summaryrefslogtreecommitdiff
path: root/compiler/rustc_mir_build/src/thir/pattern/check_match.rs
blob: 0980c669f337bae4d8537a486e6994c797c3b77b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
use super::deconstruct_pat::{Constructor, DeconstructedPat};
use super::usefulness::{
    compute_match_usefulness, MatchArm, MatchCheckCtxt, Reachability, UsefulnessReport,
};
use super::{PatCtxt, PatternError};

use rustc_arena::TypedArena;
use rustc_ast::Mutability;
use rustc_errors::{error_code, struct_span_err, Applicability, DiagnosticBuilder};
use rustc_hir as hir;
use rustc_hir::def::*;
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
use rustc_hir::{HirId, Pat};
use rustc_middle::ty::{self, AdtDef, Ty, TyCtxt};
use rustc_session::lint::builtin::{
    BINDINGS_WITH_VARIANT_NAME, IRREFUTABLE_LET_PATTERNS, UNREACHABLE_PATTERNS,
};
use rustc_session::Session;
use rustc_span::{DesugaringKind, ExpnKind, Span};

crate fn check_match(tcx: TyCtxt<'_>, def_id: DefId) {
    let body_id = match def_id.as_local() {
        None => return,
        Some(id) => tcx.hir().body_owned_by(tcx.hir().local_def_id_to_hir_id(id)),
    };

    let pattern_arena = TypedArena::default();
    let mut visitor = MatchVisitor {
        tcx,
        typeck_results: tcx.typeck_body(body_id),
        param_env: tcx.param_env(def_id),
        pattern_arena: &pattern_arena,
    };
    visitor.visit_body(tcx.hir().body(body_id));
}

fn create_e0004(sess: &Session, sp: Span, error_message: String) -> DiagnosticBuilder<'_> {
    struct_span_err!(sess, sp, E0004, "{}", &error_message)
}

#[derive(PartialEq)]
enum RefutableFlag {
    Irrefutable,
    Refutable,
}
use RefutableFlag::*;

struct MatchVisitor<'a, 'p, 'tcx> {
    tcx: TyCtxt<'tcx>,
    typeck_results: &'a ty::TypeckResults<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>,
}

impl<'tcx> Visitor<'tcx> for MatchVisitor<'_, '_, 'tcx> {
    type Map = intravisit::ErasedMap<'tcx>;

    fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
        NestedVisitorMap::None
    }

    fn visit_expr(&mut self, ex: &'tcx hir::Expr<'tcx>) {
        intravisit::walk_expr(self, ex);
        match &ex.kind {
            hir::ExprKind::Match(scrut, arms, source) => self.check_match(scrut, arms, *source),
            hir::ExprKind::Let(hir::Let { pat, init, span, .. }) => {
                self.check_let(pat, init, *span)
            }
            _ => {}
        }
    }

    fn visit_local(&mut self, loc: &'tcx hir::Local<'tcx>) {
        intravisit::walk_local(self, loc);

        let (msg, sp) = match loc.source {
            hir::LocalSource::Normal => ("local binding", Some(loc.span)),
            hir::LocalSource::AsyncFn => ("async fn binding", None),
            hir::LocalSource::AwaitDesugar => ("`await` future binding", None),
            hir::LocalSource::AssignDesugar(_) => ("destructuring assignment binding", None),
        };
        self.check_irrefutable(&loc.pat, msg, sp);
    }

    fn visit_param(&mut self, param: &'tcx hir::Param<'tcx>) {
        intravisit::walk_param(self, param);
        self.check_irrefutable(&param.pat, "function argument", None);
    }
}

impl PatCtxt<'_, '_> {
    fn report_inlining_errors(&self) {
        for error in &self.errors {
            match *error {
                PatternError::StaticInPattern(span) => {
                    self.span_e0158(span, "statics cannot be referenced in patterns")
                }
                PatternError::AssocConstInPattern(span) => {
                    self.span_e0158(span, "associated consts cannot be referenced in patterns")
                }
                PatternError::ConstParamInPattern(span) => {
                    self.span_e0158(span, "const parameters cannot be referenced in patterns")
                }
                PatternError::NonConstPath(span) => {
                    rustc_middle::mir::interpret::struct_error(
                        self.tcx.at(span),
                        "runtime values cannot be referenced in patterns",
                    )
                    .emit();
                }
            }
        }
    }

    fn span_e0158(&self, span: Span, text: &str) {
        struct_span_err!(self.tcx.sess, span, E0158, "{}", text).emit();
    }
}

impl<'p, 'tcx> MatchVisitor<'_, 'p, 'tcx> {
    fn check_patterns(&self, pat: &Pat<'_>, rf: RefutableFlag) {
        pat.walk_always(|pat| check_borrow_conflicts_in_at_patterns(self, pat));
        check_for_bindings_named_same_as_variants(self, pat, rf);
    }

    fn lower_pattern(
        &self,
        cx: &mut MatchCheckCtxt<'p, 'tcx>,
        pat: &'tcx hir::Pat<'tcx>,
        have_errors: &mut bool,
    ) -> &'p DeconstructedPat<'p, 'tcx> {
        let mut patcx = PatCtxt::new(self.tcx, self.param_env, self.typeck_results);
        patcx.include_lint_checks();
        let pattern = patcx.lower_pattern(pat);
        let pattern: &_ = cx.pattern_arena.alloc(DeconstructedPat::from_pat(cx, &pattern));
        if !patcx.errors.is_empty() {
            *have_errors = true;
            patcx.report_inlining_errors();
        }
        pattern
    }

    fn new_cx(&self, hir_id: HirId) -> MatchCheckCtxt<'p, 'tcx> {
        MatchCheckCtxt {
            tcx: self.tcx,
            param_env: self.param_env,
            module: self.tcx.parent_module(hir_id).to_def_id(),
            pattern_arena: &self.pattern_arena,
        }
    }

    fn check_let(&mut self, pat: &'tcx hir::Pat<'tcx>, scrutinee: &hir::Expr<'_>, span: Span) {
        self.check_patterns(pat, Refutable);
        let mut cx = self.new_cx(scrutinee.hir_id);
        let tpat = self.lower_pattern(&mut cx, pat, &mut false);
        check_let_reachability(&mut cx, pat.hir_id, tpat, span);
    }

    fn check_match(
        &mut self,
        scrut: &hir::Expr<'_>,
        hir_arms: &'tcx [hir::Arm<'tcx>],
        source: hir::MatchSource,
    ) {
        let mut cx = self.new_cx(scrut.hir_id);

        for arm in hir_arms {
            // Check the arm for some things unrelated to exhaustiveness.
            self.check_patterns(&arm.pat, Refutable);
            if let Some(hir::Guard::IfLet(ref pat, _)) = arm.guard {
                self.check_patterns(pat, Refutable);
                let tpat = self.lower_pattern(&mut cx, pat, &mut false);
                check_let_reachability(&mut cx, pat.hir_id, tpat, tpat.span());
            }
        }

        let mut have_errors = false;

        let arms: Vec<_> = hir_arms
            .iter()
            .map(|hir::Arm { pat, guard, .. }| MatchArm {
                pat: self.lower_pattern(&mut cx, pat, &mut have_errors),
                hir_id: pat.hir_id,
                has_guard: guard.is_some(),
            })
            .collect();

        // Bail out early if lowering failed.
        if have_errors {
            return;
        }

        let scrut_ty = self.typeck_results.expr_ty_adjusted(scrut);
        let report = compute_match_usefulness(&cx, &arms, scrut.hir_id, scrut_ty);

        match source {
            // Don't report arm reachability of desugared `match $iter.into_iter() { iter => .. }`
            // when the iterator is an uninhabited type. unreachable_code will trigger instead.
            hir::MatchSource::ForLoopDesugar if arms.len() == 1 => {}
            hir::MatchSource::ForLoopDesugar | hir::MatchSource::Normal => {
                report_arm_reachability(&cx, &report)
            }
            // Unreachable patterns in try and await expressions occur when one of
            // the arms are an uninhabited type. Which is OK.
            hir::MatchSource::AwaitDesugar | hir::MatchSource::TryDesugar => {}
        }

        // Check if the match is exhaustive.
        let is_empty_match = arms.is_empty();
        let witnesses = report.non_exhaustiveness_witnesses;
        if !witnesses.is_empty() {
            if source == hir::MatchSource::ForLoopDesugar && hir_arms.len() == 2 {
                // the for loop pattern is not irrefutable
                let pat = hir_arms[1].pat.for_loop_some().unwrap();
                self.check_irrefutable(pat, "`for` loop binding", None);
            } else {
                non_exhaustive_match(&cx, scrut_ty, scrut.span, witnesses, is_empty_match);
            }
        }
    }

    fn check_irrefutable(&self, pat: &'tcx Pat<'tcx>, origin: &str, sp: Option<Span>) {
        let mut cx = self.new_cx(pat.hir_id);

        let pattern = self.lower_pattern(&mut cx, pat, &mut false);
        let pattern_ty = pattern.ty();
        let arms = vec![MatchArm { pat: pattern, hir_id: pat.hir_id, has_guard: false }];
        let report = compute_match_usefulness(&cx, &arms, pat.hir_id, pattern_ty);

        // Note: we ignore whether the pattern is unreachable (i.e. whether the type is empty). We
        // only care about exhaustiveness here.
        let witnesses = report.non_exhaustiveness_witnesses;
        if witnesses.is_empty() {
            // The pattern is irrefutable.
            self.check_patterns(pat, Irrefutable);
            return;
        }

        let joined_patterns = joined_uncovered_patterns(&cx, &witnesses);
        let mut err = struct_span_err!(
            self.tcx.sess,
            pat.span,
            E0005,
            "refutable pattern in {}: {} not covered",
            origin,
            joined_patterns
        );
        let suggest_if_let = match &pat.kind {
            hir::PatKind::Path(hir::QPath::Resolved(None, path))
                if path.segments.len() == 1 && path.segments[0].args.is_none() =>
            {
                const_not_var(&mut err, cx.tcx, pat, path);
                false
            }
            _ => {
                err.span_label(pat.span, pattern_not_covered_label(&witnesses, &joined_patterns));
                true
            }
        };

        if let (Some(span), true) = (sp, suggest_if_let) {
            err.note(
                "`let` bindings require an \"irrefutable pattern\", like a `struct` or \
                 an `enum` with only one variant",
            );
            if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
                err.span_suggestion(
                    span,
                    "you might want to use `if let` to ignore the variant that isn't matched",
                    format!("if {} {{ /* */ }}", &snippet[..snippet.len() - 1]),
                    Applicability::HasPlaceholders,
                );
            }
            err.note(
                "for more information, visit \
                 https://doc.rust-lang.org/book/ch18-02-refutability.html",
            );
        }

        adt_defined_here(&cx, &mut err, pattern_ty, &witnesses);
        err.note(&format!("the matched value is of type `{}`", pattern_ty));
        err.emit();
    }
}

/// A path pattern was interpreted as a constant, not a new variable.
/// This caused an irrefutable match failure in e.g. `let`.
fn const_not_var(
    err: &mut DiagnosticBuilder<'_>,
    tcx: TyCtxt<'_>,
    pat: &Pat<'_>,
    path: &hir::Path<'_>,
) {
    let descr = path.res.descr();
    err.span_label(
        pat.span,
        format!("interpreted as {} {} pattern, not a new variable", path.res.article(), descr,),
    );

    err.span_suggestion(
        pat.span,
        "introduce a variable instead",
        format!("{}_var", path.segments[0].ident).to_lowercase(),
        // Cannot use `MachineApplicable` as it's not really *always* correct
        // because there may be such an identifier in scope or the user maybe
        // really wanted to match against the constant. This is quite unlikely however.
        Applicability::MaybeIncorrect,
    );

    if let Some(span) = tcx.hir().res_span(path.res) {
        err.span_label(span, format!("{} defined here", descr));
    }
}

fn check_for_bindings_named_same_as_variants(
    cx: &MatchVisitor<'_, '_, '_>,
    pat: &Pat<'_>,
    rf: RefutableFlag,
) {
    pat.walk_always(|p| {
        if let hir::PatKind::Binding(_, _, ident, None) = p.kind {
            if let Some(ty::BindByValue(hir::Mutability::Not)) =
                cx.typeck_results.extract_binding_mode(cx.tcx.sess, p.hir_id, p.span)
            {
                let pat_ty = cx.typeck_results.pat_ty(p).peel_refs();
                if let ty::Adt(edef, _) = pat_ty.kind() {
                    if edef.is_enum()
                        && edef.variants.iter().any(|variant| {
                            variant.ident(cx.tcx) == ident && variant.ctor_kind == CtorKind::Const
                        })
                    {
                        let variant_count = edef.variants.len();
                        cx.tcx.struct_span_lint_hir(
                            BINDINGS_WITH_VARIANT_NAME,
                            p.hir_id,
                            p.span,
                            |lint| {
                                let ty_path = cx.tcx.def_path_str(edef.did);
                                let mut err = lint.build(&format!(
                                    "pattern binding `{}` is named the same as one \
                                                    of the variants of the type `{}`",
                                    ident, ty_path
                                ));
                                err.code(error_code!(E0170));
                                // If this is an irrefutable pattern, and there's > 1 variant,
                                // then we can't actually match on this. Applying the below
                                // suggestion would produce code that breaks on `check_irrefutable`.
                                if rf == Refutable || variant_count == 1 {
                                    err.span_suggestion(
                                        p.span,
                                        "to match on the variant, qualify the path",
                                        format!("{}::{}", ty_path, ident),
                                        Applicability::MachineApplicable,
                                    );
                                }
                                err.emit();
                            },
                        )
                    }
                }
            }
        }
    });
}

/// Checks for common cases of "catchall" patterns that may not be intended as such.
fn pat_is_catchall(pat: &DeconstructedPat<'_, '_>) -> bool {
    use Constructor::*;
    match pat.ctor() {
        Wildcard => true,
        Single => pat.iter_fields().all(|pat| pat_is_catchall(pat)),
        _ => false,
    }
}

fn unreachable_pattern(tcx: TyCtxt<'_>, span: Span, id: HirId, catchall: Option<Span>) {
    tcx.struct_span_lint_hir(UNREACHABLE_PATTERNS, id, span, |lint| {
        let mut err = lint.build("unreachable pattern");
        if let Some(catchall) = catchall {
            // We had a catchall pattern, hint at that.
            err.span_label(span, "unreachable pattern");
            err.span_label(catchall, "matches any value");
        }
        err.emit();
    });
}

fn irrefutable_let_pattern(tcx: TyCtxt<'_>, id: HirId, span: Span) {
    macro_rules! emit_diag {
        (
            $lint:expr,
            $source_name:expr,
            $note_sufix:expr,
            $help_sufix:expr
        ) => {{
            let mut diag = $lint.build(concat!("irrefutable ", $source_name, " pattern"));
            diag.note(concat!("this pattern will always match, so the ", $note_sufix));
            diag.help(concat!("consider ", $help_sufix));
            diag.emit()
        }};
    }

    let source = let_source(tcx, id);
    let span = match source {
        LetSource::LetElse(span) => span,
        _ => span,
    };
    tcx.struct_span_lint_hir(IRREFUTABLE_LET_PATTERNS, id, span, |lint| match source {
        LetSource::GenericLet => {
            emit_diag!(lint, "`let`", "`let` is useless", "removing `let`");
        }
        LetSource::IfLet => {
            emit_diag!(
                lint,
                "`if let`",
                "`if let` is useless",
                "replacing the `if let` with a `let`"
            );
        }
        LetSource::IfLetGuard => {
            emit_diag!(
                lint,
                "`if let` guard",
                "guard is useless",
                "removing the guard and adding a `let` inside the match arm"
            );
        }
        LetSource::LetElse(..) => {
            emit_diag!(
                lint,
                "`let...else`",
                "`else` clause is useless",
                "removing the `else` clause"
            );
        }
        LetSource::WhileLet => {
            emit_diag!(
                lint,
                "`while let`",
                "loop will never exit",
                "instead using a `loop { ... }` with a `let` inside it"
            );
        }
    });
}

fn check_let_reachability<'p, 'tcx>(
    cx: &mut MatchCheckCtxt<'p, 'tcx>,
    pat_id: HirId,
    pat: &'p DeconstructedPat<'p, 'tcx>,
    span: Span,
) {
    let arms = [MatchArm { pat, hir_id: pat_id, has_guard: false }];
    let report = compute_match_usefulness(&cx, &arms, pat_id, pat.ty());

    // Report if the pattern is unreachable, which can only occur when the type is uninhabited.
    // This also reports unreachable sub-patterns though, so we can't just replace it with an
    // `is_uninhabited` check.
    report_arm_reachability(&cx, &report);

    if report.non_exhaustiveness_witnesses.is_empty() {
        // The match is exhaustive, i.e. the `if let` pattern is irrefutable.
        irrefutable_let_pattern(cx.tcx, pat_id, span);
    }
}

/// Report unreachable arms, if any.
fn report_arm_reachability<'p, 'tcx>(
    cx: &MatchCheckCtxt<'p, 'tcx>,
    report: &UsefulnessReport<'p, 'tcx>,
) {
    use Reachability::*;
    let mut catchall = None;
    for (arm, is_useful) in report.arm_usefulness.iter() {
        match is_useful {
            Unreachable => unreachable_pattern(cx.tcx, arm.pat.span(), arm.hir_id, catchall),
            Reachable(unreachables) if unreachables.is_empty() => {}
            // The arm is reachable, but contains unreachable subpatterns (from or-patterns).
            Reachable(unreachables) => {
                let mut unreachables = unreachables.clone();
                // Emit lints in the order in which they occur in the file.
                unreachables.sort_unstable();
                for span in unreachables {
                    unreachable_pattern(cx.tcx, span, arm.hir_id, None);
                }
            }
        }
        if !arm.has_guard && catchall.is_none() && pat_is_catchall(arm.pat) {
            catchall = Some(arm.pat.span());
        }
    }
}

/// Report that a match is not exhaustive.
fn non_exhaustive_match<'p, 'tcx>(
    cx: &MatchCheckCtxt<'p, 'tcx>,
    scrut_ty: Ty<'tcx>,
    sp: Span,
    witnesses: Vec<DeconstructedPat<'p, 'tcx>>,
    is_empty_match: bool,
) {
    let non_empty_enum = match scrut_ty.kind() {
        ty::Adt(def, _) => def.is_enum() && !def.variants.is_empty(),
        _ => false,
    };
    // In the case of an empty match, replace the '`_` not covered' diagnostic with something more
    // informative.
    let mut err;
    if is_empty_match && !non_empty_enum {
        err = create_e0004(
            cx.tcx.sess,
            sp,
            format!("non-exhaustive patterns: type `{}` is non-empty", scrut_ty),
        );
    } else {
        let joined_patterns = joined_uncovered_patterns(cx, &witnesses);
        err = create_e0004(
            cx.tcx.sess,
            sp,
            format!("non-exhaustive patterns: {} not covered", joined_patterns),
        );
        err.span_label(sp, pattern_not_covered_label(&witnesses, &joined_patterns));
    };

    let is_variant_list_non_exhaustive = match scrut_ty.kind() {
        ty::Adt(def, _) if def.is_variant_list_non_exhaustive() && !def.did.is_local() => true,
        _ => false,
    };

    adt_defined_here(cx, &mut err, scrut_ty, &witnesses);
    err.help(
        "ensure that all possible cases are being handled, \
              possibly by adding wildcards or more match arms",
    );
    err.note(&format!(
        "the matched value is of type `{}`{}",
        scrut_ty,
        if is_variant_list_non_exhaustive { ", which is marked as non-exhaustive" } else { "" }
    ));
    if (scrut_ty == cx.tcx.types.usize || scrut_ty == cx.tcx.types.isize)
        && !is_empty_match
        && witnesses.len() == 1
        && matches!(witnesses[0].ctor(), Constructor::NonExhaustive)
    {
        err.note(&format!(
            "`{}` does not have a fixed maximum value, \
                so a wildcard `_` is necessary to match exhaustively",
            scrut_ty,
        ));
        if cx.tcx.sess.is_nightly_build() {
            err.help(&format!(
                "add `#![feature(precise_pointer_size_matching)]` \
                    to the crate attributes to enable precise `{}` matching",
                scrut_ty,
            ));
        }
    }
    if let ty::Ref(_, sub_ty, _) = scrut_ty.kind() {
        if cx.tcx.is_ty_uninhabited_from(cx.module, sub_ty, cx.param_env) {
            err.note("references are always considered inhabited");
        }
    }
    err.emit();
}

crate fn joined_uncovered_patterns<'p, 'tcx>(
    cx: &MatchCheckCtxt<'p, 'tcx>,
    witnesses: &[DeconstructedPat<'p, 'tcx>],
) -> String {
    const LIMIT: usize = 3;
    let pat_to_str = |pat: &DeconstructedPat<'p, 'tcx>| pat.to_pat(cx).to_string();
    match witnesses {
        [] => bug!(),
        [witness] => format!("`{}`", witness.to_pat(cx)),
        [head @ .., tail] if head.len() < LIMIT => {
            let head: Vec<_> = head.iter().map(pat_to_str).collect();
            format!("`{}` and `{}`", head.join("`, `"), tail.to_pat(cx))
        }
        _ => {
            let (head, tail) = witnesses.split_at(LIMIT);
            let head: Vec<_> = head.iter().map(pat_to_str).collect();
            format!("`{}` and {} more", head.join("`, `"), tail.len())
        }
    }
}

crate fn pattern_not_covered_label(
    witnesses: &[DeconstructedPat<'_, '_>],
    joined_patterns: &str,
) -> String {
    format!("pattern{} {} not covered", rustc_errors::pluralize!(witnesses.len()), joined_patterns)
}

/// Point at the definition of non-covered `enum` variants.
fn adt_defined_here<'p, 'tcx>(
    cx: &MatchCheckCtxt<'p, 'tcx>,
    err: &mut DiagnosticBuilder<'_>,
    ty: Ty<'tcx>,
    witnesses: &[DeconstructedPat<'p, 'tcx>],
) {
    let ty = ty.peel_refs();
    if let ty::Adt(def, _) = ty.kind() {
        if let Some(sp) = cx.tcx.hir().span_if_local(def.did) {
            err.span_label(sp, format!("`{}` defined here", ty));
        }

        if witnesses.len() < 4 {
            for sp in maybe_point_at_variant(cx, def, witnesses.iter()) {
                err.span_label(sp, "not covered");
            }
        }
    }
}

fn maybe_point_at_variant<'a, 'p: 'a, 'tcx: 'a>(
    cx: &MatchCheckCtxt<'p, 'tcx>,
    def: &AdtDef,
    patterns: impl Iterator<Item = &'a DeconstructedPat<'p, 'tcx>>,
) -> Vec<Span> {
    use Constructor::*;
    let mut covered = vec![];
    for pattern in patterns {
        if let Variant(variant_index) = pattern.ctor() {
            if let ty::Adt(this_def, _) = pattern.ty().kind() {
                if this_def.did != def.did {
                    continue;
                }
            }
            let sp = def.variants[*variant_index].ident(cx.tcx).span;
            if covered.contains(&sp) {
                // Don't point at variants that have already been covered due to other patterns to avoid
                // visual clutter.
                continue;
            }
            covered.push(sp);
        }
        covered.extend(maybe_point_at_variant(cx, def, pattern.iter_fields()));
    }
    covered
}

/// Check if a by-value binding is by-value. That is, check if the binding's type is not `Copy`.
fn is_binding_by_move(cx: &MatchVisitor<'_, '_, '_>, hir_id: HirId, span: Span) -> bool {
    !cx.typeck_results.node_type(hir_id).is_copy_modulo_regions(cx.tcx.at(span), cx.param_env)
}

/// Check that there are no borrow or move conflicts in `binding @ subpat` patterns.
///
/// For example, this would reject:
/// - `ref x @ Some(ref mut y)`,
/// - `ref mut x @ Some(ref y)`,
/// - `ref mut x @ Some(ref mut y)`,
/// - `ref mut? x @ Some(y)`, and
/// - `x @ Some(ref mut? y)`.
///
/// This analysis is *not* subsumed by NLL.
fn check_borrow_conflicts_in_at_patterns(cx: &MatchVisitor<'_, '_, '_>, pat: &Pat<'_>) {
    // Extract `sub` in `binding @ sub`.
    let (name, sub) = match &pat.kind {
        hir::PatKind::Binding(.., name, Some(sub)) => (*name, sub),
        _ => return,
    };
    let binding_span = pat.span.with_hi(name.span.hi());

    let typeck_results = cx.typeck_results;
    let sess = cx.tcx.sess;

    // Get the binding move, extract the mutability if by-ref.
    let mut_outer = match typeck_results.extract_binding_mode(sess, pat.hir_id, pat.span) {
        Some(ty::BindByValue(_)) if is_binding_by_move(cx, pat.hir_id, pat.span) => {
            // We have `x @ pat` where `x` is by-move. Reject all borrows in `pat`.
            let mut conflicts_ref = Vec::new();
            sub.each_binding(|_, hir_id, span, _| {
                match typeck_results.extract_binding_mode(sess, hir_id, span) {
                    Some(ty::BindByValue(_)) | None => {}
                    Some(ty::BindByReference(_)) => conflicts_ref.push(span),
                }
            });
            if !conflicts_ref.is_empty() {
                let occurs_because = format!(
                    "move occurs because `{}` has type `{}` which does not implement the `Copy` trait",
                    name,
                    typeck_results.node_type(pat.hir_id),
                );
                sess.struct_span_err(pat.span, "borrow of moved value")
                    .span_label(binding_span, format!("value moved into `{}` here", name))
                    .span_label(binding_span, occurs_because)
                    .span_labels(conflicts_ref, "value borrowed here after move")
                    .emit();
            }
            return;
        }
        Some(ty::BindByValue(_)) | None => return,
        Some(ty::BindByReference(m)) => m,
    };

    // We now have `ref $mut_outer binding @ sub` (semantically).
    // Recurse into each binding in `sub` and find mutability or move conflicts.
    let mut conflicts_move = Vec::new();
    let mut conflicts_mut_mut = Vec::new();
    let mut conflicts_mut_ref = Vec::new();
    sub.each_binding(|_, hir_id, span, name| {
        match typeck_results.extract_binding_mode(sess, hir_id, span) {
            Some(ty::BindByReference(mut_inner)) => match (mut_outer, mut_inner) {
                (Mutability::Not, Mutability::Not) => {} // Both sides are `ref`.
                (Mutability::Mut, Mutability::Mut) => conflicts_mut_mut.push((span, name)), // 2x `ref mut`.
                _ => conflicts_mut_ref.push((span, name)), // `ref` + `ref mut` in either direction.
            },
            Some(ty::BindByValue(_)) if is_binding_by_move(cx, hir_id, span) => {
                conflicts_move.push((span, name)) // `ref mut?` + by-move conflict.
            }
            Some(ty::BindByValue(_)) | None => {} // `ref mut?` + by-copy is fine.
        }
    });

    // Report errors if any.
    if !conflicts_mut_mut.is_empty() {
        // Report mutability conflicts for e.g. `ref mut x @ Some(ref mut y)`.
        let mut err = sess
            .struct_span_err(pat.span, "cannot borrow value as mutable more than once at a time");
        err.span_label(binding_span, format!("first mutable borrow, by `{}`, occurs here", name));
        for (span, name) in conflicts_mut_mut {
            err.span_label(span, format!("another mutable borrow, by `{}`, occurs here", name));
        }
        for (span, name) in conflicts_mut_ref {
            err.span_label(span, format!("also borrowed as immutable, by `{}`, here", name));
        }
        for (span, name) in conflicts_move {
            err.span_label(span, format!("also moved into `{}` here", name));
        }
        err.emit();
    } else if !conflicts_mut_ref.is_empty() {
        // Report mutability conflicts for e.g. `ref x @ Some(ref mut y)` or the converse.
        let (primary, also) = match mut_outer {
            Mutability::Mut => ("mutable", "immutable"),
            Mutability::Not => ("immutable", "mutable"),
        };
        let msg =
            format!("cannot borrow value as {} because it is also borrowed as {}", also, primary);
        let mut err = sess.struct_span_err(pat.span, &msg);
        err.span_label(binding_span, format!("{} borrow, by `{}`, occurs here", primary, name));
        for (span, name) in conflicts_mut_ref {
            err.span_label(span, format!("{} borrow, by `{}`, occurs here", also, name));
        }
        for (span, name) in conflicts_move {
            err.span_label(span, format!("also moved into `{}` here", name));
        }
        err.emit();
    } else if !conflicts_move.is_empty() {
        // Report by-ref and by-move conflicts, e.g. `ref x @ y`.
        let mut err =
            sess.struct_span_err(pat.span, "cannot move out of value because it is borrowed");
        err.span_label(binding_span, format!("value borrowed, by `{}`, here", name));
        for (span, name) in conflicts_move {
            err.span_label(span, format!("value moved into `{}` here", name));
        }
        err.emit();
    }
}

#[derive(Clone, Copy, Debug)]
pub enum LetSource {
    GenericLet,
    IfLet,
    IfLetGuard,
    LetElse(Span),
    WhileLet,
}

fn let_source(tcx: TyCtxt<'_>, pat_id: HirId) -> LetSource {
    let hir = tcx.hir();
    let parent = hir.get_parent_node(pat_id);
    match hir.get(parent) {
        hir::Node::Arm(hir::Arm {
            guard: Some(hir::Guard::IfLet(&hir::Pat { hir_id, .. }, _)),
            ..
        }) if hir_id == pat_id => {
            return LetSource::IfLetGuard;
        }
        hir::Node::Expr(hir::Expr { kind: hir::ExprKind::Let(..), span, .. }) => {
            let expn_data = span.ctxt().outer_expn_data();
            if let ExpnKind::Desugaring(DesugaringKind::LetElse) = expn_data.kind {
                return LetSource::LetElse(expn_data.call_site);
            }
        }
        _ => {}
    }
    let parent_parent = hir.get_parent_node(parent);
    let parent_parent_node = hir.get(parent_parent);

    let parent_parent_parent = hir.get_parent_node(parent_parent);
    let parent_parent_parent_parent = hir.get_parent_node(parent_parent_parent);
    let parent_parent_parent_parent_node = hir.get(parent_parent_parent_parent);

    if let hir::Node::Expr(hir::Expr {
        kind: hir::ExprKind::Loop(_, _, hir::LoopSource::While, _),
        ..
    }) = parent_parent_parent_parent_node
    {
        LetSource::WhileLet
    } else if let hir::Node::Expr(hir::Expr { kind: hir::ExprKind::If { .. }, .. }) =
        parent_parent_node
    {
        LetSource::IfLet
    } else {
        LetSource::GenericLet
    }
}