//! "Collection" is the process of determining the type and other external //! details of each item in Rust. Collection is specifically concerned //! with *interprocedural* things -- for example, for a function //! definition, collection will figure out the type and signature of the //! function, but it will not visit the *body* of the function in any way, //! nor examine type annotations on local variables (that's the job of //! type *checking*). //! //! Collecting is ultimately defined by a bundle of queries that //! inquire after various facts about the items in the crate (e.g., //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function //! for the full set. //! //! At present, however, we do run collection across all items in the //! crate as a kind of pass. This should eventually be factored away. use crate::astconv::{AstConv, Bounds}; use crate::constrained_generic_params as ctp; use crate::check::intrinsic::intrisic_operation_unsafety; use crate::lint; use crate::middle::lang_items::SizedTraitLangItem; use crate::middle::resolve_lifetime as rl; use crate::middle::weak_lang_items; use rustc::mir::mono::Linkage; use rustc::ty::query::Providers; use rustc::ty::subst::{Subst, InternalSubsts}; use rustc::ty::util::Discr; use rustc::ty::util::IntTypeExt; use rustc::ty::subst::UnpackedKind; use rustc::ty::{self, AdtKind, ToPolyTraitRef, Ty, TyCtxt}; use rustc::ty::{ReprOptions, ToPredicate}; use rustc::util::captures::Captures; use rustc::util::nodemap::FxHashMap; use rustc_data_structures::sync::Lrc; use rustc_target::spec::abi; use syntax::ast; use syntax::ast::{Ident, MetaItemKind}; use syntax::attr::{InlineAttr, OptimizeAttr, list_contains_name, mark_used}; use syntax::source_map::Spanned; use syntax::feature_gate; use syntax::symbol::{keywords, Symbol}; use syntax_pos::{Span, DUMMY_SP}; use rustc::hir::def::{CtorKind, Def}; use rustc::hir::Node; use rustc::hir::def_id::{DefId, LOCAL_CRATE}; use rustc::hir::intravisit::{self, NestedVisitorMap, Visitor}; use rustc::hir::GenericParamKind; use rustc::hir::{self, CodegenFnAttrFlags, CodegenFnAttrs, Unsafety}; use std::iter; struct OnlySelfBounds(bool); /////////////////////////////////////////////////////////////////////////// // Main entry point fn collect_mod_item_types<'tcx>(tcx: TyCtxt<'_, 'tcx, 'tcx>, module_def_id: DefId) { tcx.hir().visit_item_likes_in_module( module_def_id, &mut CollectItemTypesVisitor { tcx }.as_deep_visitor() ); } pub fn provide(providers: &mut Providers<'_>) { *providers = Providers { type_of, generics_of, predicates_of, predicates_defined_on, explicit_predicates_of, super_predicates_of, type_param_predicates, trait_def, adt_def, fn_sig, impl_trait_ref, impl_polarity, is_foreign_item, codegen_fn_attrs, collect_mod_item_types, ..*providers }; } /////////////////////////////////////////////////////////////////////////// /// Context specific to some particular item. This is what implements /// `AstConv`. It has information about the predicates that are defined /// on the trait. Unfortunately, this predicate information is /// available in various different forms at various points in the /// process. So we can't just store a pointer to e.g., the AST or the /// parsed ty form, we have to be more flexible. To this end, the /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy /// `get_type_parameter_bounds` requests, drawing the information from /// the AST (`hir::Generics`), recursively. pub struct ItemCtxt<'a, 'tcx: 'a> { tcx: TyCtxt<'a, 'tcx, 'tcx>, item_def_id: DefId, } /////////////////////////////////////////////////////////////////////////// struct CollectItemTypesVisitor<'a, 'tcx: 'a> { tcx: TyCtxt<'a, 'tcx, 'tcx>, } impl<'a, 'tcx> Visitor<'tcx> for CollectItemTypesVisitor<'a, 'tcx> { fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::OnlyBodies(&self.tcx.hir()) } fn visit_item(&mut self, item: &'tcx hir::Item) { convert_item(self.tcx, item.hir_id); intravisit::walk_item(self, item); } fn visit_generics(&mut self, generics: &'tcx hir::Generics) { for param in &generics.params { match param.kind { hir::GenericParamKind::Lifetime { .. } => {} hir::GenericParamKind::Type { default: Some(_), .. } => { let def_id = self.tcx.hir().local_def_id_from_hir_id(param.hir_id); self.tcx.type_of(def_id); } hir::GenericParamKind::Type { .. } => {} hir::GenericParamKind::Const { .. } => { let def_id = self.tcx.hir().local_def_id_from_hir_id(param.hir_id); self.tcx.type_of(def_id); } } } intravisit::walk_generics(self, generics); } fn visit_expr(&mut self, expr: &'tcx hir::Expr) { if let hir::ExprKind::Closure(..) = expr.node { let def_id = self.tcx.hir().local_def_id_from_hir_id(expr.hir_id); self.tcx.generics_of(def_id); self.tcx.type_of(def_id); } intravisit::walk_expr(self, expr); } fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem) { convert_trait_item(self.tcx, trait_item.hir_id); intravisit::walk_trait_item(self, trait_item); } fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem) { convert_impl_item(self.tcx, impl_item.hir_id); intravisit::walk_impl_item(self, impl_item); } } /////////////////////////////////////////////////////////////////////////// // Utility types and common code for the above passes. impl<'a, 'tcx> ItemCtxt<'a, 'tcx> { pub fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>, item_def_id: DefId) -> ItemCtxt<'a, 'tcx> { ItemCtxt { tcx, item_def_id } } } impl<'a, 'tcx> ItemCtxt<'a, 'tcx> { pub fn to_ty(&self, ast_ty: &hir::Ty) -> Ty<'tcx> { AstConv::ast_ty_to_ty(self, ast_ty) } } impl<'a, 'tcx> AstConv<'tcx, 'tcx> for ItemCtxt<'a, 'tcx> { fn tcx<'b>(&'b self) -> TyCtxt<'b, 'tcx, 'tcx> { self.tcx } fn get_type_parameter_bounds(&self, span: Span, def_id: DefId) -> Lrc> { self.tcx .at(span) .type_param_predicates((self.item_def_id, def_id)) } fn re_infer( &self, _span: Span, _def: Option<&ty::GenericParamDef>, ) -> Option> { None } fn ty_infer(&self, span: Span) -> Ty<'tcx> { struct_span_err!( self.tcx().sess, span, E0121, "the type placeholder `_` is not allowed within types on item signatures" ).span_label(span, "not allowed in type signatures") .emit(); self.tcx().types.err } fn projected_ty_from_poly_trait_ref( &self, span: Span, item_def_id: DefId, poly_trait_ref: ty::PolyTraitRef<'tcx>, ) -> Ty<'tcx> { if let Some(trait_ref) = poly_trait_ref.no_bound_vars() { self.tcx().mk_projection(item_def_id, trait_ref.substs) } else { // no late-bound regions, we can just ignore the binder span_err!( self.tcx().sess, span, E0212, "cannot extract an associated type from a higher-ranked trait bound \ in this context" ); self.tcx().types.err } } fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> { // types in item signatures are not normalized, to avoid undue // dependencies. ty } fn set_tainted_by_errors(&self) { // no obvious place to track this, just let it go } fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) { // no place to record types from signatures? } } fn type_param_predicates<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, (item_def_id, def_id): (DefId, DefId), ) -> Lrc> { use rustc::hir::*; // In the AST, bounds can derive from two places. Either // written inline like `` or in a where clause like // `where T : Foo`. let param_id = tcx.hir().as_local_hir_id(def_id).unwrap(); let param_owner = tcx.hir().ty_param_owner(param_id); let param_owner_def_id = tcx.hir().local_def_id_from_hir_id(param_owner); let generics = tcx.generics_of(param_owner_def_id); let index = generics.param_def_id_to_index[&def_id]; let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id).as_interned_str()); // Don't look for bounds where the type parameter isn't in scope. let parent = if item_def_id == param_owner_def_id { None } else { tcx.generics_of(item_def_id).parent }; let mut result = parent.map_or_else( || Lrc::new(ty::GenericPredicates { parent: None, predicates: vec![], }), |parent| { let icx = ItemCtxt::new(tcx, parent); icx.get_type_parameter_bounds(DUMMY_SP, def_id) }, ); let item_hir_id = tcx.hir().as_local_hir_id(item_def_id).unwrap(); let ast_generics = match tcx.hir().get_by_hir_id(item_hir_id) { Node::TraitItem(item) => &item.generics, Node::ImplItem(item) => &item.generics, Node::Item(item) => { match item.node { ItemKind::Fn(.., ref generics, _) | ItemKind::Impl(_, _, _, ref generics, ..) | ItemKind::Ty(_, ref generics) | ItemKind::Existential(ExistTy { ref generics, impl_trait_fn: None, .. }) | ItemKind::Enum(_, ref generics) | ItemKind::Struct(_, ref generics) | ItemKind::Union(_, ref generics) => generics, ItemKind::Trait(_, _, ref generics, ..) => { // Implied `Self: Trait` and supertrait bounds. if param_id == item_hir_id { let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id); Lrc::make_mut(&mut result) .predicates .push((identity_trait_ref.to_predicate(), item.span)); } generics } _ => return result, } } Node::ForeignItem(item) => match item.node { ForeignItemKind::Fn(_, _, ref generics) => generics, _ => return result, }, _ => return result, }; let icx = ItemCtxt::new(tcx, item_def_id); Lrc::make_mut(&mut result) .predicates .extend(icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty, OnlySelfBounds(true))); result } impl<'a, 'tcx> ItemCtxt<'a, 'tcx> { /// Finds bounds from `hir::Generics`. This requires scanning through the /// AST. We do this to avoid having to convert *all* the bounds, which /// would create artificial cycles. Instead we can only convert the /// bounds for a type parameter `X` if `X::Foo` is used. fn type_parameter_bounds_in_generics( &self, ast_generics: &hir::Generics, param_id: hir::HirId, ty: Ty<'tcx>, only_self_bounds: OnlySelfBounds, ) -> Vec<(ty::Predicate<'tcx>, Span)> { let from_ty_params = ast_generics .params .iter() .filter_map(|param| match param.kind { GenericParamKind::Type { .. } if param.hir_id == param_id => Some(¶m.bounds), _ => None, }) .flat_map(|bounds| bounds.iter()) .flat_map(|b| predicates_from_bound(self, ty, b)); let from_where_clauses = ast_generics .where_clause .predicates .iter() .filter_map(|wp| match *wp { hir::WherePredicate::BoundPredicate(ref bp) => Some(bp), _ => None, }) .flat_map(|bp| { let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) { Some(ty) } else if !only_self_bounds.0 { Some(self.to_ty(&bp.bounded_ty)) } else { None }; bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b))) }) .flat_map(|(bt, b)| predicates_from_bound(self, bt, b)); from_ty_params.chain(from_where_clauses).collect() } } /// Tests whether this is the AST for a reference to the type /// parameter with ID `param_id`. We use this so as to avoid running /// `ast_ty_to_ty`, because we want to avoid triggering an all-out /// conversion of the type to avoid inducing unnecessary cycles. fn is_param<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, ast_ty: &hir::Ty, param_id: hir::HirId, ) -> bool { if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.node { match path.def { Def::SelfTy(Some(def_id), None) | Def::TyParam(def_id) => { def_id == tcx.hir().local_def_id_from_hir_id(param_id) } _ => false, } } else { false } } fn convert_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, item_id: hir::HirId) { let it = tcx.hir().expect_item_by_hir_id(item_id); debug!("convert: item {} with id {}", it.ident, it.hir_id); let def_id = tcx.hir().local_def_id_from_hir_id(item_id); match it.node { // These don't define types. hir::ItemKind::ExternCrate(_) | hir::ItemKind::Use(..) | hir::ItemKind::Mod(_) | hir::ItemKind::GlobalAsm(_) => {} hir::ItemKind::ForeignMod(ref foreign_mod) => { for item in &foreign_mod.items { let def_id = tcx.hir().local_def_id_from_hir_id(item.hir_id); tcx.generics_of(def_id); tcx.type_of(def_id); tcx.predicates_of(def_id); if let hir::ForeignItemKind::Fn(..) = item.node { tcx.fn_sig(def_id); } } } hir::ItemKind::Enum(ref enum_definition, _) => { tcx.generics_of(def_id); tcx.type_of(def_id); tcx.predicates_of(def_id); convert_enum_variant_types(tcx, def_id, &enum_definition.variants); } hir::ItemKind::Impl(..) => { tcx.generics_of(def_id); tcx.type_of(def_id); tcx.impl_trait_ref(def_id); tcx.predicates_of(def_id); } hir::ItemKind::Trait(..) => { tcx.generics_of(def_id); tcx.trait_def(def_id); tcx.at(it.span).super_predicates_of(def_id); tcx.predicates_of(def_id); } hir::ItemKind::TraitAlias(..) => { tcx.generics_of(def_id); tcx.at(it.span).super_predicates_of(def_id); tcx.predicates_of(def_id); } hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => { tcx.generics_of(def_id); tcx.type_of(def_id); tcx.predicates_of(def_id); for f in struct_def.fields() { let def_id = tcx.hir().local_def_id_from_hir_id(f.hir_id); tcx.generics_of(def_id); tcx.type_of(def_id); tcx.predicates_of(def_id); } if let Some(ctor_hir_id) = struct_def.ctor_hir_id() { convert_variant_ctor(tcx, ctor_hir_id); } } // Desugared from `impl Trait` -> visited by the function's return type hir::ItemKind::Existential(hir::ExistTy { impl_trait_fn: Some(_), .. }) => {} hir::ItemKind::Existential(..) | hir::ItemKind::Ty(..) | hir::ItemKind::Static(..) | hir::ItemKind::Const(..) | hir::ItemKind::Fn(..) => { tcx.generics_of(def_id); tcx.type_of(def_id); tcx.predicates_of(def_id); if let hir::ItemKind::Fn(..) = it.node { tcx.fn_sig(def_id); } } } } fn convert_trait_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, trait_item_id: hir::HirId) { let trait_item = tcx.hir().expect_trait_item(trait_item_id); let def_id = tcx.hir().local_def_id_from_hir_id(trait_item.hir_id); tcx.generics_of(def_id); match trait_item.node { hir::TraitItemKind::Const(..) | hir::TraitItemKind::Type(_, Some(_)) | hir::TraitItemKind::Method(..) => { tcx.type_of(def_id); if let hir::TraitItemKind::Method(..) = trait_item.node { tcx.fn_sig(def_id); } } hir::TraitItemKind::Type(_, None) => {} }; tcx.predicates_of(def_id); } fn convert_impl_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, impl_item_id: hir::HirId) { let def_id = tcx.hir().local_def_id_from_hir_id(impl_item_id); tcx.generics_of(def_id); tcx.type_of(def_id); tcx.predicates_of(def_id); if let hir::ImplItemKind::Method(..) = tcx.hir().expect_impl_item(impl_item_id).node { tcx.fn_sig(def_id); } } fn convert_variant_ctor<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ctor_id: hir::HirId) { let def_id = tcx.hir().local_def_id_from_hir_id(ctor_id); tcx.generics_of(def_id); tcx.type_of(def_id); tcx.predicates_of(def_id); } fn convert_enum_variant_types<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, variants: &[hir::Variant], ) { let def = tcx.adt_def(def_id); let repr_type = def.repr.discr_type(); let initial = repr_type.initial_discriminant(tcx); let mut prev_discr = None::>; // fill the discriminant values and field types for variant in variants { let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx)); prev_discr = Some( if let Some(ref e) = variant.node.disr_expr { let expr_did = tcx.hir().local_def_id_from_hir_id(e.hir_id); def.eval_explicit_discr(tcx, expr_did) } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) { Some(discr) } else { struct_span_err!( tcx.sess, variant.span, E0370, "enum discriminant overflowed" ).span_label( variant.span, format!("overflowed on value after {}", prev_discr.unwrap()), ).note(&format!( "explicitly set `{} = {}` if that is desired outcome", variant.node.ident, wrapped_discr )) .emit(); None }.unwrap_or(wrapped_discr), ); for f in variant.node.data.fields() { let def_id = tcx.hir().local_def_id_from_hir_id(f.hir_id); tcx.generics_of(def_id); tcx.type_of(def_id); tcx.predicates_of(def_id); } // Convert the ctor, if any. This also registers the variant as // an item. if let Some(ctor_hir_id) = variant.node.data.ctor_hir_id() { convert_variant_ctor(tcx, ctor_hir_id); } } } fn convert_variant<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, variant_did: Option, ctor_did: Option, ident: Ident, discr: ty::VariantDiscr, def: &hir::VariantData, adt_kind: ty::AdtKind, parent_did: DefId ) -> ty::VariantDef { let mut seen_fields: FxHashMap = Default::default(); let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did)).unwrap(); let fields = def .fields() .iter() .map(|f| { let fid = tcx.hir().local_def_id_from_hir_id(f.hir_id); let dup_span = seen_fields.get(&f.ident.modern()).cloned(); if let Some(prev_span) = dup_span { struct_span_err!( tcx.sess, f.span, E0124, "field `{}` is already declared", f.ident ).span_label(f.span, "field already declared") .span_label(prev_span, format!("`{}` first declared here", f.ident)) .emit(); } else { seen_fields.insert(f.ident.modern(), f.span); } ty::FieldDef { did: fid, ident: f.ident, vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx), } }) .collect(); let recovered = match def { hir::VariantData::Struct(_, r) => *r, _ => false, }; ty::VariantDef::new( tcx, ident, variant_did, ctor_did, discr, fields, CtorKind::from_hir(def), adt_kind, parent_did, recovered, ) } fn adt_def<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::AdtDef { use rustc::hir::*; let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap(); let item = match tcx.hir().get_by_hir_id(hir_id) { Node::Item(item) => item, _ => bug!(), }; let repr = ReprOptions::new(tcx, def_id); let (kind, variants) = match item.node { ItemKind::Enum(ref def, _) => { let mut distance_from_explicit = 0; let variants = def.variants .iter() .map(|v| { let variant_did = Some(tcx.hir().local_def_id_from_hir_id(v.node.id)); let ctor_did = v.node.data.ctor_hir_id() .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id)); let discr = if let Some(ref e) = v.node.disr_expr { distance_from_explicit = 0; ty::VariantDiscr::Explicit(tcx.hir().local_def_id_from_hir_id(e.hir_id)) } else { ty::VariantDiscr::Relative(distance_from_explicit) }; distance_from_explicit += 1; convert_variant(tcx, variant_did, ctor_did, v.node.ident, discr, &v.node.data, AdtKind::Enum, def_id) }) .collect(); (AdtKind::Enum, variants) } ItemKind::Struct(ref def, _) => { let variant_did = None; let ctor_did = def.ctor_hir_id() .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id)); let variants = std::iter::once(convert_variant( tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def, AdtKind::Struct, def_id, )).collect(); (AdtKind::Struct, variants) } ItemKind::Union(ref def, _) => { let variant_did = None; let ctor_did = def.ctor_hir_id() .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id)); let variants = std::iter::once(convert_variant( tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def, AdtKind::Union, def_id, )).collect(); (AdtKind::Union, variants) }, _ => bug!(), }; tcx.alloc_adt_def(def_id, kind, variants, repr) } /// Ensures that the super-predicates of the trait with `DefId` /// trait_def_id are converted and stored. This also ensures that /// the transitive super-predicates are converted; fn super_predicates_of<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, trait_def_id: DefId, ) -> Lrc> { debug!("super_predicates(trait_def_id={:?})", trait_def_id); let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id).unwrap(); let item = match tcx.hir().get_by_hir_id(trait_hir_id) { Node::Item(item) => item, _ => bug!("trait_node_id {} is not an item", trait_hir_id), }; let (generics, bounds) = match item.node { hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits), hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits), _ => span_bug!(item.span, "super_predicates invoked on non-trait"), }; let icx = ItemCtxt::new(tcx, trait_def_id); // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo : Bar + Zed`. let self_param_ty = tcx.mk_self_type(); let superbounds1 = compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No, item.span); let superbounds1 = superbounds1.predicates(tcx, self_param_ty); // Convert any explicit superbounds in the where clause, // e.g., `trait Foo where Self : Bar`. // In the case of trait aliases, however, we include all bounds in the where clause, // so e.g., `trait Foo = where u32: PartialEq` would include `u32: PartialEq` // as one of its "superpredicates". let is_trait_alias = tcx.is_trait_alias(trait_def_id); let superbounds2 = icx.type_parameter_bounds_in_generics( generics, item.hir_id, self_param_ty, OnlySelfBounds(!is_trait_alias)); // Combine the two lists to form the complete set of superbounds: let superbounds: Vec<_> = superbounds1.into_iter().chain(superbounds2).collect(); // Now require that immediate supertraits are converted, // which will, in turn, reach indirect supertraits. for &(pred, span) in &superbounds { debug!("superbound: {:?}", pred); if let ty::Predicate::Trait(bound) = pred { tcx.at(span).super_predicates_of(bound.def_id()); } } Lrc::new(ty::GenericPredicates { parent: None, predicates: superbounds, }) } fn trait_def<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::TraitDef { let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap(); let item = tcx.hir().expect_item_by_hir_id(hir_id); let (is_auto, unsafety) = match item.node { hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety), hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal), _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"), }; let paren_sugar = tcx.has_attr(def_id, "rustc_paren_sugar"); if paren_sugar && !tcx.features().unboxed_closures { let mut err = tcx.sess.struct_span_err( item.span, "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \ which traits can use parenthetical notation", ); help!( &mut err, "add `#![feature(unboxed_closures)]` to \ the crate attributes to use it" ); err.emit(); } let is_marker = tcx.has_attr(def_id, "marker"); let def_path_hash = tcx.def_path_hash(def_id); let def = ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, def_path_hash); tcx.alloc_trait_def(def) } fn has_late_bound_regions<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, node: Node<'tcx>, ) -> Option { struct LateBoundRegionsDetector<'a, 'tcx: 'a> { tcx: TyCtxt<'a, 'tcx, 'tcx>, outer_index: ty::DebruijnIndex, has_late_bound_regions: Option, } impl<'a, 'tcx> Visitor<'tcx> for LateBoundRegionsDetector<'a, 'tcx> { fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::None } fn visit_ty(&mut self, ty: &'tcx hir::Ty) { if self.has_late_bound_regions.is_some() { return; } match ty.node { hir::TyKind::BareFn(..) => { self.outer_index.shift_in(1); intravisit::walk_ty(self, ty); self.outer_index.shift_out(1); } _ => intravisit::walk_ty(self, ty), } } fn visit_poly_trait_ref( &mut self, tr: &'tcx hir::PolyTraitRef, m: hir::TraitBoundModifier, ) { if self.has_late_bound_regions.is_some() { return; } self.outer_index.shift_in(1); intravisit::walk_poly_trait_ref(self, tr, m); self.outer_index.shift_out(1); } fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) { if self.has_late_bound_regions.is_some() { return; } match self.tcx.named_region(lt.hir_id) { Some(rl::Region::Static) | Some(rl::Region::EarlyBound(..)) => {} Some(rl::Region::LateBound(debruijn, _, _)) | Some(rl::Region::LateBoundAnon(debruijn, _)) if debruijn < self.outer_index => {} Some(rl::Region::LateBound(..)) | Some(rl::Region::LateBoundAnon(..)) | Some(rl::Region::Free(..)) | None => { self.has_late_bound_regions = Some(lt.span); } } } } fn has_late_bound_regions<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, generics: &'tcx hir::Generics, decl: &'tcx hir::FnDecl, ) -> Option { let mut visitor = LateBoundRegionsDetector { tcx, outer_index: ty::INNERMOST, has_late_bound_regions: None, }; for param in &generics.params { if let GenericParamKind::Lifetime { .. } = param.kind { if tcx.is_late_bound(param.hir_id) { return Some(param.span); } } } visitor.visit_fn_decl(decl); visitor.has_late_bound_regions } match node { Node::TraitItem(item) => match item.node { hir::TraitItemKind::Method(ref sig, _) => { has_late_bound_regions(tcx, &item.generics, &sig.decl) } _ => None, }, Node::ImplItem(item) => match item.node { hir::ImplItemKind::Method(ref sig, _) => { has_late_bound_regions(tcx, &item.generics, &sig.decl) } _ => None, }, Node::ForeignItem(item) => match item.node { hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => { has_late_bound_regions(tcx, generics, fn_decl) } _ => None, }, Node::Item(item) => match item.node { hir::ItemKind::Fn(ref fn_decl, .., ref generics, _) => { has_late_bound_regions(tcx, generics, fn_decl) } _ => None, }, _ => None, } } fn generics_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::Generics { use rustc::hir::*; let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap(); let node = tcx.hir().get_by_hir_id(hir_id); let parent_def_id = match node { Node::ImplItem(_) | Node::TraitItem(_) | Node::Variant(_) | Node::Ctor(..) | Node::Field(_) => { let parent_id = tcx.hir().get_parent_item(hir_id); Some(tcx.hir().local_def_id_from_hir_id(parent_id)) } Node::Expr(&hir::Expr { node: hir::ExprKind::Closure(..), .. }) => Some(tcx.closure_base_def_id(def_id)), Node::Item(item) => match item.node { ItemKind::Existential(hir::ExistTy { impl_trait_fn, .. }) => impl_trait_fn, _ => None, }, _ => None, }; let mut opt_self = None; let mut allow_defaults = false; let no_generics = hir::Generics::empty(); let ast_generics = match node { Node::TraitItem(item) => &item.generics, Node::ImplItem(item) => &item.generics, Node::Item(item) => { match item.node { ItemKind::Fn(.., ref generics, _) | ItemKind::Impl(_, _, _, ref generics, ..) => { generics } ItemKind::Ty(_, ref generics) | ItemKind::Enum(_, ref generics) | ItemKind::Struct(_, ref generics) | ItemKind::Existential(hir::ExistTy { ref generics, .. }) | ItemKind::Union(_, ref generics) => { allow_defaults = true; generics } ItemKind::Trait(_, _, ref generics, ..) | ItemKind::TraitAlias(ref generics, ..) => { // Add in the self type parameter. // // Something of a hack: use the node id for the trait, also as // the node id for the Self type parameter. let param_id = item.hir_id; opt_self = Some(ty::GenericParamDef { index: 0, name: keywords::SelfUpper.name().as_interned_str(), def_id: tcx.hir().local_def_id_from_hir_id(param_id), pure_wrt_drop: false, kind: ty::GenericParamDefKind::Type { has_default: false, object_lifetime_default: rl::Set1::Empty, synthetic: None, }, }); allow_defaults = true; generics } _ => &no_generics, } } Node::ForeignItem(item) => match item.node { ForeignItemKind::Static(..) => &no_generics, ForeignItemKind::Fn(_, _, ref generics) => generics, ForeignItemKind::Type => &no_generics, }, _ => &no_generics, }; let has_self = opt_self.is_some(); let mut parent_has_self = false; let mut own_start = has_self as u32; let parent_count = parent_def_id.map_or(0, |def_id| { let generics = tcx.generics_of(def_id); assert_eq!(has_self, false); parent_has_self = generics.has_self; own_start = generics.count() as u32; generics.parent_count + generics.params.len() }); let mut params: Vec<_> = opt_self.into_iter().collect(); let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics); params.extend( early_lifetimes .enumerate() .map(|(i, param)| ty::GenericParamDef { name: param.name.ident().as_interned_str(), index: own_start + i as u32, def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id), pure_wrt_drop: param.pure_wrt_drop, kind: ty::GenericParamDefKind::Lifetime, }), ); let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id); // Now create the real type parameters. let type_start = own_start - has_self as u32 + params.len() as u32; let mut i = 0; params.extend( ast_generics .params .iter() .filter_map(|param| { let kind = match param.kind { GenericParamKind::Type { ref default, synthetic, .. } => { if param.name.ident().name == keywords::SelfUpper.name() { span_bug!( param.span, "`Self` should not be the name of a regular parameter" ); } if !allow_defaults && default.is_some() { if !tcx.features().default_type_parameter_fallback { tcx.lint_hir( lint::builtin::INVALID_TYPE_PARAM_DEFAULT, param.hir_id, param.span, &format!( "defaults for type parameters are only allowed in \ `struct`, `enum`, `type`, or `trait` definitions." ), ); } } ty::GenericParamDefKind::Type { has_default: default.is_some(), object_lifetime_default: object_lifetime_defaults .as_ref() .map_or(rl::Set1::Empty, |o| o[i]), synthetic, } } GenericParamKind::Const { .. } => { if param.name.ident().name == keywords::SelfUpper.name() { span_bug!( param.span, "`Self` should not be the name of a regular parameter", ); } ty::GenericParamDefKind::Const } _ => return None, }; let param_def = ty::GenericParamDef { index: type_start + i as u32, name: param.name.ident().as_interned_str(), def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id), pure_wrt_drop: param.pure_wrt_drop, kind, }; i += 1; Some(param_def) }) ); // provide junk type parameter defs - the only place that // cares about anything but the length is instantiation, // and we don't do that for closures. if let Node::Expr(&hir::Expr { node: hir::ExprKind::Closure(.., gen), .. }) = node { let dummy_args = if gen.is_some() { &["", "", ""][..] } else { &["", ""][..] }; params.extend( dummy_args .iter() .enumerate() .map(|(i, &arg)| ty::GenericParamDef { index: type_start + i as u32, name: Symbol::intern(arg).as_interned_str(), def_id, pure_wrt_drop: false, kind: ty::GenericParamDefKind::Type { has_default: false, object_lifetime_default: rl::Set1::Empty, synthetic: None, }, }), ); tcx.with_freevars(hir_id, |fv| { params.extend(fv.iter().zip((dummy_args.len() as u32)..).map(|(_, i)| { ty::GenericParamDef { index: type_start + i, name: Symbol::intern("").as_interned_str(), def_id, pure_wrt_drop: false, kind: ty::GenericParamDefKind::Type { has_default: false, object_lifetime_default: rl::Set1::Empty, synthetic: None, }, } })); }); } let param_def_id_to_index = params .iter() .map(|param| (param.def_id, param.index)) .collect(); tcx.alloc_generics(ty::Generics { parent: parent_def_id, parent_count, params, param_def_id_to_index, has_self: has_self || parent_has_self, has_late_bound_regions: has_late_bound_regions(tcx, node), }) } fn report_assoc_ty_on_inherent_impl<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, span: Span) { span_err!( tcx.sess, span, E0202, "associated types are not yet supported in inherent impls (see #8995)" ); } fn type_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Ty<'tcx> { checked_type_of(tcx, def_id, true).unwrap() } /// Same as [`type_of`] but returns [`Option`] instead of failing. /// /// If you want to fail anyway, you can set the `fail` parameter to true, but in this case, /// you'd better just call [`type_of`] directly. pub fn checked_type_of<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, fail: bool, ) -> Option> { use rustc::hir::*; let hir_id = match tcx.hir().as_local_hir_id(def_id) { Some(hir_id) => hir_id, None => { if !fail { return None; } bug!("invalid node"); } }; let icx = ItemCtxt::new(tcx, def_id); Some(match tcx.hir().get_by_hir_id(hir_id) { Node::TraitItem(item) => match item.node { TraitItemKind::Method(..) => { let substs = InternalSubsts::identity_for_item(tcx, def_id); tcx.mk_fn_def(def_id, substs) } TraitItemKind::Const(ref ty, _) | TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty), TraitItemKind::Type(_, None) => { if !fail { return None; } span_bug!(item.span, "associated type missing default"); } }, Node::ImplItem(item) => match item.node { ImplItemKind::Method(..) => { let substs = InternalSubsts::identity_for_item(tcx, def_id); tcx.mk_fn_def(def_id, substs) } ImplItemKind::Const(ref ty, _) => icx.to_ty(ty), ImplItemKind::Existential(_) => { if tcx .impl_trait_ref(tcx.hir().get_parent_did_by_hir_id(hir_id)) .is_none() { report_assoc_ty_on_inherent_impl(tcx, item.span); } find_existential_constraints(tcx, def_id) } ImplItemKind::Type(ref ty) => { if tcx .impl_trait_ref(tcx.hir().get_parent_did_by_hir_id(hir_id)) .is_none() { report_assoc_ty_on_inherent_impl(tcx, item.span); } icx.to_ty(ty) } }, Node::Item(item) => { match item.node { ItemKind::Static(ref t, ..) | ItemKind::Const(ref t, _) | ItemKind::Ty(ref t, _) | ItemKind::Impl(.., ref t, _) => icx.to_ty(t), ItemKind::Fn(..) => { let substs = InternalSubsts::identity_for_item(tcx, def_id); tcx.mk_fn_def(def_id, substs) } ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => { let def = tcx.adt_def(def_id); let substs = InternalSubsts::identity_for_item(tcx, def_id); tcx.mk_adt(def, substs) } ItemKind::Existential(hir::ExistTy { impl_trait_fn: None, .. }) => find_existential_constraints(tcx, def_id), // existential types desugared from impl Trait ItemKind::Existential(hir::ExistTy { impl_trait_fn: Some(owner), .. }) => { tcx.typeck_tables_of(owner) .concrete_existential_types .get(&def_id) .map(|opaque| opaque.concrete_type) .unwrap_or_else(|| { // This can occur if some error in the // owner fn prevented us from populating // the `concrete_existential_types` table. tcx.sess.delay_span_bug( DUMMY_SP, &format!( "owner {:?} has no existential type for {:?} in its tables", owner, def_id, ), ); tcx.types.err }) } ItemKind::Trait(..) | ItemKind::TraitAlias(..) | ItemKind::Mod(..) | ItemKind::ForeignMod(..) | ItemKind::GlobalAsm(..) | ItemKind::ExternCrate(..) | ItemKind::Use(..) => { if !fail { return None; } span_bug!( item.span, "compute_type_of_item: unexpected item type: {:?}", item.node ); } } } Node::ForeignItem(foreign_item) => match foreign_item.node { ForeignItemKind::Fn(..) => { let substs = InternalSubsts::identity_for_item(tcx, def_id); tcx.mk_fn_def(def_id, substs) } ForeignItemKind::Static(ref t, _) => icx.to_ty(t), ForeignItemKind::Type => tcx.mk_foreign(def_id), }, Node::Ctor(&ref def) | Node::Variant(&Spanned { node: hir::VariantKind { data: ref def, .. }, .. }) => match *def { VariantData::Unit(..) | VariantData::Struct(..) => { tcx.type_of(tcx.hir().get_parent_did_by_hir_id(hir_id)) } VariantData::Tuple(..) => { let substs = InternalSubsts::identity_for_item(tcx, def_id); tcx.mk_fn_def(def_id, substs) } }, Node::Field(field) => icx.to_ty(&field.ty), Node::Expr(&hir::Expr { node: hir::ExprKind::Closure(.., gen), .. }) => { if gen.is_some() { return Some(tcx.typeck_tables_of(def_id).node_type(hir_id)); } let substs = ty::ClosureSubsts { substs: InternalSubsts::identity_for_item(tcx, def_id), }; tcx.mk_closure(def_id, substs) } Node::AnonConst(_) => { let parent_node = tcx.hir().get_by_hir_id(tcx.hir().get_parent_node_by_hir_id(hir_id)); match parent_node { Node::Ty(&hir::Ty { node: hir::TyKind::Array(_, ref constant), .. }) | Node::Ty(&hir::Ty { node: hir::TyKind::Typeof(ref constant), .. }) | Node::Expr(&hir::Expr { node: ExprKind::Repeat(_, ref constant), .. }) if constant.hir_id == hir_id => { tcx.types.usize } Node::Variant(&Spanned { node: VariantKind { disr_expr: Some(ref e), .. }, .. }) if e.hir_id == hir_id => { tcx.adt_def(tcx.hir().get_parent_did_by_hir_id(hir_id)) .repr .discr_type() .to_ty(tcx) } Node::Ty(&hir::Ty { node: hir::TyKind::Path(_), .. }) | Node::Expr(&hir::Expr { node: ExprKind::Struct(..), .. }) | Node::Expr(&hir::Expr { node: ExprKind::Path(_), .. }) => { let path = match parent_node { Node::Ty(&hir::Ty { node: hir::TyKind::Path(ref path), .. }) | Node::Expr(&hir::Expr { node: ExprKind::Path(ref path), .. }) => { path } Node::Expr(&hir::Expr { node: ExprKind::Struct(ref path, ..), .. }) => { &*path } _ => unreachable!(), }; match path { QPath::Resolved(_, ref path) => { let mut arg_index = 0; let mut found_const = false; for seg in &path.segments { if let Some(generic_args) = &seg.args { let args = &generic_args.args; for arg in args { if let GenericArg::Const(ct) = arg { if ct.value.hir_id == hir_id { found_const = true; break; } arg_index += 1; } } } } // Sanity check to make sure everything is as expected. if !found_const { if !fail { return None; } bug!("no arg matching AnonConst in path") } match path.def { // We've encountered an `AnonConst` in some path, so we need to // figure out which generic parameter it corresponds to and return // the relevant type. Def::Struct(def_id) | Def::Union(def_id) | Def::Enum(def_id) | Def::Fn(def_id) => { let generics = tcx.generics_of(def_id); let mut param_index = 0; for param in &generics.params { if let ty::GenericParamDefKind::Const = param.kind { if param_index == arg_index { return Some(tcx.type_of(param.def_id)); } param_index += 1; } } // This is no generic parameter associated with the arg. This is // probably from an extra arg where one is not needed. return Some(tcx.types.err); } Def::Err => tcx.types.err, x => { if !fail { return None; } bug!("unexpected const parent path def {:?}", x); } } } x => { if !fail { return None; } bug!("unexpected const parent path {:?}", x); } } } x => { if !fail { return None; } bug!("unexpected const parent in type_of_def_id(): {:?}", x); } } } Node::GenericParam(param) => match ¶m.kind { hir::GenericParamKind::Type { default: Some(ref ty), .. } | hir::GenericParamKind::Const { ref ty, .. } => { icx.to_ty(ty) } x => { if !fail { return None; } bug!("unexpected non-type Node::GenericParam: {:?}", x) }, }, x => { if !fail { return None; } bug!("unexpected sort of node in type_of_def_id(): {:?}", x); } }) } fn find_existential_constraints<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, ) -> ty::Ty<'tcx> { use rustc::hir::*; struct ConstraintLocator<'a, 'tcx: 'a> { tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, // First found type span, actual type, mapping from the existential type's generic // parameters to the concrete type's generic parameters // // The mapping is an index for each use site of a generic parameter in the concrete type // // The indices index into the generic parameters on the existential type. found: Option<(Span, ty::Ty<'tcx>, Vec)>, } impl<'a, 'tcx> ConstraintLocator<'a, 'tcx> { fn check(&mut self, def_id: DefId) { trace!("checking {:?}", def_id); // don't try to check items that cannot possibly constrain the type if !self.tcx.has_typeck_tables(def_id) { trace!("no typeck tables for {:?}", def_id); return; } let ty = self .tcx .typeck_tables_of(def_id) .concrete_existential_types .get(&self.def_id); if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty { // FIXME(oli-obk): trace the actual span from inference to improve errors let span = self.tcx.def_span(def_id); // used to quickly look up the position of a generic parameter let mut index_map: FxHashMap = FxHashMap::default(); // skip binder is ok, since we only use this to find generic parameters and their // positions. for (idx, subst) in substs.iter().enumerate() { if let UnpackedKind::Type(ty) = subst.unpack() { if let ty::Param(p) = ty.sty { if index_map.insert(p, idx).is_some() { // there was already an entry for `p`, meaning a generic parameter // was used twice self.tcx.sess.span_err( span, &format!("defining existential type use restricts existential \ type by using the generic parameter `{}` twice", p.name), ); return; } } else { self.tcx.sess.delay_span_bug( span, &format!( "non-defining exist ty use in defining scope: {:?}, {:?}", concrete_type, substs, ), ); } } } // compute the index within the existential type for each generic parameter used in // the concrete type let indices = concrete_type .subst(self.tcx, substs) .walk() .filter_map(|t| match &t.sty { ty::Param(p) => Some(*index_map.get(p).unwrap()), _ => None, }).collect(); let is_param = |ty: ty::Ty<'_>| match ty.sty { ty::Param(_) => true, _ => false, }; if !substs.types().all(is_param) { self.tcx.sess.span_err( span, "defining existential type use does not fully define existential type", ); } else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found { let mut ty = concrete_type.walk().fuse(); let mut p_ty = prev_ty.walk().fuse(); let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.sty, &p.sty) { // type parameters are equal to any other type parameter for the purpose of // concrete type equality, as it is possible to obtain the same type just // by passing matching parameters to a function. (ty::Param(_), ty::Param(_)) => true, _ => t == p, }); if !iter_eq || ty.next().is_some() || p_ty.next().is_some() { // found different concrete types for the existential type let mut err = self.tcx.sess.struct_span_err( span, "concrete type differs from previous defining existential type use", ); err.span_label( span, format!("expected `{}`, got `{}`", prev_ty, concrete_type), ); err.span_note(prev_span, "previous use here"); err.emit(); } else if indices != *prev_indices { // found "same" concrete types, but the generic parameter order differs let mut err = self.tcx.sess.struct_span_err( span, "concrete type's generic parameters differ from previous defining use", ); use std::fmt::Write; let mut s = String::new(); write!(s, "expected [").unwrap(); let list = |s: &mut String, indices: &Vec| { let mut indices = indices.iter().cloned(); if let Some(first) = indices.next() { write!(s, "`{}`", substs[first]).unwrap(); for i in indices { write!(s, ", `{}`", substs[i]).unwrap(); } } }; list(&mut s, prev_indices); write!(s, "], got [").unwrap(); list(&mut s, &indices); write!(s, "]").unwrap(); err.span_label(span, s); err.span_note(prev_span, "previous use here"); err.emit(); } } else { self.found = Some((span, concrete_type, indices)); } } } } impl<'a, 'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'a, 'tcx> { fn nested_visit_map<'this>(&'this mut self) -> intravisit::NestedVisitorMap<'this, 'tcx> { intravisit::NestedVisitorMap::All(&self.tcx.hir()) } fn visit_item(&mut self, it: &'tcx Item) { let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id); // the existential type itself or its children are not within its reveal scope if def_id != self.def_id { self.check(def_id); intravisit::walk_item(self, it); } } fn visit_impl_item(&mut self, it: &'tcx ImplItem) { let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id); // the existential type itself or its children are not within its reveal scope if def_id != self.def_id { self.check(def_id); intravisit::walk_impl_item(self, it); } } fn visit_trait_item(&mut self, it: &'tcx TraitItem) { let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id); self.check(def_id); intravisit::walk_trait_item(self, it); } } let mut locator = ConstraintLocator { def_id, tcx, found: None, }; let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap(); let parent = tcx.hir().get_parent_item(hir_id); trace!("parent_id: {:?}", parent); if parent == hir::CRATE_HIR_ID { intravisit::walk_crate(&mut locator, tcx.hir().krate()); } else { trace!("parent: {:?}", tcx.hir().get_by_hir_id(parent)); match tcx.hir().get_by_hir_id(parent) { Node::Item(ref it) => intravisit::walk_item(&mut locator, it), Node::ImplItem(ref it) => intravisit::walk_impl_item(&mut locator, it), Node::TraitItem(ref it) => intravisit::walk_trait_item(&mut locator, it), other => bug!( "{:?} is not a valid parent of an existential type item", other ), } } match locator.found { Some((_, ty, _)) => ty, None => { let span = tcx.def_span(def_id); tcx.sess.span_err(span, "could not find defining uses"); tcx.types.err } } } fn fn_sig<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> ty::PolyFnSig<'tcx> { use rustc::hir::*; use rustc::hir::Node::*; let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap(); let icx = ItemCtxt::new(tcx, def_id); match tcx.hir().get_by_hir_id(hir_id) { TraitItem(hir::TraitItem { node: TraitItemKind::Method(sig, _), .. }) | ImplItem(hir::ImplItem { node: ImplItemKind::Method(sig, _), .. }) => AstConv::ty_of_fn(&icx, sig.header.unsafety, sig.header.abi, &sig.decl), Item(hir::Item { node: ItemKind::Fn(decl, header, _, _), .. }) => AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl), ForeignItem(&hir::ForeignItem { node: ForeignItemKind::Fn(ref fn_decl, _, _), .. }) => { let abi = tcx.hir().get_foreign_abi_by_hir_id(hir_id); compute_sig_of_foreign_fn_decl(tcx, def_id, fn_decl, abi) } Ctor(data) | Variant(Spanned { node: hir::VariantKind { data, .. }, .. }) if data.ctor_hir_id().is_some() => { let ty = tcx.type_of(tcx.hir().get_parent_did_by_hir_id(hir_id)); let inputs = data.fields() .iter() .map(|f| tcx.type_of(tcx.hir().local_def_id_from_hir_id(f.hir_id))); ty::Binder::bind(tcx.mk_fn_sig( inputs, ty, false, hir::Unsafety::Normal, abi::Abi::Rust, )) } Expr(&hir::Expr { node: hir::ExprKind::Closure(..), .. }) => { // Closure signatures are not like other function // signatures and cannot be accessed through `fn_sig`. For // example, a closure signature excludes the `self` // argument. In any case they are embedded within the // closure type as part of the `ClosureSubsts`. // // To get // the signature of a closure, you should use the // `closure_sig` method on the `ClosureSubsts`: // // closure_substs.closure_sig(def_id, tcx) // // or, inside of an inference context, you can use // // infcx.closure_sig(def_id, closure_substs) bug!("to get the signature of a closure, use `closure_sig()` not `fn_sig()`"); } x => { bug!("unexpected sort of node in fn_sig(): {:?}", x); } } } fn impl_trait_ref<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, ) -> Option> { let icx = ItemCtxt::new(tcx, def_id); let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap(); match tcx.hir().expect_item_by_hir_id(hir_id).node { hir::ItemKind::Impl(.., ref opt_trait_ref, _, _) => { opt_trait_ref.as_ref().map(|ast_trait_ref| { let selfty = tcx.type_of(def_id); AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty) }) } _ => bug!(), } } fn impl_polarity<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> hir::ImplPolarity { let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap(); match tcx.hir().expect_item_by_hir_id(hir_id).node { hir::ItemKind::Impl(_, polarity, ..) => polarity, ref item => bug!("impl_polarity: {:?} not an impl", item), } } // Is it marked with ?Sized fn is_unsized<'gcx: 'tcx, 'tcx>( astconv: &dyn AstConv<'gcx, 'tcx>, ast_bounds: &[hir::GenericBound], span: Span, ) -> bool { let tcx = astconv.tcx(); // Try to find an unbound in bounds. let mut unbound = None; for ab in ast_bounds { if let &hir::GenericBound::Trait(ref ptr, hir::TraitBoundModifier::Maybe) = ab { if unbound.is_none() { unbound = Some(ptr.trait_ref.clone()); } else { span_err!( tcx.sess, span, E0203, "type parameter has more than one relaxed default \ bound, only one is supported" ); } } } let kind_id = tcx.lang_items().require(SizedTraitLangItem); match unbound { Some(ref tpb) => { // FIXME(#8559) currently requires the unbound to be built-in. if let Ok(kind_id) = kind_id { if tpb.path.def != Def::Trait(kind_id) { tcx.sess.span_warn( span, "default bound relaxed for a type parameter, but \ this does nothing because the given bound is not \ a default. Only `?Sized` is supported", ); } } } _ if kind_id.is_ok() => { return false; } // No lang item for Sized, so we can't add it as a bound. None => {} } true } /// Returns the early-bound lifetimes declared in this generics /// listing. For anything other than fns/methods, this is just all /// the lifetimes that are declared. For fns or methods, we have to /// screen out those that do not appear in any where-clauses etc using /// `resolve_lifetime::early_bound_lifetimes`. fn early_bound_lifetimes_from_generics<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, generics: &'a hir::Generics, ) -> impl Iterator + Captures<'tcx> { generics .params .iter() .filter(move |param| match param.kind { GenericParamKind::Lifetime { .. } => { !tcx.is_late_bound(param.hir_id) } _ => false, }) } /// Returns a list of type predicates for the definition with ID `def_id`, including inferred /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus /// inferred constraints concerning which regions outlive other regions. fn predicates_defined_on<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, ) -> Lrc> { debug!("predicates_defined_on({:?})", def_id); let mut result = tcx.explicit_predicates_of(def_id); debug!( "predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result, ); let inferred_outlives = tcx.inferred_outlives_of(def_id); if !inferred_outlives.is_empty() { let span = tcx.def_span(def_id); debug!( "predicates_defined_on: inferred_outlives_of({:?}) = {:?}", def_id, inferred_outlives, ); Lrc::make_mut(&mut result) .predicates .extend(inferred_outlives.iter().map(|&p| (p, span))); } debug!("predicates_defined_on({:?}) = {:?}", def_id, result); result } /// Returns a list of all type predicates (explicit and implicit) for the definition with /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus /// `Self: Trait` predicates for traits. fn predicates_of<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, ) -> Lrc> { let mut result = tcx.predicates_defined_on(def_id); if tcx.is_trait(def_id) { // For traits, add `Self: Trait` predicate. This is // not part of the predicates that a user writes, but it // is something that one must prove in order to invoke a // method or project an associated type. // // In the chalk setup, this predicate is not part of the // "predicates" for a trait item. But it is useful in // rustc because if you directly (e.g.) invoke a trait // method like `Trait::method(...)`, you must naturally // prove that the trait applies to the types that were // used, and adding the predicate into this list ensures // that this is done. let span = tcx.def_span(def_id); Lrc::make_mut(&mut result) .predicates .push((ty::TraitRef::identity(tcx, def_id).to_predicate(), span)); } debug!("predicates_of(def_id={:?}) = {:?}", def_id, result); result } /// Returns a list of user-specified type predicates for the definition with ID `def_id`. /// N.B., this does not include any implied/inferred constraints. fn explicit_predicates_of<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, ) -> Lrc> { use rustc::hir::*; use rustc_data_structures::fx::FxHashSet; debug!("explicit_predicates_of(def_id={:?})", def_id); /// A data structure with unique elements, which preserves order of insertion. /// Preserving the order of insertion is important here so as not to break /// compile-fail UI tests. struct UniquePredicates<'tcx> { predicates: Vec<(ty::Predicate<'tcx>, Span)>, uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>, } impl<'tcx> UniquePredicates<'tcx> { fn new() -> Self { UniquePredicates { predicates: vec![], uniques: FxHashSet::default(), } } fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) { if self.uniques.insert(value) { self.predicates.push(value); } } fn extend, Span)>>(&mut self, iter: I) { for value in iter { self.push(value); } } } let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap(); let node = tcx.hir().get_by_hir_id(hir_id); let mut is_trait = None; let mut is_default_impl_trait = None; let icx = ItemCtxt::new(tcx, def_id); let no_generics = hir::Generics::empty(); let empty_trait_items = HirVec::new(); let mut predicates = UniquePredicates::new(); let ast_generics = match node { Node::TraitItem(item) => &item.generics, Node::ImplItem(item) => match item.node { ImplItemKind::Existential(ref bounds) => { let substs = InternalSubsts::identity_for_item(tcx, def_id); let opaque_ty = tcx.mk_opaque(def_id, substs); // Collect the bounds, i.e., the `A+B+'c` in `impl A+B+'c`. let bounds = compute_bounds( &icx, opaque_ty, bounds, SizedByDefault::Yes, tcx.def_span(def_id), ); predicates.extend(bounds.predicates(tcx, opaque_ty)); &item.generics } _ => &item.generics, }, Node::Item(item) => { match item.node { ItemKind::Impl(_, _, defaultness, ref generics, ..) => { if defaultness.is_default() { is_default_impl_trait = tcx.impl_trait_ref(def_id); } generics } ItemKind::Fn(.., ref generics, _) | ItemKind::Ty(_, ref generics) | ItemKind::Enum(_, ref generics) | ItemKind::Struct(_, ref generics) | ItemKind::Union(_, ref generics) => generics, ItemKind::Trait(_, _, ref generics, .., ref items) => { is_trait = Some((ty::TraitRef::identity(tcx, def_id), items)); generics } ItemKind::TraitAlias(ref generics, _) => { is_trait = Some((ty::TraitRef::identity(tcx, def_id), &empty_trait_items)); generics } ItemKind::Existential(ExistTy { ref bounds, impl_trait_fn, ref generics, }) => { let substs = InternalSubsts::identity_for_item(tcx, def_id); let opaque_ty = tcx.mk_opaque(def_id, substs); // Collect the bounds, i.e., the `A+B+'c` in `impl A+B+'c`. let bounds = compute_bounds( &icx, opaque_ty, bounds, SizedByDefault::Yes, tcx.def_span(def_id), ); if impl_trait_fn.is_some() { // impl Trait return Lrc::new(ty::GenericPredicates { parent: None, predicates: bounds.predicates(tcx, opaque_ty), }); } else { // named existential types predicates.extend(bounds.predicates(tcx, opaque_ty)); generics } } _ => &no_generics, } } Node::ForeignItem(item) => match item.node { ForeignItemKind::Static(..) => &no_generics, ForeignItemKind::Fn(_, _, ref generics) => generics, ForeignItemKind::Type => &no_generics, }, _ => &no_generics, }; let generics = tcx.generics_of(def_id); let parent_count = generics.parent_count as u32; let has_own_self = generics.has_self && parent_count == 0; // Below we'll consider the bounds on the type parameters (including `Self`) // and the explicit where-clauses, but to get the full set of predicates // on a trait we need to add in the supertrait bounds and bounds found on // associated types. if let Some((_trait_ref, _)) = is_trait { predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned()); } // In default impls, we can assume that the self type implements // the trait. So in: // // default impl Foo for Bar { .. } // // we add a default where clause `Foo: Bar`. We do a similar thing for traits // (see below). Recall that a default impl is not itself an impl, but rather a // set of defaults that can be incorporated into another impl. if let Some(trait_ref) = is_default_impl_trait { predicates.push((trait_ref.to_poly_trait_ref().to_predicate(), tcx.def_span(def_id))); } // Collect the region predicates that were declared inline as // well. In the case of parameters declared on a fn or method, we // have to be careful to only iterate over early-bound regions. let mut index = parent_count + has_own_self as u32; for param in early_bound_lifetimes_from_generics(tcx, ast_generics) { let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion { def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id), index, name: param.name.ident().as_interned_str(), })); index += 1; match param.kind { GenericParamKind::Lifetime { .. } => { param.bounds.iter().for_each(|bound| match bound { hir::GenericBound::Outlives(lt) => { let bound = AstConv::ast_region_to_region(&icx, <, None); let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound)); predicates.push((outlives.to_predicate(), lt.span)); } _ => bug!(), }); } _ => bug!(), } } // Collect the predicates that were written inline by the user on each // type parameter (e.g., ``). for param in &ast_generics.params { if let GenericParamKind::Type { .. } = param.kind { let name = param.name.ident().as_interned_str(); let param_ty = ty::ParamTy::new(index, name).to_ty(tcx); index += 1; let sized = SizedByDefault::Yes; let bounds = compute_bounds(&icx, param_ty, ¶m.bounds, sized, param.span); predicates.extend(bounds.predicates(tcx, param_ty)); } } // Add in the bounds that appear in the where-clause let where_clause = &ast_generics.where_clause; for predicate in &where_clause.predicates { match predicate { &hir::WherePredicate::BoundPredicate(ref bound_pred) => { let ty = icx.to_ty(&bound_pred.bounded_ty); // Keep the type around in a dummy predicate, in case of no bounds. // That way, `where Ty:` is not a complete noop (see #53696) and `Ty` // is still checked for WF. if bound_pred.bounds.is_empty() { if let ty::Param(_) = ty.sty { // This is a `where T:`, which can be in the HIR from the // transformation that moves `?Sized` to `T`'s declaration. // We can skip the predicate because type parameters are // trivially WF, but also we *should*, to avoid exposing // users who never wrote `where Type:,` themselves, to // compiler/tooling bugs from not handling WF predicates. } else { let span = bound_pred.bounded_ty.span; let predicate = ty::OutlivesPredicate(ty, tcx.mk_region(ty::ReEmpty)); predicates.push( (ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)), span) ); } } for bound in bound_pred.bounds.iter() { match bound { &hir::GenericBound::Trait(ref poly_trait_ref, _) => { let mut projections = Vec::new(); let (trait_ref, _) = AstConv::instantiate_poly_trait_ref( &icx, poly_trait_ref, ty, &mut projections, ); predicates.extend( iter::once((trait_ref.to_predicate(), poly_trait_ref.span)).chain( projections.iter().map(|&(p, span)| (p.to_predicate(), span) ))); } &hir::GenericBound::Outlives(ref lifetime) => { let region = AstConv::ast_region_to_region(&icx, lifetime, None); let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region)); predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span)) } } } } &hir::WherePredicate::RegionPredicate(ref region_pred) => { let r1 = AstConv::ast_region_to_region(&icx, ®ion_pred.lifetime, None); predicates.extend(region_pred.bounds.iter().map(|bound| { let (r2, span) = match bound { hir::GenericBound::Outlives(lt) => { (AstConv::ast_region_to_region(&icx, lt, None), lt.span) } _ => bug!(), }; let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2)); (ty::Predicate::RegionOutlives(pred), span) })) } &hir::WherePredicate::EqPredicate(..) => { // FIXME(#20041) } } } // Add predicates from associated type bounds. if let Some((self_trait_ref, trait_items)) = is_trait { predicates.extend(trait_items.iter().flat_map(|trait_item_ref| { let trait_item = tcx.hir().trait_item(trait_item_ref.id); let bounds = match trait_item.node { hir::TraitItemKind::Type(ref bounds, _) => bounds, _ => return vec![].into_iter() }; let assoc_ty = tcx.mk_projection(tcx.hir().local_def_id_from_hir_id(trait_item.hir_id), self_trait_ref.substs); let bounds = compute_bounds( &ItemCtxt::new(tcx, def_id), assoc_ty, bounds, SizedByDefault::Yes, trait_item.span, ); bounds.predicates(tcx, assoc_ty).into_iter() })) } let mut predicates = predicates.predicates; // Subtle: before we store the predicates into the tcx, we // sort them so that predicates like `T: Foo` come // before uses of `U`. This avoids false ambiguity errors // in trait checking. See `setup_constraining_predicates` // for details. if let Node::Item(&Item { node: ItemKind::Impl(..), .. }) = node { let self_ty = tcx.type_of(def_id); let trait_ref = tcx.impl_trait_ref(def_id); ctp::setup_constraining_predicates( tcx, &mut predicates, trait_ref, &mut ctp::parameters_for_impl(self_ty, trait_ref), ); } let result = Lrc::new(ty::GenericPredicates { parent: generics.parent, predicates, }); debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result); result } pub enum SizedByDefault { Yes, No, } /// Translate the AST's notion of ty param bounds (which are an enum consisting of a newtyped `Ty` /// or a region) to ty's notion of ty param bounds, which can either be user-defined traits, or the /// built-in trait `Send`. pub fn compute_bounds<'gcx: 'tcx, 'tcx>( astconv: &dyn AstConv<'gcx, 'tcx>, param_ty: Ty<'tcx>, ast_bounds: &[hir::GenericBound], sized_by_default: SizedByDefault, span: Span, ) -> Bounds<'tcx> { let mut region_bounds = Vec::new(); let mut trait_bounds = Vec::new(); for ast_bound in ast_bounds { match *ast_bound { hir::GenericBound::Trait(ref b, hir::TraitBoundModifier::None) => trait_bounds.push(b), hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => {} hir::GenericBound::Outlives(ref l) => region_bounds.push(l), } } let mut projection_bounds = Vec::new(); let mut trait_bounds: Vec<_> = trait_bounds.iter().map(|&bound| { let (poly_trait_ref, _) = astconv.instantiate_poly_trait_ref( bound, param_ty, &mut projection_bounds, ); (poly_trait_ref, bound.span) }).collect(); let region_bounds = region_bounds .into_iter() .map(|r| (astconv.ast_region_to_region(r, None), r.span)) .collect(); trait_bounds.sort_by_key(|(t, _)| t.def_id()); let implicitly_sized = if let SizedByDefault::Yes = sized_by_default { if !is_unsized(astconv, ast_bounds, span) { Some(span) } else { None } } else { None }; Bounds { region_bounds, implicitly_sized, trait_bounds, projection_bounds, } } /// Converts a specific `GenericBound` from the AST into a set of /// predicates that apply to the self type. A vector is returned /// because this can be anywhere from zero predicates (`T: ?Sized` adds no /// predicates) to one (`T: Foo`) to many (`T: Bar` adds `T: Bar` /// and `::X == i32`). fn predicates_from_bound<'tcx>( astconv: &dyn AstConv<'tcx, 'tcx>, param_ty: Ty<'tcx>, bound: &hir::GenericBound, ) -> Vec<(ty::Predicate<'tcx>, Span)> { match *bound { hir::GenericBound::Trait(ref tr, hir::TraitBoundModifier::None) => { let mut projections = Vec::new(); let (pred, _) = astconv.instantiate_poly_trait_ref(tr, param_ty, &mut projections); iter::once((pred.to_predicate(), tr.span)).chain( projections .into_iter() .map(|(p, span)| (p.to_predicate(), span)) ).collect() } hir::GenericBound::Outlives(ref lifetime) => { let region = astconv.ast_region_to_region(lifetime, None); let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region)); vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)] } hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => vec![], } } fn compute_sig_of_foreign_fn_decl<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, decl: &hir::FnDecl, abi: abi::Abi, ) -> ty::PolyFnSig<'tcx> { let unsafety = if abi == abi::Abi::RustIntrinsic { intrisic_operation_unsafety(&*tcx.item_name(def_id).as_str()) } else { hir::Unsafety::Unsafe }; let fty = AstConv::ty_of_fn(&ItemCtxt::new(tcx, def_id), unsafety, abi, decl); // feature gate SIMD types in FFI, since I (huonw) am not sure the // ABIs are handled at all correctly. if abi != abi::Abi::RustIntrinsic && abi != abi::Abi::PlatformIntrinsic && !tcx.features().simd_ffi { let check = |ast_ty: &hir::Ty, ty: Ty<'_>| { if ty.is_simd() { tcx.sess .struct_span_err( ast_ty.span, &format!( "use of SIMD type `{}` in FFI is highly experimental and \ may result in invalid code", tcx.hir().hir_to_pretty_string(ast_ty.hir_id) ), ) .help("add #![feature(simd_ffi)] to the crate attributes to enable") .emit(); } }; for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) { check(&input, ty) } if let hir::Return(ref ty) = decl.output { check(&ty, *fty.output().skip_binder()) } } fty } fn is_foreign_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> bool { match tcx.hir().get_if_local(def_id) { Some(Node::ForeignItem(..)) => true, Some(_) => false, _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id), } } fn from_target_feature( tcx: TyCtxt<'_, '_, '_>, id: DefId, attr: &ast::Attribute, whitelist: &FxHashMap>, target_features: &mut Vec, ) { let list = match attr.meta_item_list() { Some(list) => list, None => return, }; let rust_features = tcx.features(); for item in list { // Only `enable = ...` is accepted in the meta item list if !item.check_name("enable") { let msg = "#[target_feature(..)] only accepts sub-keys of `enable` \ currently"; tcx.sess.span_err(item.span(), &msg); continue; } // Must be of the form `enable = "..."` ( a string) let value = match item.value_str() { Some(value) => value, None => { let msg = "#[target_feature] attribute must be of the form \ #[target_feature(enable = \"..\")]"; tcx.sess.span_err(item.span(), &msg); continue; } }; // We allow comma separation to enable multiple features target_features.extend(value.as_str().split(',').filter_map(|feature| { // Only allow whitelisted features per platform let feature_gate = match whitelist.get(feature) { Some(g) => g, None => { let msg = format!( "the feature named `{}` is not valid for \ this target", feature ); let mut err = tcx.sess.struct_span_err(item.span(), &msg); if feature.starts_with("+") { let valid = whitelist.contains_key(&feature[1..]); if valid { err.help("consider removing the leading `+` in the feature name"); } } err.emit(); return None; } }; // Only allow features whose feature gates have been enabled let allowed = match feature_gate.as_ref().map(|s| &**s) { Some("arm_target_feature") => rust_features.arm_target_feature, Some("aarch64_target_feature") => rust_features.aarch64_target_feature, Some("hexagon_target_feature") => rust_features.hexagon_target_feature, Some("powerpc_target_feature") => rust_features.powerpc_target_feature, Some("mips_target_feature") => rust_features.mips_target_feature, Some("avx512_target_feature") => rust_features.avx512_target_feature, Some("mmx_target_feature") => rust_features.mmx_target_feature, Some("sse4a_target_feature") => rust_features.sse4a_target_feature, Some("tbm_target_feature") => rust_features.tbm_target_feature, Some("wasm_target_feature") => rust_features.wasm_target_feature, Some("cmpxchg16b_target_feature") => rust_features.cmpxchg16b_target_feature, Some("adx_target_feature") => rust_features.adx_target_feature, Some("movbe_target_feature") => rust_features.movbe_target_feature, Some(name) => bug!("unknown target feature gate {}", name), None => true, }; if !allowed && id.is_local() { feature_gate::emit_feature_err( &tcx.sess.parse_sess, feature_gate.as_ref().unwrap(), item.span(), feature_gate::GateIssue::Language, &format!("the target feature `{}` is currently unstable", feature), ); } Some(Symbol::intern(feature)) })); } } fn linkage_by_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, name: &str) -> Linkage { use rustc::mir::mono::Linkage::*; // Use the names from src/llvm/docs/LangRef.rst here. Most types are only // applicable to variable declarations and may not really make sense for // Rust code in the first place but whitelist them anyway and trust that // the user knows what s/he's doing. Who knows, unanticipated use cases // may pop up in the future. // // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported // and don't have to be, LLVM treats them as no-ops. match name { "appending" => Appending, "available_externally" => AvailableExternally, "common" => Common, "extern_weak" => ExternalWeak, "external" => External, "internal" => Internal, "linkonce" => LinkOnceAny, "linkonce_odr" => LinkOnceODR, "private" => Private, "weak" => WeakAny, "weak_odr" => WeakODR, _ => { let span = tcx.hir().span_if_local(def_id); if let Some(span) = span { tcx.sess.span_fatal(span, "invalid linkage specified") } else { tcx.sess .fatal(&format!("invalid linkage specified: {}", name)) } } } } fn codegen_fn_attrs<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, id: DefId) -> CodegenFnAttrs { let attrs = tcx.get_attrs(id); let mut codegen_fn_attrs = CodegenFnAttrs::new(); let whitelist = tcx.target_features_whitelist(LOCAL_CRATE); let mut inline_span = None; for attr in attrs.iter() { if attr.check_name("cold") { codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD; } else if attr.check_name("allocator") { codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR; } else if attr.check_name("unwind") { codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND; } else if attr.check_name("ffi_returns_twice") { if tcx.is_foreign_item(id) { codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE; } else { // `#[ffi_returns_twice]` is only allowed `extern fn`s struct_span_err!( tcx.sess, attr.span, E0724, "`#[ffi_returns_twice]` may only be used on foreign functions" ).emit(); } } else if attr.check_name("rustc_allocator_nounwind") { codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND; } else if attr.check_name("naked") { codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED; } else if attr.check_name("no_mangle") { codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE; } else if attr.check_name("rustc_std_internal_symbol") { codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL; } else if attr.check_name("no_debug") { codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_DEBUG; } else if attr.check_name("used") { codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED; } else if attr.check_name("thread_local") { codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL; } else if attr.check_name("export_name") { if let Some(s) = attr.value_str() { if s.as_str().contains("\0") { // `#[export_name = ...]` will be converted to a null-terminated string, // so it may not contain any null characters. struct_span_err!( tcx.sess, attr.span, E0648, "`export_name` may not contain null characters" ).emit(); } codegen_fn_attrs.export_name = Some(s); } } else if attr.check_name("target_feature") { if tcx.fn_sig(id).unsafety() == Unsafety::Normal { let msg = "#[target_feature(..)] can only be applied to \ `unsafe` function"; tcx.sess.span_err(attr.span, msg); } from_target_feature( tcx, id, attr, &whitelist, &mut codegen_fn_attrs.target_features, ); } else if attr.check_name("linkage") { if let Some(val) = attr.value_str() { codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str())); } } else if attr.check_name("link_section") { if let Some(val) = attr.value_str() { if val.as_str().bytes().any(|b| b == 0) { let msg = format!( "illegal null byte in link_section \ value: `{}`", &val ); tcx.sess.span_err(attr.span, &msg); } else { codegen_fn_attrs.link_section = Some(val); } } } else if attr.check_name("link_name") { codegen_fn_attrs.link_name = attr.value_str(); } } codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| { if attr.path != "inline" { return ia; } match attr.meta().map(|i| i.node) { Some(MetaItemKind::Word) => { mark_used(attr); InlineAttr::Hint } Some(MetaItemKind::List(ref items)) => { mark_used(attr); inline_span = Some(attr.span); if items.len() != 1 { span_err!( tcx.sess.diagnostic(), attr.span, E0534, "expected one argument" ); InlineAttr::None } else if list_contains_name(&items[..], "always") { InlineAttr::Always } else if list_contains_name(&items[..], "never") { InlineAttr::Never } else { span_err!( tcx.sess.diagnostic(), items[0].span(), E0535, "invalid argument" ); InlineAttr::None } } Some(MetaItemKind::NameValue(_)) => ia, None => ia, } }); codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| { if attr.path != "optimize" { return ia; } let err = |sp, s| span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s); match attr.meta().map(|i| i.node) { Some(MetaItemKind::Word) => { err(attr.span, "expected one argument"); ia } Some(MetaItemKind::List(ref items)) => { mark_used(attr); inline_span = Some(attr.span); if items.len() != 1 { err(attr.span, "expected one argument"); OptimizeAttr::None } else if list_contains_name(&items[..], "size") { OptimizeAttr::Size } else if list_contains_name(&items[..], "speed") { OptimizeAttr::Speed } else { err(items[0].span(), "invalid argument"); OptimizeAttr::None } } Some(MetaItemKind::NameValue(_)) => ia, None => ia, } }); // If a function uses #[target_feature] it can't be inlined into general // purpose functions as they wouldn't have the right target features // enabled. For that reason we also forbid #[inline(always)] as it can't be // respected. if codegen_fn_attrs.target_features.len() > 0 { if codegen_fn_attrs.inline == InlineAttr::Always { if let Some(span) = inline_span { tcx.sess.span_err( span, "cannot use #[inline(always)] with \ #[target_feature]", ); } } } // Weak lang items have the same semantics as "std internal" symbols in the // sense that they're preserved through all our LTO passes and only // strippable by the linker. // // Additionally weak lang items have predetermined symbol names. if tcx.is_weak_lang_item(id) { codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL; } if let Some(name) = weak_lang_items::link_name(&attrs) { codegen_fn_attrs.export_name = Some(name); codegen_fn_attrs.link_name = Some(name); } // Internal symbols to the standard library all have no_mangle semantics in // that they have defined symbol names present in the function name. This // also applies to weak symbols where they all have known symbol names. if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) { codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE; } codegen_fn_attrs }