session, metadata_loader: &'a dyn MetadataLoader, crate_name: Symbol, hash: Option, extra_filename: Option<&'a str>, is_host: bool, path_kind: PathKind, ) -> CrateLocator<'a> { // The all loop is because `--crate-type=rlib --crate-type=rlib` is // legal and produces both inside this type. let is_rlib = sess.crate_types().iter().all(|c| *c == CrateType::Rlib); let needs_object_code = sess.opts.output_types.should_codegen(); // If we're producing an rlib, then we don't need object code. // Or, if we're not producing object code, then we don't need it either // (e.g., if we're a cdylib but emitting just metadata). let only_needs_metadata = is_rlib || !needs_object_code; CrateLocator { only_needs_metadata, sysroot: &sess.sysroot, metadata_loader, crate_name, exact_paths: if hash.is_none() { sess.opts .externs .get(crate_name.as_str()) .into_iter() .filter_map(|entry| entry.files()) .flatten() .cloned() .collect() } else { // SVH being specified means this is a transitive dependency, // so `--extern` options do not apply. Vec::new() }, hash, extra_filename, target: if is_host { &sess.host } else { &sess.target }, triple: if is_host { TargetTriple::from_triple(config::host_triple()) } else { sess.opts.target_triple.clone() }, filesearch: if is_host { sess.host_filesearch(path_kind) } else { sess.target_filesearch(path_kind) }, is_proc_macro: false, crate_rejections: CrateRejections::default(), } } pub(crate) fn reset(&mut self) { self.crate_rejections.via_hash.clear(); self.crate_rejections.via_triple.clear(); self.crate_rejections.via_kind.clear(); self.crate_rejections.via_version.clear(); self.crate_rejections.via_filename.clear(); self.crate_rejections.via_invalid.clear(); } pub(crate) fn maybe_load_library_crate(&mut self) -> Result, CrateError> { if !self.exact_paths.is_empty() { return self.find_commandline_library(); } let mut seen_paths = FxHashSet::default(); if let Some(extra_filename) = self.extra_filename { if let library @ Some(_) = self.find_library_crate(extra_filename, &mut seen_paths)? { return Ok(library); } } self.find_library_crate("", &mut seen_paths) } fn find_library_crate( &mut self, extra_prefix: &str, seen_paths: &mut FxHashSet, ) -> Result, CrateError> { let rmeta_prefix = &format!("lib{}{}", self.crate_name, extra_prefix); let rlib_prefix = rmeta_prefix; let dylib_prefix = &format!("{}{}{}", self.target.dll_prefix, self.crate_name, extra_prefix); let staticlib_prefix = &format!("{}{}{}", self.target.staticlib_prefix, self.crate_name, extra_prefix); let rmeta_suffix = ".rmeta"; let rlib_suffix = ".rlib"; let dylib_suffix = &self.target.dll_suffix; let staticlib_suffix = &self.target.staticlib_suffix; let mut candidates: FxHashMap<_, (FxHashMap<_, _>, FxHashMap<_, _>, FxHashMap<_, _>)> = Default::default(); // First, find all possible candidate rlibs and dylibs purely based on // the name of the files themselves. We're trying to match against an // exact crate name and a possibly an exact hash. // // During this step, we can filter all found libraries based on the // name and id found in the crate id (we ignore the path portion for // filename matching), as well as the exact hash (if specified). If we // end up having many candidates, we must look at the metadata to // perform exact matches against hashes/crate ids. Note that opening up // the metadata is where we do an exact match against the full contents // of the crate id (path/name/id). // // The goal of this step is to look at as little metadata as possible. // Unfortunately, the prefix-based matching sometimes is over-eager. // E.g. if `rlib_suffix` is `libstd` it'll match the file // `libstd_detect-8d6701fb958915ad.rlib` (incorrect) as well as // `libstd-f3ab5b1dea981f17.rlib` (correct). But this is hard to avoid // given that `extra_filename` comes from the `-C extra-filename` // option and thus can be anything, and the incorrect match will be // handled safely in `extract_one`. for search_path in self.filesearch.search_paths() { debug!("searching {}", search_path.dir.display()); for spf in search_path.files.iter() { debug!("testing {}", spf.path.display()); let f = &spf.file_name_str; let (hash, kind) = if f.starts_with(rlib_prefix) && f.ends_with(rlib_suffix) { (&f[rlib_prefix.len()..(f.len() - rlib_suffix.len())], CrateFlavor::Rlib) } else if f.starts_with(rmeta_prefix) && f.ends_with(rmeta_suffix) { (&f[rmeta_prefix.len()..(f.len() - rmeta_suffix.len())], CrateFlavor::Rmeta) } else if f.starts_with(dylib_prefix) && f.ends_with(dylib_suffix.as_ref()) { (&f[dylib_prefix.len()..(f.len() - dylib_suffix.len())], CrateFlavor::Dylib) } else { if f.starts_with(staticlib_prefix) && f.ends_with(staticlib_suffix.as_ref()) { self.crate_rejections.via_kind.push(CrateMismatch { path: spf.path.clone(), got: "static".to_string(), }); } continue; }; info!("lib candidate: {}", spf.path.display()); let (rlibs, rmetas, dylibs) = candidates.entry(hash.to_string()).or_default(); let path = try_canonicalize(&spf.path).unwrap_or_else(|_| spf.path.clone()); if seen_paths.contains(&path) { continue; }; seen_paths.insert(path.clone()); match kind { CrateFlavor::Rlib => rlibs.insert(path, search_path.kind), CrateFlavor::Rmeta => rmetas.insert(path, search_path.kind), CrateFlavor::Dylib => dylibs.insert(path, search_path.kind), }; } } // We have now collected all known libraries into a set of candidates // keyed of the filename hash listed. For each filename, we also have a // list of rlibs/dylibs that apply. Here, we map each of these lists // (per hash), to a Library candidate for returning. // // A Library candidate is created if the metadata for the set of // libraries corresponds to the crate id and hash criteria that this // search is being performed for. let mut libraries = FxHashMap::default(); for (_hash, (rlibs, rmetas, dylibs)) in candidates { if let Some((svh, lib)) = self.extract_lib(rlibs, rmetas, dylibs)? { libraries.insert(svh, lib); } } // Having now translated all relevant found hashes into libraries, see // what we've got and figure out if we found multiple candidates for // libraries or not. match libraries.len() { 0 => Ok(None), 1 => Ok(Some(libraries.into_iter().next().unwrap().1)), _ => { let mut libraries: Vec<_> = libraries.into_values().collect(); libraries.sort_by_cached_key(|lib| lib.source.paths().next().unwrap().clone()); let candidates = libraries .iter() .map(|lib| lib.source.paths().next().unwrap().clone()) .collect::>(); Err(CrateError::MultipleCandidates( self.crate_name, // these are the same for all candidates get_flavor_from_path(candidates.first().unwrap()), candidates, )) } } } fn extract_lib( &mut self, rlibs: FxHashMap, rmetas: FxHashMap, dylibs: FxHashMap, ) -> Result, CrateError> { let mut slot = None; // Order here matters, rmeta should come first. See comment in // `extract_one` below. let source = CrateSource { rmeta: self.extract_one(rmetas, CrateFlavor::Rmeta, &mut slot)?, rlib: self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot)?, dylib: self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot)?, }; Ok(slot.map(|(svh, metadata)| (svh, Library { source, metadata }))) } fn needs_crate_flavor(&self, flavor: CrateFlavor) -> bool { if flavor == CrateFlavor::Dylib && self.is_proc_macro { return true; } if self.only_needs_metadata { flavor == CrateFlavor::Rmeta } else { // we need all flavors (perhaps not true, but what we do for now) true } } // Attempts to extract *one* library from the set `m`. If the set has no // elements, `None` is returned. If the set has more than one element, then // the errors and notes are emitted about the set of libraries. // // With only one library in the set, this function will extract it, and then // read the metadata from it if `*slot` is `None`. If the metadata couldn't // be read, it is assumed that the file isn't a valid rust library (no // errors are emitted). fn extract_one( &mut self, m: FxHashMap, flavor: CrateFlavor, slot: &mut Option<(Svh, MetadataBlob)>, ) -> Result, CrateError> { // If we are producing an rlib, and we've already loaded metadata, then // we should not attempt to discover further crate sources (unless we're // locating a proc macro; exact logic is in needs_crate_flavor). This means // that under -Zbinary-dep-depinfo we will not emit a dependency edge on // the *unused* rlib, and by returning `None` here immediately we // guarantee that we do indeed not use it. // // See also #68149 which provides more detail on why emitting the // dependency on the rlib is a bad thing. // // We currently do not verify that these other sources are even in sync, // and this is arguably a bug (see #10786), but because reading metadata // is quite slow (especially from dylibs) we currently do not read it // from the other crate sources. if slot.is_some() { if m.is_empty() || !self.needs_crate_flavor(flavor) { return Ok(None); } else if m.len() == 1 { return Ok(Some(m.into_iter().next().unwrap())); } } let mut ret: Option<(PathBuf, PathKind)> = None; let mut err_data: Option> = None; for (lib, kind) in m { info!("{} reading metadata from: {}", flavor, lib.display()); if flavor == CrateFlavor::Rmeta && lib.metadata().map_or(false, |m| m.len() == 0) { // Empty files will cause get_metadata_section to fail. Rmeta // files can be empty, for example with binaries (which can // often appear with `cargo check` when checking a library as // a unittest). We don't want to emit a user-visible warning // in this case as it is not a real problem. debug!("skipping empty file"); continue; } let (hash, metadata) = match get_metadata_section(self.target, flavor, &lib, self.metadata_loader) { Ok(blob) => { if let Some(h) = self.crate_matches(&blob, &lib) { (h, blob) } else { info!("metadata mismatch"); continue; } } Err(MetadataError::LoadFailure(err)) => { info!("no metadata found: {}", err); // The file was present and created by the same compiler version, but we // couldn't load it for some reason. Give a hard error instead of silently // ignoring it, but only if we would have given an error anyway. self.crate_rejections .via_invalid .push(CrateMismatch { path: lib, got: err }); continue; } Err(err @ MetadataError::NotPresent(_)) => { info!("no metadata found: {}", err); continue; } }; // If we see multiple hashes, emit an error about duplicate candidates. if slot.as_ref().map_or(false, |s| s.0 != hash) { if let Some(candidates) = err_data { return Err(CrateError::MultipleCandidates( self.crate_name, flavor, candidates, )); } err_data = Some(vec![ret.as_ref().unwrap().0.clone()]); *slot = None; } if let Some(candidates) = &mut err_data { candidates.push(lib); continue; } // Ok so at this point we've determined that `(lib, kind)` above is // a candidate crate to load, and that `slot` is either none (this // is the first crate of its kind) or if some the previous path has // the exact same hash (e.g., it's the exact same crate). // // In principle these two candidate crates are exactly the same so // we can choose either of them to link. As a stupidly gross hack, // however, we favor crate in the sysroot. // // You can find more info in rust-lang/rust#39518 and various linked // issues, but the general gist is that during testing libstd the // compilers has two candidates to choose from: one in the sysroot // and one in the deps folder. These two crates are the exact same // crate but if the compiler chooses the one in the deps folder // it'll cause spurious errors on Windows. // // As a result, we favor the sysroot crate here. Note that the // candidates are all canonicalized, so we canonicalize the sysroot // as well. if let Some((prev, _)) = &ret { let sysroot = self.sysroot; let sysroot = try_canonicalize(sysroot).unwrap_or_else(|_| sysroot.to_path_buf()); if prev.starts_with(&sysroot) { continue; } } *slot = Some((hash, metadata)); ret = Some((lib, kind)); } if let Some(candidates) = err_data { Err(CrateError::MultipleCandidates(self.crate_name, flavor, candidates)) } else { Ok(ret) } } fn crate_matches(&mut self, metadata: &MetadataBlob, libpath: &Path) -> Option { let rustc_version = rustc_version(); let found_version = metadata.get_rustc_version(); if found_version != rustc_version { info!("Rejecting via version: expected {} got {}", rustc_version, found_version); self.crate_rejections .via_version .push(CrateMismatch { path: libpath.to_path_buf(), got: found_version }); return None; } let root = metadata.get_root(); if root.is_proc_macro_crate() != self.is_proc_macro { info!( "Rejecting via proc macro: expected {} got {}", self.is_proc_macro, root.is_proc_macro_crate(), ); return None; } if self.exact_paths.is_empty() && self.crate_name != root.name() { info!("Rejecting via crate name"); return None; } if root.triple() != &self.triple { info!("Rejecting via crate triple: expected {} got {}", self.triple, root.triple()); self.crate_rejections.via_triple.push(CrateMismatch { path: libpath.to_path_buf(), got: root.triple().to_string(), }); return None; } let hash = root.hash(); if let Some(expected_hash) = self.hash { if hash != expected_hash { info!("Rejecting via hash: expected {} got {}", expected_hash, hash); self.crate_rejections .via_hash .push(CrateMismatch { path: libpath.to_path_buf(), got: hash.to_string() }); return None; } } Some(hash) } fn find_commandline_library(&mut self) -> Result, CrateError> { // First, filter out all libraries that look suspicious. We only accept // files which actually exist that have the correct naming scheme for // rlibs/dylibs. let mut rlibs = FxHashMap::default(); let mut rmetas = FxHashMap::default(); let mut dylibs = FxHashMap::default(); for loc in &self.exact_paths { if !loc.canonicalized().exists() { return Err(CrateError::ExternLocationNotExist( self.crate_name, loc.original().clone(), )); } if !loc.original().is_file() { return Err(CrateError::ExternLocationNotFile( self.crate_name, loc.original().clone(), )); } let Some(file) = loc.original().file_name().and_then(|s| s.to_str()) else { return Err(CrateError::ExternLocationNotFile( self.crate_name, loc.original().clone(), )); }; if file.starts_with("lib") && (file.ends_with(".rlib") || file.ends_with(".rmeta")) || file.starts_with(self.target.dll_prefix.as_ref()) && file.ends_with(self.target.dll_suffix.as_ref()) { // Make sure there's at most one rlib and at most one dylib. // Note to take care and match against the non-canonicalized name: // some systems save build artifacts into content-addressed stores // that do not preserve extensions, and then link to them using // e.g. symbolic links. If we canonicalize too early, we resolve // the symlink, the file type is lost and we might treat rlibs and // rmetas as dylibs. let loc_canon = loc.canonicalized().clone(); let loc = loc.original(); if loc.file_name().unwrap().to_str().unwrap().ends_with(".rlib") { rlibs.insert(loc_canon, PathKind::ExternFlag); } else if loc.file_name().unwrap().to_str().unwrap().ends_with(".rmeta") { rmetas.insert(loc_canon, PathKind::ExternFlag); } else { dylibs.insert(loc_canon, PathKind::ExternFlag); } } else { self.crate_rejections .via_filename .push(CrateMismatch { path: loc.original().clone(), got: String::new() }); } } // Extract the dylib/rlib/rmeta triple. Ok(self.extract_lib(rlibs, rmetas, dylibs)?.map(|(_, lib)| lib)) } pub(crate) fn into_error(self, root: Option) -> CrateError { CrateError::LocatorCombined(Box::new(CombinedLocatorError { crate_name: self.crate_name, root, triple: self.triple, dll_prefix: self.target.dll_prefix.to_string(), dll_suffix: self.target.dll_suffix.to_string(), crate_rejections: self.crate_rejections, })) } } fn get_metadata_section<'p>( target: &Target, flavor: CrateFlavor, filename: &'p Path, loader: &dyn MetadataLoader, ) -> Result> { if !filename.exists() { return Err(MetadataError::NotPresent(filename)); } let raw_bytes = match flavor { CrateFlavor::Rlib => { loader.get_rlib_metadata(target, filename).map_err(MetadataError::LoadFailure)? } CrateFlavor::Dylib => { let buf = loader.get_dylib_metadata(target, filename).map_err(MetadataError::LoadFailure)?; // The header is uncompressed let header_len = METADATA_HEADER.len(); // header + u32 length of data let data_start = header_len + 4; debug!("checking {} bytes of metadata-version stamp", header_len); let header = &buf[..cmp::min(header_len, buf.len())]; if header != METADATA_HEADER { return Err(MetadataError::LoadFailure(format!( "invalid metadata version found: {}", filename.display() ))); } // Length of the compressed stream - this allows linkers to pad the section if they want let Ok(len_bytes) = <[u8; 4]>::try_from(&buf[header_len..cmp::min(data_start, buf.len())]) else { return Err(MetadataError::LoadFailure("invalid metadata length found".to_string())); }; let compressed_len = u32::from_be_bytes(len_bytes) as usize; // Header is okay -> inflate the actual metadata let compressed_bytes = &buf[data_start..(data_start + compressed_len)]; debug!("inflating {} bytes of compressed metadata", compressed_bytes.len()); // Assume the decompressed data will be at least the size of the compressed data, so we // don't have to grow the buffer as much. let mut inflated = Vec::with_capacity(compressed_bytes.len()); FrameDecoder::new(compressed_bytes).read_to_end(&mut inflated).map_err(|_| { MetadataError::LoadFailure(format!( "failed to decompress metadata: {}", filename.display() )) })?; slice_owned(inflated, Deref::deref) } CrateFlavor::Rmeta => { // mmap the file, because only a small fraction of it is read. let file = std::fs::File::open(filename).map_err(|_| { MetadataError::LoadFailure(format!( "failed to open rmeta metadata: '{}'", filename.display() )) })?; let mmap = unsafe { Mmap::map(file) }; let mmap = mmap.map_err(|_| { MetadataError::LoadFailure(format!( "failed to mmap rmeta metadata: '{}'", filename.display() )) })?; slice_owned(mmap, Deref::deref) } }; let blob = MetadataBlob(raw_bytes); if blob.is_compatible() { Ok(blob) } else { Err(MetadataError::LoadFailure(format!( "invalid metadata version found: {}", filename.display() ))) } } /// Look for a plugin registrar. Returns its library path and crate disambiguator. pub fn find_plugin_registrar( sess: &Session, metadata_loader: &dyn MetadataLoader, span: Span, name: Symbol, ) -> PathBuf { find_plugin_registrar_impl(sess, metadata_loader, name).unwrap_or_else(|err| { // `core` is always available if we got as far as loading plugins. err.report(sess, span, false); FatalError.raise() }) } fn find_plugin_registrar_impl<'a>( sess: &'a Session, metadata_loader: &dyn MetadataLoader, name: Symbol, ) -> Result { info!("find plugin registrar `{}`", name); let mut locator = CrateLocator::new( sess, metadata_loader, name, None, // hash None, // extra_filename true, // is_host PathKind::Crate, ); match locator.maybe_load_library_crate()? { Some(library) => match library.source.dylib { Some(dylib) => Ok(dylib.0), None => Err(CrateError::NonDylibPlugin(name)), }, None => Err(locator.into_error(None)), } } /// A diagnostic function for dumping crate metadata to an output stream. pub fn list_file_metadata( target: &Target, path: &Path, metadata_loader: &dyn MetadataLoader, out: &mut dyn Write, ) -> IoResult<()> { let flavor = get_flavor_from_path(path); match get_metadata_section(target, flavor, path, metadata_loader) { Ok(metadata) => metadata.list_crate_metadata(out), Err(msg) => write!(out, "{}\n", msg), } } fn get_flavor_from_path(path: &Path) -> CrateFlavor { let filename = path.file_name().unwrap().to_str().unwrap(); if filename.ends_with(".rlib") { CrateFlavor::Rlib } else if filename.ends_with(".rmeta") { CrateFlavor::Rmeta } else { CrateFlavor::Dylib } } // ------------------------------------------ Error reporting ------------------------------------- #[derive(Clone)] struct CrateMismatch { path: PathBuf, got: String, } #[derive(Clone, Default)] struct CrateRejections { via_hash: Vec, via_triple: Vec, via_kind: Vec, via_version: Vec, via_filename: Vec, via_invalid: Vec, } /// Candidate rejection reasons collected during crate search. /// If no candidate is accepted, then these reasons are presented to the user, /// otherwise they are ignored. pub(crate) struct CombinedLocatorError { crate_name: Symbol, root: Option, triple: TargetTriple, dll_prefix: String, dll_suffix: String, crate_rejections: CrateRejections, } pub(crate) enum CrateError { NonAsciiName(Symbol), ExternLocationNotExist(Symbol, PathBuf), ExternLocationNotFile(Symbol, PathBuf), MultipleCandidates(Symbol, CrateFlavor, Vec), SymbolConflictsCurrent(Symbol), StableCrateIdCollision(Symbol, Symbol), DlOpen(String), DlSym(String), LocatorCombined(Box), NonDylibPlugin(Symbol), } enum MetadataError<'a> { /// The file was missing. NotPresent(&'a Path), /// The file was present and invalid. LoadFailure(String), } impl fmt::Display for MetadataError<'_> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { MetadataError::NotPresent(filename) => { f.write_str(&format!("no such file: '{}'", filename.display())) } MetadataError::LoadFailure(msg) => f.write_str(msg), } } } impl CrateError { pub(crate) fn report(self, sess: &Session, span: Span, missing_core: bool) { match self { CrateError::NonAsciiName(crate_name) => { sess.emit_err(errors::NonAsciiName { span, crate_name }); } CrateError::ExternLocationNotExist(crate_name, loc) => { sess.emit_err(errors::ExternLocationNotExist { span, crate_name, location: &loc }); } CrateError::ExternLocationNotFile(crate_name, loc) => { sess.emit_err(errors::ExternLocationNotFile { span, crate_name, location: &loc }); } CrateError::MultipleCandidates(crate_name, flavor, candidates) => { sess.emit_err(errors::MultipleCandidates { span, crate_name, flavor, candidates }); } CrateError::SymbolConflictsCurrent(root_name) => { sess.emit_err(errors::SymbolConflictsCurrent { span, crate_name: root_name }); } CrateError::StableCrateIdCollision(crate_name0, crate_name1) => { sess.emit_err(errors::StableCrateIdCollision { span, crate_name0, crate_name1 }); } CrateError::DlOpen(s) | CrateError::DlSym(s) => { sess.emit_err(errors::DlError { span, err: s }); } CrateError::LocatorCombined(locator) => { let crate_name = locator.crate_name; let add_info = match &locator.root { None => String::new(), Some(r) => format!(" which `{}` depends on", r.name), }; if !locator.crate_rejections.via_filename.is_empty() { let mismatches = locator.crate_rejections.via_filename.iter(); for CrateMismatch { path, .. } in mismatches { sess.emit_err(errors::CrateLocationUnknownType { span, path: &path, crate_name, }); sess.emit_err(errors::LibFilenameForm { span, dll_prefix: &locator.dll_prefix, dll_suffix: &locator.dll_suffix, }); } } let mut found_crates = String::new(); if !locator.crate_rejections.via_hash.is_empty() { let mismatches = locator.crate_rejections.via_hash.iter(); for CrateMismatch { path, .. } in mismatches { found_crates.push_str(&format!( "\ncrate `{}`: {}", crate_name, path.display() )); } if let Some(r) = locator.root { for path in r.source.paths() { found_crates.push_str(&format!( "\ncrate `{}`: {}", r.name, path.display() )); } } sess.emit_err(errors::NewerCrateVersion { span, crate_name: crate_name, add_info, found_crates, }); } else if !locator.crate_rejections.via_triple.is_empty() { let mismatches = locator.crate_rejections.via_triple.iter(); for CrateMismatch { path, got } in mismatches { found_crates.push_str(&format!( "\ncrate `{}`, target triple {}: {}", crate_name, got, path.display(), )); } sess.emit_err(errors::NoCrateWithTriple { span, crate_name, locator_triple: locator.triple.triple(), add_info, found_crates, }); } else if !locator.crate_rejections.via_kind.is_empty() { let mismatches = locator.crate_rejections.via_kind.iter(); for CrateMismatch { path, .. } in mismatches { found_crates.push_str(&format!( "\ncrate `{}`: {}", crate_name, path.display() )); } sess.emit_err(errors::FoundStaticlib { span, crate_name, add_info, found_crates, }); } else if !locator.crate_rejections.via_version.is_empty() { let mismatches = locator.crate_rejections.via_version.iter(); for CrateMismatch { path, got } in mismatches { found_crates.push_str(&format!( "\ncrate `{}` compiled by {}: {}", crate_name, got, path.display(), )); } sess.emit_err(errors::IncompatibleRustc { span, crate_name, add_info, found_crates, rustc_version: rustc_version(), }); } else if !locator.crate_rejections.via_invalid.is_empty() { let mut crate_rejections = Vec::new(); for CrateMismatch { path: _, got } in locator.crate_rejections.via_invalid { crate_rejections.push(got); } sess.emit_err(errors::InvalidMetadataFiles { span, crate_name, add_info, crate_rejections, }); } else { sess.emit_err(errors::CannotFindCrate { span, crate_name, add_info, missing_core, current_crate: sess .opts .crate_name .clone() .unwrap_or("".to_string()), is_nightly_build: sess.is_nightly_build(), profiler_runtime: Symbol::intern(&sess.opts.unstable_opts.profiler_runtime), locator_triple: locator.triple, }); } } CrateError::NonDylibPlugin(crate_name) => { sess.emit_err(errors::NoDylibPlugin { span, crate_name }); } } } }