summaryrefslogtreecommitdiff
path: root/src/librustc/front/map/mod.rs
blob: 44f588c2e9ca0e9d379d3f47f7f561cf901bd188 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

pub use self::Node::*;
pub use self::PathElem::*;
use self::MapEntry::*;
use self::collector::NodeCollector;
pub use self::definitions::{Definitions, DefKey, DefPath, DefPathData, DisambiguatedDefPathData};

use dep_graph::{DepGraph, DepNode};

use middle::cstore::InlinedItem;
use middle::cstore::InlinedItem as II;
use middle::def_id::DefId;

use syntax::abi::Abi;
use syntax::ast::{self, Name, NodeId, DUMMY_NODE_ID};
use syntax::codemap::{Span, Spanned};
use syntax::parse::token;

use rustc_front::hir::*;
use rustc_front::fold::Folder;
use rustc_front::intravisit;
use rustc_front::print::pprust;

use arena::TypedArena;
use std::cell::RefCell;
use std::fmt;
use std::io;
use std::iter;
use std::mem;
use std::slice;

pub mod blocks;
mod collector;
pub mod definitions;

#[derive(Clone, Copy, PartialEq, Debug)]
pub enum PathElem {
    PathMod(Name),
    PathName(Name)
}

impl PathElem {
    pub fn name(&self) -> Name {
        match *self {
            PathMod(name) | PathName(name) => name
        }
    }
}

impl fmt::Display for PathElem {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.name())
    }
}

#[derive(Clone)]
pub struct LinkedPathNode<'a> {
    node: PathElem,
    next: LinkedPath<'a>,
}

#[derive(Copy, Clone)]
pub struct LinkedPath<'a>(Option<&'a LinkedPathNode<'a>>);

impl<'a> LinkedPath<'a> {
    pub fn empty() -> LinkedPath<'a> {
        LinkedPath(None)
    }

    pub fn from(node: &'a LinkedPathNode) -> LinkedPath<'a> {
        LinkedPath(Some(node))
    }
}

impl<'a> Iterator for LinkedPath<'a> {
    type Item = PathElem;

    fn next(&mut self) -> Option<PathElem> {
        match self.0 {
            Some(node) => {
                *self = node.next;
                Some(node.node)
            }
            None => None
        }
    }
}

/// The type of the iterator used by with_path.
pub type PathElems<'a, 'b> = iter::Chain<iter::Cloned<slice::Iter<'a, PathElem>>, LinkedPath<'b>>;

pub fn path_to_string<PI: Iterator<Item=PathElem>>(path: PI) -> String {
    let itr = token::get_ident_interner();

    path.fold(String::new(), |mut s, e| {
        let e = itr.get(e.name());
        if !s.is_empty() {
            s.push_str("::");
        }
        s.push_str(&e[..]);
        s
    })
}

#[derive(Copy, Clone, Debug)]
pub enum Node<'ast> {
    NodeItem(&'ast Item),
    NodeForeignItem(&'ast ForeignItem),
    NodeTraitItem(&'ast TraitItem),
    NodeImplItem(&'ast ImplItem),
    NodeVariant(&'ast Variant),
    NodeExpr(&'ast Expr),
    NodeStmt(&'ast Stmt),
    NodeLocal(&'ast Pat),
    NodePat(&'ast Pat),
    NodeBlock(&'ast Block),

    /// NodeStructCtor represents a tuple struct.
    NodeStructCtor(&'ast VariantData),

    NodeLifetime(&'ast Lifetime),
    NodeTyParam(&'ast TyParam)
}

/// Represents an entry and its parent NodeID.
/// The odd layout is to bring down the total size.
#[derive(Copy, Debug)]
pub enum MapEntry<'ast> {
    /// Placeholder for holes in the map.
    NotPresent,

    /// All the node types, with a parent ID.
    EntryItem(NodeId, &'ast Item),
    EntryForeignItem(NodeId, &'ast ForeignItem),
    EntryTraitItem(NodeId, &'ast TraitItem),
    EntryImplItem(NodeId, &'ast ImplItem),
    EntryVariant(NodeId, &'ast Variant),
    EntryExpr(NodeId, &'ast Expr),
    EntryStmt(NodeId, &'ast Stmt),
    EntryLocal(NodeId, &'ast Pat),
    EntryPat(NodeId, &'ast Pat),
    EntryBlock(NodeId, &'ast Block),
    EntryStructCtor(NodeId, &'ast VariantData),
    EntryLifetime(NodeId, &'ast Lifetime),
    EntryTyParam(NodeId, &'ast TyParam),

    /// Roots for node trees.
    RootCrate,
    RootInlinedParent(&'ast InlinedParent)
}

impl<'ast> Clone for MapEntry<'ast> {
    fn clone(&self) -> MapEntry<'ast> {
        *self
    }
}

#[derive(Debug)]
pub struct InlinedParent {
    path: Vec<PathElem>,
    ii: InlinedItem
}

impl<'ast> MapEntry<'ast> {
    fn from_node(p: NodeId, node: Node<'ast>) -> MapEntry<'ast> {
        match node {
            NodeItem(n) => EntryItem(p, n),
            NodeForeignItem(n) => EntryForeignItem(p, n),
            NodeTraitItem(n) => EntryTraitItem(p, n),
            NodeImplItem(n) => EntryImplItem(p, n),
            NodeVariant(n) => EntryVariant(p, n),
            NodeExpr(n) => EntryExpr(p, n),
            NodeStmt(n) => EntryStmt(p, n),
            NodeLocal(n) => EntryLocal(p, n),
            NodePat(n) => EntryPat(p, n),
            NodeBlock(n) => EntryBlock(p, n),
            NodeStructCtor(n) => EntryStructCtor(p, n),
            NodeLifetime(n) => EntryLifetime(p, n),
            NodeTyParam(n) => EntryTyParam(p, n),
        }
    }

    fn parent_node(self) -> Option<NodeId> {
        Some(match self {
            EntryItem(id, _) => id,
            EntryForeignItem(id, _) => id,
            EntryTraitItem(id, _) => id,
            EntryImplItem(id, _) => id,
            EntryVariant(id, _) => id,
            EntryExpr(id, _) => id,
            EntryStmt(id, _) => id,
            EntryLocal(id, _) => id,
            EntryPat(id, _) => id,
            EntryBlock(id, _) => id,
            EntryStructCtor(id, _) => id,
            EntryLifetime(id, _) => id,
            EntryTyParam(id, _) => id,
            _ => return None
        })
    }

    fn to_node(self) -> Option<Node<'ast>> {
        Some(match self {
            EntryItem(_, n) => NodeItem(n),
            EntryForeignItem(_, n) => NodeForeignItem(n),
            EntryTraitItem(_, n) => NodeTraitItem(n),
            EntryImplItem(_, n) => NodeImplItem(n),
            EntryVariant(_, n) => NodeVariant(n),
            EntryExpr(_, n) => NodeExpr(n),
            EntryStmt(_, n) => NodeStmt(n),
            EntryLocal(_, n) => NodeLocal(n),
            EntryPat(_, n) => NodePat(n),
            EntryBlock(_, n) => NodeBlock(n),
            EntryStructCtor(_, n) => NodeStructCtor(n),
            EntryLifetime(_, n) => NodeLifetime(n),
            EntryTyParam(_, n) => NodeTyParam(n),
            _ => return None
        })
    }
}

/// Stores a crate and any number of inlined items from other crates.
pub struct Forest {
    krate: Crate,
    pub dep_graph: DepGraph,
    inlined_items: TypedArena<InlinedParent>
}

impl Forest {
    pub fn new(krate: Crate, dep_graph: DepGraph) -> Forest {
        Forest {
            krate: krate,
            dep_graph: dep_graph,
            inlined_items: TypedArena::new()
        }
    }

    pub fn krate<'ast>(&'ast self) -> &'ast Crate {
        self.dep_graph.read(DepNode::Krate);
        &self.krate
    }
}

/// Represents a mapping from Node IDs to AST elements and their parent
/// Node IDs
#[derive(Clone)]
pub struct Map<'ast> {
    /// The backing storage for all the AST nodes.
    pub forest: &'ast Forest,

    /// Same as the dep_graph in forest, just available with one fewer
    /// deref. This is a gratuitious micro-optimization.
    pub dep_graph: DepGraph,

    /// NodeIds are sequential integers from 0, so we can be
    /// super-compact by storing them in a vector. Not everything with
    /// a NodeId is in the map, but empirically the occupancy is about
    /// 75-80%, so there's not too much overhead (certainly less than
    /// a hashmap, since they (at the time of writing) have a maximum
    /// of 75% occupancy).
    ///
    /// Also, indexing is pretty quick when you've got a vector and
    /// plain old integers.
    map: RefCell<Vec<MapEntry<'ast>>>,

    definitions: RefCell<Definitions>,
}

impl<'ast> Map<'ast> {
    /// Registers a read in the dependency graph of the AST node with
    /// the given `id`. This needs to be called each time a public
    /// function returns the HIR for a node -- in other words, when it
    /// "reveals" the content of a node to the caller (who might not
    /// otherwise have had access to those contents, and hence needs a
    /// read recorded). If the function just returns a DefId or
    /// NodeId, no actual content was returned, so no read is needed.
    fn read(&self, id: NodeId) {
        self.dep_graph.read(self.dep_node(id));
    }

    fn dep_node(&self, id0: NodeId) -> DepNode {
        let map = self.map.borrow();
        let mut id = id0;
        loop {
            match map[id as usize] {
                EntryItem(_, item) => {
                    let def_id = self.local_def_id(item.id);
                    // NB                          ^~~~~~~
                    //
                    // You would expect that `item.id == id`, but this
                    // is not always the case. In particular, for a
                    // ViewPath item like `use self::{mem, foo}`, we
                    // map the ids for `mem` and `foo` to the
                    // enclosing view path item. This seems mega super
                    // ultra wrong, but then who am I to judge?
                    // -nmatsakis
                    return DepNode::Hir(def_id);
                }

                EntryForeignItem(p, _) |
                EntryTraitItem(p, _) |
                EntryImplItem(p, _) |
                EntryVariant(p, _) |
                EntryExpr(p, _) |
                EntryStmt(p, _) |
                EntryLocal(p, _) |
                EntryPat(p, _) |
                EntryBlock(p, _) |
                EntryStructCtor(p, _) |
                EntryLifetime(p, _) |
                EntryTyParam(p, _) =>
                    id = p,

                RootCrate |
                RootInlinedParent(_) => // FIXME(#2369) clarify story about cross-crate dep tracking
                    return DepNode::Krate,

                NotPresent =>
                    // Some nodes, notably struct fields, are not
                    // present in the map for whatever reason, but
                    // they *do* have def-ids. So if we encounter an
                    // empty hole, check for that case.
                    return self.opt_local_def_id(id)
                               .map(|def_id| DepNode::Hir(def_id))
                               .unwrap_or_else(|| {
                                   panic!("Walking parents from `{}` \
                                           led to `NotPresent` at `{}`",
                                          id0, id)
                               }),
            }
        }
    }

    pub fn num_local_def_ids(&self) -> usize {
        self.definitions.borrow().len()
    }

    pub fn def_key(&self, def_id: DefId) -> DefKey {
        assert!(def_id.is_local());
        self.definitions.borrow().def_key(def_id.index)
    }

    pub fn def_path_from_id(&self, id: NodeId) -> DefPath {
        self.def_path(self.local_def_id(id))
    }

    pub fn def_path(&self, def_id: DefId) -> DefPath {
        assert!(def_id.is_local());
        self.definitions.borrow().def_path(def_id.index)
    }

    pub fn local_def_id(&self, node: NodeId) -> DefId {
        self.opt_local_def_id(node).unwrap_or_else(|| {
            panic!("local_def_id: no entry for `{}`, which has a map of `{:?}`",
                   node, self.find_entry(node))
        })
    }

    pub fn opt_local_def_id(&self, node: NodeId) -> Option<DefId> {
        self.definitions.borrow().opt_local_def_id(node)
    }

    pub fn as_local_node_id(&self, def_id: DefId) -> Option<NodeId> {
        self.definitions.borrow().as_local_node_id(def_id)
    }

    fn entry_count(&self) -> usize {
        self.map.borrow().len()
    }

    fn find_entry(&self, id: NodeId) -> Option<MapEntry<'ast>> {
        self.map.borrow().get(id as usize).cloned()
    }

    pub fn krate(&self) -> &'ast Crate {
        self.forest.krate()
    }

    /// Retrieve the Node corresponding to `id`, panicking if it cannot
    /// be found.
    pub fn get(&self, id: NodeId) -> Node<'ast> {
        match self.find(id) {
            Some(node) => node, // read recorded by `find`
            None => panic!("couldn't find node id {} in the AST map", id)
        }
    }

    pub fn get_if_local(&self, id: DefId) -> Option<Node<'ast>> {
        self.as_local_node_id(id).map(|id| self.get(id)) // read recorded by `get`
    }

    /// Retrieve the Node corresponding to `id`, returning None if
    /// cannot be found.
    pub fn find(&self, id: NodeId) -> Option<Node<'ast>> {
        let result = self.find_entry(id).and_then(|x| x.to_node());
        if result.is_some() {
            self.read(id);
        }
        result
    }

    /// Similar to get_parent, returns the parent node id or id if there is no
    /// parent.
    /// This function returns the immediate parent in the AST, whereas get_parent
    /// returns the enclosing item. Note that this might not be the actual parent
    /// node in the AST - some kinds of nodes are not in the map and these will
    /// never appear as the parent_node. So you can always walk the parent_nodes
    /// from a node to the root of the ast (unless you get the same id back here
    /// that can happen if the id is not in the map itself or is just weird).
    pub fn get_parent_node(&self, id: NodeId) -> NodeId {
        self.find_entry(id).and_then(|x| x.parent_node()).unwrap_or(id)
    }

    /// Check if the node is an argument. An argument is a local variable whose
    /// immediate parent is an item or a closure.
    pub fn is_argument(&self, id: NodeId) -> bool {
        match self.find(id) {
            Some(NodeLocal(_)) => (),
            _ => return false,
        }
        match self.find(self.get_parent_node(id)) {
            Some(NodeItem(_)) |
            Some(NodeTraitItem(_)) |
            Some(NodeImplItem(_)) => true,
            Some(NodeExpr(e)) => {
                match e.node {
                    ExprClosure(..) => true,
                    _ => false,
                }
            }
            _ => false,
        }
    }

    /// If there is some error when walking the parents (e.g., a node does not
    /// have a parent in the map or a node can't be found), then we return the
    /// last good node id we found. Note that reaching the crate root (id == 0),
    /// is not an error, since items in the crate module have the crate root as
    /// parent.
    fn walk_parent_nodes<F>(&self, start_id: NodeId, found: F) -> Result<NodeId, NodeId>
        where F: Fn(&Node<'ast>) -> bool
    {
        let mut id = start_id;
        loop {
            let parent_node = self.get_parent_node(id);
            if parent_node == 0 {
                return Ok(0);
            }
            if parent_node == id {
                return Err(id);
            }

            let node = self.find_entry(parent_node);
            if node.is_none() {
                return Err(id);
            }
            let node = node.unwrap().to_node();
            match node {
                Some(ref node) => {
                    if found(node) {
                        return Ok(parent_node);
                    }
                }
                None => {
                    return Err(parent_node);
                }
            }
            id = parent_node;
        }
    }

    /// Retrieve the NodeId for `id`'s parent item, or `id` itself if no
    /// parent item is in this map. The "parent item" is the closest parent node
    /// in the AST which is recorded by the map and is an item, either an item
    /// in a module, trait, or impl.
    pub fn get_parent(&self, id: NodeId) -> NodeId {
        match self.walk_parent_nodes(id, |node| match *node {
            NodeItem(_) |
            NodeForeignItem(_) |
            NodeTraitItem(_) |
            NodeImplItem(_) => true,
            _ => false,
        }) {
            Ok(id) => id,
            Err(id) => id,
        }
    }

    /// Returns the NodeId of `id`'s nearest module parent, or `id` itself if no
    /// module parent is in this map.
    fn get_module_parent(&self, id: NodeId) -> NodeId {
        match self.walk_parent_nodes(id, |node| match *node {
            NodeItem(&Item { node: Item_::ItemMod(_), .. }) => true,
            _ => false,
        }) {
            Ok(id) => id,
            Err(id) => id,
        }
    }

    pub fn private_item_is_visible_from(&self, item: NodeId, block: NodeId) -> bool {
        // A private item is visible from everything in its nearest module parent.
        let visibility = self.get_module_parent(item);
        let mut block_ancestor = self.get_module_parent(block);
        loop {
            if block_ancestor == visibility { return true }
            let block_ancestor_parent = self.get_module_parent(block_ancestor);
            if block_ancestor_parent == block_ancestor { return false }
            block_ancestor = block_ancestor_parent;
        }
    }

    /// Returns the nearest enclosing scope. A scope is an item or block.
    /// FIXME it is not clear to me that all items qualify as scopes - statics
    /// and associated types probably shouldn't, for example. Behaviour in this
    /// regard should be expected to be highly unstable.
    pub fn get_enclosing_scope(&self, id: NodeId) -> Option<NodeId> {
        match self.walk_parent_nodes(id, |node| match *node {
            NodeItem(_) |
            NodeForeignItem(_) |
            NodeTraitItem(_) |
            NodeImplItem(_) |
            NodeBlock(_) => true,
            _ => false,
        }) {
            Ok(id) => Some(id),
            Err(_) => None,
        }
    }

    pub fn get_parent_did(&self, id: NodeId) -> DefId {
        let parent = self.get_parent(id);
        match self.find_entry(parent) {
            Some(RootInlinedParent(&InlinedParent {ii: II::TraitItem(did, _), ..})) => did,
            Some(RootInlinedParent(&InlinedParent {ii: II::ImplItem(did, _), ..})) => did,
            _ => self.local_def_id(parent)
        }
    }

    pub fn get_foreign_abi(&self, id: NodeId) -> Abi {
        let parent = self.get_parent(id);
        let abi = match self.find_entry(parent) {
            Some(EntryItem(_, i)) => {
                match i.node {
                    ItemForeignMod(ref nm) => Some(nm.abi),
                    _ => None
                }
            }
            /// Wrong but OK, because the only inlined foreign items are intrinsics.
            Some(RootInlinedParent(_)) => Some(Abi::RustIntrinsic),
            _ => None
        };
        match abi {
            Some(abi) => {
                self.read(id); // reveals some of the content of a node
                abi
            }
            None => panic!("expected foreign mod or inlined parent, found {}",
                          self.node_to_string(parent))
        }
    }

    pub fn get_foreign_vis(&self, id: NodeId) -> Visibility {
        let vis = self.expect_foreign_item(id).vis; // read recorded by `expect_foreign_item`
        match self.find(self.get_parent(id)) { // read recorded by `find`
            Some(NodeItem(i)) => vis.inherit_from(i.vis),
            _ => vis
        }
    }

    pub fn expect_item(&self, id: NodeId) -> &'ast Item {
        match self.find(id) { // read recorded by `find`
            Some(NodeItem(item)) => item,
            _ => panic!("expected item, found {}", self.node_to_string(id))
        }
    }

    pub fn expect_trait_item(&self, id: NodeId) -> &'ast TraitItem {
        match self.find(id) {
            Some(NodeTraitItem(item)) => item,
            _ => panic!("expected trait item, found {}", self.node_to_string(id))
        }
    }

    pub fn expect_struct(&self, id: NodeId) -> &'ast VariantData {
        match self.find(id) {
            Some(NodeItem(i)) => {
                match i.node {
                    ItemStruct(ref struct_def, _) => struct_def,
                    _ => panic!("struct ID bound to non-struct")
                }
            }
            Some(NodeVariant(variant)) => {
                if variant.node.data.is_struct() {
                    &variant.node.data
                } else {
                    panic!("struct ID bound to enum variant that isn't struct-like")
                }
            }
            _ => panic!(format!("expected struct, found {}", self.node_to_string(id))),
        }
    }

    pub fn expect_variant(&self, id: NodeId) -> &'ast Variant {
        match self.find(id) {
            Some(NodeVariant(variant)) => variant,
            _ => panic!(format!("expected variant, found {}", self.node_to_string(id))),
        }
    }

    pub fn expect_foreign_item(&self, id: NodeId) -> &'ast ForeignItem {
        match self.find(id) {
            Some(NodeForeignItem(item)) => item,
            _ => panic!("expected foreign item, found {}", self.node_to_string(id))
        }
    }

    pub fn expect_expr(&self, id: NodeId) -> &'ast Expr {
        match self.find(id) { // read recorded by find
            Some(NodeExpr(expr)) => expr,
            _ => panic!("expected expr, found {}", self.node_to_string(id))
        }
    }

    /// returns the name associated with the given NodeId's AST
    pub fn get_path_elem(&self, id: NodeId) -> PathElem {
        let node = self.get(id);
        match node {
            NodeItem(item) => {
                match item.node {
                    ItemMod(_) | ItemForeignMod(_) => {
                        PathMod(item.name)
                    }
                    _ => PathName(item.name)
                }
            }
            NodeForeignItem(i) => PathName(i.name),
            NodeImplItem(ii) => PathName(ii.name),
            NodeTraitItem(ti) => PathName(ti.name),
            NodeVariant(v) => PathName(v.node.name),
            NodeLifetime(lt) => PathName(lt.name),
            NodeTyParam(tp) => PathName(tp.name),
            NodeLocal(&Pat { node: PatKind::Ident(_,l,_), .. }) => {
                PathName(l.node.name)
            },
            _ => panic!("no path elem for {:?}", node)
        }
    }

    pub fn with_path<T, F>(&self, id: NodeId, f: F) -> T where
        F: FnOnce(PathElems) -> T,
    {
        self.with_path_next(id, LinkedPath::empty(), f)
    }

    pub fn path_to_string(&self, id: NodeId) -> String {
        self.with_path(id, |path| path_to_string(path))
    }

    fn path_to_str_with_name(&self, id: NodeId, name: Name) -> String {
        self.with_path(id, |path| {
            path_to_string(path.chain(Some(PathName(name))))
        })
    }

    fn with_path_next<T, F>(&self, id: NodeId, next: LinkedPath, f: F) -> T where
        F: FnOnce(PathElems) -> T,
    {
        // This function reveals the name of the item and hence is a
        // kind of read. This is inefficient, since it walks ancestors
        // and we are walking them anyhow, but whatever.
        self.read(id);

        let parent = self.get_parent(id);
        let parent = match self.find_entry(id) {
            Some(EntryForeignItem(..)) => {
                // Anonymous extern items go in the parent scope.
                self.get_parent(parent)
            }
            // But tuple struct ctors don't have names, so use the path of its
            // parent, the struct item. Similarly with closure expressions.
            Some(EntryStructCtor(..)) | Some(EntryExpr(..)) => {
                return self.with_path_next(parent, next, f);
            }
            _ => parent
        };
        if parent == id {
            match self.find_entry(id) {
                Some(RootInlinedParent(data)) => {
                    f(data.path.iter().cloned().chain(next))
                }
                _ => f([].iter().cloned().chain(next))
            }
        } else {
            self.with_path_next(parent, LinkedPath::from(&LinkedPathNode {
                node: self.get_path_elem(id),
                next: next
            }), f)
        }
    }

    /// Given a node ID, get a list of attributes associated with the AST
    /// corresponding to the Node ID
    pub fn attrs(&self, id: NodeId) -> &'ast [ast::Attribute] {
        self.read(id); // reveals attributes on the node
        let attrs = match self.find(id) {
            Some(NodeItem(i)) => Some(&i.attrs[..]),
            Some(NodeForeignItem(fi)) => Some(&fi.attrs[..]),
            Some(NodeTraitItem(ref ti)) => Some(&ti.attrs[..]),
            Some(NodeImplItem(ref ii)) => Some(&ii.attrs[..]),
            Some(NodeVariant(ref v)) => Some(&v.node.attrs[..]),
            // unit/tuple structs take the attributes straight from
            // the struct definition.
            Some(NodeStructCtor(_)) => {
                return self.attrs(self.get_parent(id));
            }
            _ => None
        };
        attrs.unwrap_or(&[])
    }

    /// Returns an iterator that yields the node id's with paths that
    /// match `parts`.  (Requires `parts` is non-empty.)
    ///
    /// For example, if given `parts` equal to `["bar", "quux"]`, then
    /// the iterator will produce node id's for items with paths
    /// such as `foo::bar::quux`, `bar::quux`, `other::bar::quux`, and
    /// any other such items it can find in the map.
    pub fn nodes_matching_suffix<'a>(&'a self, parts: &'a [String])
                                 -> NodesMatchingSuffix<'a, 'ast> {
        NodesMatchingSuffix {
            map: self,
            item_name: parts.last().unwrap(),
            in_which: &parts[..parts.len() - 1],
            idx: 0,
        }
    }

    pub fn opt_span(&self, id: NodeId) -> Option<Span> {
        let sp = match self.find(id) {
            Some(NodeItem(item)) => item.span,
            Some(NodeForeignItem(foreign_item)) => foreign_item.span,
            Some(NodeTraitItem(trait_method)) => trait_method.span,
            Some(NodeImplItem(ref impl_item)) => impl_item.span,
            Some(NodeVariant(variant)) => variant.span,
            Some(NodeExpr(expr)) => expr.span,
            Some(NodeStmt(stmt)) => stmt.span,
            Some(NodeLocal(pat)) => pat.span,
            Some(NodePat(pat)) => pat.span,
            Some(NodeBlock(block)) => block.span,
            Some(NodeStructCtor(_)) => self.expect_item(self.get_parent(id)).span,
            Some(NodeTyParam(ty_param)) => ty_param.span,
            _ => return None,
        };
        Some(sp)
    }

    pub fn span(&self, id: NodeId) -> Span {
        self.read(id); // reveals span from node
        self.opt_span(id)
            .unwrap_or_else(|| panic!("AstMap.span: could not find span for id {:?}", id))
    }

    pub fn span_if_local(&self, id: DefId) -> Option<Span> {
        self.as_local_node_id(id).map(|id| self.span(id))
    }

    pub fn def_id_span(&self, def_id: DefId, fallback: Span) -> Span {
        if let Some(node_id) = self.as_local_node_id(def_id) {
            self.opt_span(node_id).unwrap_or(fallback)
        } else {
            fallback
        }
    }

    pub fn node_to_string(&self, id: NodeId) -> String {
        node_id_to_string(self, id, true)
    }

    pub fn node_to_user_string(&self, id: NodeId) -> String {
        node_id_to_string(self, id, false)
    }
}

pub struct NodesMatchingSuffix<'a, 'ast:'a> {
    map: &'a Map<'ast>,
    item_name: &'a String,
    in_which: &'a [String],
    idx: NodeId,
}

impl<'a, 'ast> NodesMatchingSuffix<'a, 'ast> {
    /// Returns true only if some suffix of the module path for parent
    /// matches `self.in_which`.
    ///
    /// In other words: let `[x_0,x_1,...,x_k]` be `self.in_which`;
    /// returns true if parent's path ends with the suffix
    /// `x_0::x_1::...::x_k`.
    fn suffix_matches(&self, parent: NodeId) -> bool {
        let mut cursor = parent;
        for part in self.in_which.iter().rev() {
            let (mod_id, mod_name) = match find_first_mod_parent(self.map, cursor) {
                None => return false,
                Some((node_id, name)) => (node_id, name),
            };
            if &part[..] != mod_name.as_str() {
                return false;
            }
            cursor = self.map.get_parent(mod_id);
        }
        return true;

        // Finds the first mod in parent chain for `id`, along with
        // that mod's name.
        //
        // If `id` itself is a mod named `m` with parent `p`, then
        // returns `Some(id, m, p)`.  If `id` has no mod in its parent
        // chain, then returns `None`.
        fn find_first_mod_parent<'a>(map: &'a Map, mut id: NodeId) -> Option<(NodeId, Name)> {
            loop {
                match map.find(id) {
                    None => return None,
                    Some(NodeItem(item)) if item_is_mod(&item) =>
                        return Some((id, item.name)),
                    _ => {}
                }
                let parent = map.get_parent(id);
                if parent == id { return None }
                id = parent;
            }

            fn item_is_mod(item: &Item) -> bool {
                match item.node {
                    ItemMod(_) => true,
                    _ => false,
                }
            }
        }
    }

    // We are looking at some node `n` with a given name and parent
    // id; do their names match what I am seeking?
    fn matches_names(&self, parent_of_n: NodeId, name: Name) -> bool {
        name.as_str() == &self.item_name[..] &&
            self.suffix_matches(parent_of_n)
    }
}

impl<'a, 'ast> Iterator for NodesMatchingSuffix<'a, 'ast> {
    type Item = NodeId;

    fn next(&mut self) -> Option<NodeId> {
        loop {
            let idx = self.idx;
            if idx as usize >= self.map.entry_count() {
                return None;
            }
            self.idx += 1;
            let name = match self.map.find_entry(idx) {
                Some(EntryItem(_, n))       => n.name(),
                Some(EntryForeignItem(_, n))=> n.name(),
                Some(EntryTraitItem(_, n))  => n.name(),
                Some(EntryImplItem(_, n))   => n.name(),
                Some(EntryVariant(_, n))    => n.name(),
                _ => continue,
            };
            if self.matches_names(self.map.get_parent(idx), name) {
                return Some(idx)
            }
        }
    }
}

trait Named {
    fn name(&self) -> Name;
}

impl<T:Named> Named for Spanned<T> { fn name(&self) -> Name { self.node.name() } }

impl Named for Item { fn name(&self) -> Name { self.name } }
impl Named for ForeignItem { fn name(&self) -> Name { self.name } }
impl Named for Variant_ { fn name(&self) -> Name { self.name } }
impl Named for TraitItem { fn name(&self) -> Name { self.name } }
impl Named for ImplItem { fn name(&self) -> Name { self.name } }

pub trait FoldOps {
    fn new_id(&self, id: NodeId) -> NodeId {
        id
    }
    fn new_def_id(&self, def_id: DefId) -> DefId {
        def_id
    }
    fn new_span(&self, span: Span) -> Span {
        span
    }
}

/// A Folder that updates IDs and Span's according to fold_ops.
struct IdAndSpanUpdater<F> {
    fold_ops: F
}

impl<F: FoldOps> Folder for IdAndSpanUpdater<F> {
    fn new_id(&mut self, id: NodeId) -> NodeId {
        self.fold_ops.new_id(id)
    }

    fn new_span(&mut self, span: Span) -> Span {
        self.fold_ops.new_span(span)
    }
}

pub fn map_crate<'ast>(forest: &'ast mut Forest) -> Map<'ast> {
    let (map, definitions) = {
        let mut collector = NodeCollector::root(&forest.krate);
        intravisit::walk_crate(&mut collector, &forest.krate);
        (collector.map, collector.definitions)
    };

    if log_enabled!(::log::DEBUG) {
        // This only makes sense for ordered stores; note the
        // enumerate to count the number of entries.
        let (entries_less_1, _) = map.iter().filter(|&x| {
            match *x {
                NotPresent => false,
                _ => true
            }
        }).enumerate().last().expect("AST map was empty after folding?");

        let entries = entries_less_1 + 1;
        let vector_length = map.len();
        debug!("The AST map has {} entries with a maximum of {}: occupancy {:.1}%",
              entries, vector_length, (entries as f64 / vector_length as f64) * 100.);
    }

    Map {
        forest: forest,
        dep_graph: forest.dep_graph.clone(),
        map: RefCell::new(map),
        definitions: RefCell::new(definitions),
    }
}

/// Used for items loaded from external crate that are being inlined into this
/// crate.
pub fn map_decoded_item<'ast, F: FoldOps>(map: &Map<'ast>,
                                          parent_path: Vec<PathElem>,
                                          parent_def_path: DefPath,
                                          ii: InlinedItem,
                                          fold_ops: F)
                                          -> &'ast InlinedItem {
    let mut fld = IdAndSpanUpdater { fold_ops: fold_ops };
    let ii = match ii {
        II::Item(i) => II::Item(i.map(|i| fld.fold_item(i))),
        II::TraitItem(d, ti) => {
            II::TraitItem(fld.fold_ops.new_def_id(d),
                          ti.map(|ti| fld.fold_trait_item(ti)))
        }
        II::ImplItem(d, ii) => {
            II::ImplItem(fld.fold_ops.new_def_id(d),
                         ii.map(|ii| fld.fold_impl_item(ii)))
        }
        II::Foreign(i) => II::Foreign(i.map(|i| fld.fold_foreign_item(i)))
    };

    let ii_parent = map.forest.inlined_items.alloc(InlinedParent {
        path: parent_path,
        ii: ii
    });

    let ii_parent_id = fld.new_id(DUMMY_NODE_ID);
    let mut collector =
        NodeCollector::extend(
            map.krate(),
            ii_parent,
            ii_parent_id,
            parent_def_path,
            mem::replace(&mut *map.map.borrow_mut(), vec![]),
            mem::replace(&mut *map.definitions.borrow_mut(), Definitions::new()));
    ii_parent.ii.visit(&mut collector);

    *map.map.borrow_mut() = collector.map;
    *map.definitions.borrow_mut() = collector.definitions;

    &ii_parent.ii
}

pub trait NodePrinter {
    fn print_node(&mut self, node: &Node) -> io::Result<()>;
}

impl<'a> NodePrinter for pprust::State<'a> {
    fn print_node(&mut self, node: &Node) -> io::Result<()> {
        match *node {
            NodeItem(a)        => self.print_item(&a),
            NodeForeignItem(a) => self.print_foreign_item(&a),
            NodeTraitItem(a)   => self.print_trait_item(a),
            NodeImplItem(a)    => self.print_impl_item(a),
            NodeVariant(a)     => self.print_variant(&a),
            NodeExpr(a)        => self.print_expr(&a),
            NodeStmt(a)        => self.print_stmt(&a),
            NodePat(a)         => self.print_pat(&a),
            NodeBlock(a)       => self.print_block(&a),
            NodeLifetime(a)    => self.print_lifetime(&a),
            NodeTyParam(_)     => panic!("cannot print TyParam"),
            // these cases do not carry enough information in the
            // ast_map to reconstruct their full structure for pretty
            // printing.
            NodeLocal(_)       => panic!("cannot print isolated Local"),
            NodeStructCtor(_)  => panic!("cannot print isolated StructCtor"),
        }
    }
}

fn node_id_to_string(map: &Map, id: NodeId, include_id: bool) -> String {
    let id_str = format!(" (id={})", id);
    let id_str = if include_id { &id_str[..] } else { "" };

    match map.find(id) {
        Some(NodeItem(item)) => {
            let path_str = map.path_to_str_with_name(id, item.name);
            let item_str = match item.node {
                ItemExternCrate(..) => "extern crate",
                ItemUse(..) => "use",
                ItemStatic(..) => "static",
                ItemConst(..) => "const",
                ItemFn(..) => "fn",
                ItemMod(..) => "mod",
                ItemForeignMod(..) => "foreign mod",
                ItemTy(..) => "ty",
                ItemEnum(..) => "enum",
                ItemStruct(..) => "struct",
                ItemTrait(..) => "trait",
                ItemImpl(..) => "impl",
                ItemDefaultImpl(..) => "default impl",
            };
            format!("{} {}{}", item_str, path_str, id_str)
        }
        Some(NodeForeignItem(item)) => {
            let path_str = map.path_to_str_with_name(id, item.name);
            format!("foreign item {}{}", path_str, id_str)
        }
        Some(NodeImplItem(ii)) => {
            match ii.node {
                ImplItemKind::Const(..) => {
                    format!("assoc const {} in {}{}",
                            ii.name,
                            map.path_to_string(id),
                            id_str)
                }
                ImplItemKind::Method(..) => {
                    format!("method {} in {}{}",
                            ii.name,
                            map.path_to_string(id), id_str)
                }
                ImplItemKind::Type(_) => {
                    format!("assoc type {} in {}{}",
                            ii.name,
                            map.path_to_string(id),
                            id_str)
                }
            }
        }
        Some(NodeTraitItem(ti)) => {
            let kind = match ti.node {
                ConstTraitItem(..) => "assoc constant",
                MethodTraitItem(..) => "trait method",
                TypeTraitItem(..) => "assoc type",
            };

            format!("{} {} in {}{}",
                    kind,
                    ti.name,
                    map.path_to_string(id),
                    id_str)
        }
        Some(NodeVariant(ref variant)) => {
            format!("variant {} in {}{}",
                    variant.node.name,
                    map.path_to_string(id), id_str)
        }
        Some(NodeExpr(ref expr)) => {
            format!("expr {}{}", pprust::expr_to_string(&expr), id_str)
        }
        Some(NodeStmt(ref stmt)) => {
            format!("stmt {}{}", pprust::stmt_to_string(&stmt), id_str)
        }
        Some(NodeLocal(ref pat)) => {
            format!("local {}{}", pprust::pat_to_string(&pat), id_str)
        }
        Some(NodePat(ref pat)) => {
            format!("pat {}{}", pprust::pat_to_string(&pat), id_str)
        }
        Some(NodeBlock(ref block)) => {
            format!("block {}{}", pprust::block_to_string(&block), id_str)
        }
        Some(NodeStructCtor(_)) => {
            format!("struct_ctor {}{}", map.path_to_string(id), id_str)
        }
        Some(NodeLifetime(ref l)) => {
            format!("lifetime {}{}",
                    pprust::lifetime_to_string(&l), id_str)
        }
        Some(NodeTyParam(ref ty_param)) => {
            format!("typaram {:?}{}", ty_param, id_str)
        }
        None => {
            format!("unknown node{}", id_str)
        }
    }
}