summaryrefslogtreecommitdiff
path: root/src/librustc/middle/expr_use_visitor.rs
blob: 91ffef2aa599d97c4c342b2834c20df87b0e38f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A different sort of visitor for walking fn bodies.  Unlike the
//! normal visitor, which just walks the entire body in one shot, the
//! `ExprUseVisitor` determines how expressions are being used.

pub use self::LoanCause::*;
pub use self::ConsumeMode::*;
pub use self::MoveReason::*;
pub use self::MatchMode::*;
use self::TrackMatchMode::*;
use self::OverloadedCallType::*;

use middle::pat_util;
use middle::def::Def;
use middle::def_id::{DefId};
use middle::infer;
use middle::mem_categorization as mc;
use middle::ty::{self, TyCtxt, adjustment};

use rustc_front::hir::{self, PatKind};

use syntax::ast;
use syntax::ptr::P;
use syntax::codemap::Span;

///////////////////////////////////////////////////////////////////////////
// The Delegate trait

/// This trait defines the callbacks you can expect to receive when
/// employing the ExprUseVisitor.
pub trait Delegate<'tcx> {
    // The value found at `cmt` is either copied or moved, depending
    // on mode.
    fn consume(&mut self,
               consume_id: ast::NodeId,
               consume_span: Span,
               cmt: mc::cmt<'tcx>,
               mode: ConsumeMode);

    // The value found at `cmt` has been determined to match the
    // pattern binding `matched_pat`, and its subparts are being
    // copied or moved depending on `mode`.  Note that `matched_pat`
    // is called on all variant/structs in the pattern (i.e., the
    // interior nodes of the pattern's tree structure) while
    // consume_pat is called on the binding identifiers in the pattern
    // (which are leaves of the pattern's tree structure).
    //
    // Note that variants/structs and identifiers are disjoint; thus
    // `matched_pat` and `consume_pat` are never both called on the
    // same input pattern structure (though of `consume_pat` can be
    // called on a subpart of an input passed to `matched_pat).
    fn matched_pat(&mut self,
                   matched_pat: &hir::Pat,
                   cmt: mc::cmt<'tcx>,
                   mode: MatchMode);

    // The value found at `cmt` is either copied or moved via the
    // pattern binding `consume_pat`, depending on mode.
    fn consume_pat(&mut self,
                   consume_pat: &hir::Pat,
                   cmt: mc::cmt<'tcx>,
                   mode: ConsumeMode);

    // The value found at `borrow` is being borrowed at the point
    // `borrow_id` for the region `loan_region` with kind `bk`.
    fn borrow(&mut self,
              borrow_id: ast::NodeId,
              borrow_span: Span,
              cmt: mc::cmt<'tcx>,
              loan_region: ty::Region,
              bk: ty::BorrowKind,
              loan_cause: LoanCause);

    // The local variable `id` is declared but not initialized.
    fn decl_without_init(&mut self,
                         id: ast::NodeId,
                         span: Span);

    // The path at `cmt` is being assigned to.
    fn mutate(&mut self,
              assignment_id: ast::NodeId,
              assignment_span: Span,
              assignee_cmt: mc::cmt<'tcx>,
              mode: MutateMode);
}

#[derive(Copy, Clone, PartialEq, Debug)]
pub enum LoanCause {
    ClosureCapture(Span),
    AddrOf,
    AutoRef,
    AutoUnsafe,
    RefBinding,
    OverloadedOperator,
    ClosureInvocation,
    ForLoop,
    MatchDiscriminant
}

#[derive(Copy, Clone, PartialEq, Debug)]
pub enum ConsumeMode {
    Copy,                // reference to x where x has a type that copies
    Move(MoveReason),    // reference to x where x has a type that moves
}

#[derive(Copy, Clone, PartialEq, Debug)]
pub enum MoveReason {
    DirectRefMove,
    PatBindingMove,
    CaptureMove,
}

#[derive(Copy, Clone, PartialEq, Debug)]
pub enum MatchMode {
    NonBindingMatch,
    BorrowingMatch,
    CopyingMatch,
    MovingMatch,
}

#[derive(Copy, Clone, PartialEq, Debug)]
enum TrackMatchMode {
    Unknown,
    Definite(MatchMode),
    Conflicting,
}

impl TrackMatchMode {
    // Builds up the whole match mode for a pattern from its constituent
    // parts.  The lattice looks like this:
    //
    //          Conflicting
    //            /     \
    //           /       \
    //      Borrowing   Moving
    //           \       /
    //            \     /
    //            Copying
    //               |
    //          NonBinding
    //               |
    //            Unknown
    //
    // examples:
    //
    // * `(_, some_int)` pattern is Copying, since
    //   NonBinding + Copying => Copying
    //
    // * `(some_int, some_box)` pattern is Moving, since
    //   Copying + Moving => Moving
    //
    // * `(ref x, some_box)` pattern is Conflicting, since
    //   Borrowing + Moving => Conflicting
    //
    // Note that the `Unknown` and `Conflicting` states are
    // represented separately from the other more interesting
    // `Definite` states, which simplifies logic here somewhat.
    fn lub(&mut self, mode: MatchMode) {
        *self = match (*self, mode) {
            // Note that clause order below is very significant.
            (Unknown, new) => Definite(new),
            (Definite(old), new) if old == new => Definite(old),

            (Definite(old), NonBindingMatch) => Definite(old),
            (Definite(NonBindingMatch), new) => Definite(new),

            (Definite(old), CopyingMatch) => Definite(old),
            (Definite(CopyingMatch), new) => Definite(new),

            (Definite(_), _) => Conflicting,
            (Conflicting, _) => *self,
        };
    }

    fn match_mode(&self) -> MatchMode {
        match *self {
            Unknown => NonBindingMatch,
            Definite(mode) => mode,
            Conflicting => {
                // Conservatively return MovingMatch to let the
                // compiler continue to make progress.
                MovingMatch
            }
        }
    }
}

#[derive(Copy, Clone, PartialEq, Debug)]
pub enum MutateMode {
    Init,
    JustWrite,    // x = y
    WriteAndRead, // x += y
}

#[derive(Copy, Clone)]
enum OverloadedCallType {
    FnOverloadedCall,
    FnMutOverloadedCall,
    FnOnceOverloadedCall,
}

impl OverloadedCallType {
    fn from_trait_id(tcx: &TyCtxt, trait_id: DefId)
                     -> OverloadedCallType {
        for &(maybe_function_trait, overloaded_call_type) in &[
            (tcx.lang_items.fn_once_trait(), FnOnceOverloadedCall),
            (tcx.lang_items.fn_mut_trait(), FnMutOverloadedCall),
            (tcx.lang_items.fn_trait(), FnOverloadedCall)
        ] {
            match maybe_function_trait {
                Some(function_trait) if function_trait == trait_id => {
                    return overloaded_call_type
                }
                _ => continue,
            }
        }

        tcx.sess.bug("overloaded call didn't map to known function trait")
    }

    fn from_method_id(tcx: &TyCtxt, method_id: DefId)
                      -> OverloadedCallType {
        let method = tcx.impl_or_trait_item(method_id);
        OverloadedCallType::from_trait_id(tcx, method.container().id())
    }
}

///////////////////////////////////////////////////////////////////////////
// The ExprUseVisitor type
//
// This is the code that actually walks the tree. Like
// mem_categorization, it requires a TYPER, which is a type that
// supplies types from the tree. After type checking is complete, you
// can just use the tcx as the typer.
pub struct ExprUseVisitor<'d, 't, 'a: 't, 'tcx:'a+'d> {
    typer: &'t infer::InferCtxt<'a, 'tcx>,
    mc: mc::MemCategorizationContext<'t, 'a, 'tcx>,
    delegate: &'d mut Delegate<'tcx>,
}

// If the TYPER results in an error, it's because the type check
// failed (or will fail, when the error is uncovered and reported
// during writeback). In this case, we just ignore this part of the
// code.
//
// Note that this macro appears similar to try!(), but, unlike try!(),
// it does not propagate the error.
macro_rules! return_if_err {
    ($inp: expr) => (
        match $inp {
            Ok(v) => v,
            Err(()) => {
                debug!("mc reported err");
                return
            }
        }
    )
}

/// Whether the elements of an overloaded operation are passed by value or by reference
enum PassArgs {
    ByValue,
    ByRef,
}

impl<'d,'t,'a,'tcx> ExprUseVisitor<'d,'t,'a,'tcx> {
    pub fn new(delegate: &'d mut (Delegate<'tcx>+'d),
               typer: &'t infer::InferCtxt<'a, 'tcx>)
               -> ExprUseVisitor<'d,'t,'a,'tcx> where 'tcx:'a+'d
    {
        let mc: mc::MemCategorizationContext<'t, 'a, 'tcx> =
            mc::MemCategorizationContext::new(typer);
        ExprUseVisitor { typer: typer, mc: mc, delegate: delegate }
    }

    pub fn walk_fn(&mut self,
                   decl: &hir::FnDecl,
                   body: &hir::Block) {
        self.walk_arg_patterns(decl, body);
        self.walk_block(body);
    }

    fn walk_arg_patterns(&mut self,
                         decl: &hir::FnDecl,
                         body: &hir::Block) {
        for arg in &decl.inputs {
            let arg_ty = return_if_err!(self.typer.node_ty(arg.pat.id));

            let fn_body_scope = self.tcx().region_maps.node_extent(body.id);
            let arg_cmt = self.mc.cat_rvalue(
                arg.id,
                arg.pat.span,
                ty::ReScope(fn_body_scope), // Args live only as long as the fn body.
                arg_ty);

            self.walk_irrefutable_pat(arg_cmt, &arg.pat);
        }
    }

    fn tcx(&self) -> &'t TyCtxt<'tcx> {
        self.typer.tcx
    }

    fn delegate_consume(&mut self,
                        consume_id: ast::NodeId,
                        consume_span: Span,
                        cmt: mc::cmt<'tcx>) {
        debug!("delegate_consume(consume_id={}, cmt={:?})",
               consume_id, cmt);

        let mode = copy_or_move(self.typer, &cmt, DirectRefMove);
        self.delegate.consume(consume_id, consume_span, cmt, mode);
    }

    fn consume_exprs(&mut self, exprs: &[P<hir::Expr>]) {
        for expr in exprs {
            self.consume_expr(&expr);
        }
    }

    pub fn consume_expr(&mut self, expr: &hir::Expr) {
        debug!("consume_expr(expr={:?})", expr);

        let cmt = return_if_err!(self.mc.cat_expr(expr));
        self.delegate_consume(expr.id, expr.span, cmt);
        self.walk_expr(expr);
    }

    fn mutate_expr(&mut self,
                   assignment_expr: &hir::Expr,
                   expr: &hir::Expr,
                   mode: MutateMode) {
        let cmt = return_if_err!(self.mc.cat_expr(expr));
        self.delegate.mutate(assignment_expr.id, assignment_expr.span, cmt, mode);
        self.walk_expr(expr);
    }

    fn borrow_expr(&mut self,
                   expr: &hir::Expr,
                   r: ty::Region,
                   bk: ty::BorrowKind,
                   cause: LoanCause) {
        debug!("borrow_expr(expr={:?}, r={:?}, bk={:?})",
               expr, r, bk);

        let cmt = return_if_err!(self.mc.cat_expr(expr));
        self.delegate.borrow(expr.id, expr.span, cmt, r, bk, cause);

        self.walk_expr(expr)
    }

    fn select_from_expr(&mut self, expr: &hir::Expr) {
        self.walk_expr(expr)
    }

    pub fn walk_expr(&mut self, expr: &hir::Expr) {
        debug!("walk_expr(expr={:?})", expr);

        self.walk_adjustment(expr);

        match expr.node {
            hir::ExprPath(..) => { }

            hir::ExprType(ref subexpr, _) => {
                self.walk_expr(&subexpr)
            }

            hir::ExprUnary(hir::UnDeref, ref base) => {      // *base
                if !self.walk_overloaded_operator(expr, &base, Vec::new(), PassArgs::ByRef) {
                    self.select_from_expr(&base);
                }
            }

            hir::ExprField(ref base, _) => {         // base.f
                self.select_from_expr(&base);
            }

            hir::ExprTupField(ref base, _) => {         // base.<n>
                self.select_from_expr(&base);
            }

            hir::ExprIndex(ref lhs, ref rhs) => {       // lhs[rhs]
                if !self.walk_overloaded_operator(expr,
                                                  &lhs,
                                                  vec![&rhs],
                                                  PassArgs::ByValue) {
                    self.select_from_expr(&lhs);
                    self.consume_expr(&rhs);
                }
            }

            hir::ExprCall(ref callee, ref args) => {    // callee(args)
                self.walk_callee(expr, &callee);
                self.consume_exprs(args);
            }

            hir::ExprMethodCall(_, _, ref args) => { // callee.m(args)
                self.consume_exprs(args);
            }

            hir::ExprStruct(_, ref fields, ref opt_with) => {
                self.walk_struct_expr(expr, fields, opt_with);
            }

            hir::ExprTup(ref exprs) => {
                self.consume_exprs(exprs);
            }

            hir::ExprIf(ref cond_expr, ref then_blk, ref opt_else_expr) => {
                self.consume_expr(&cond_expr);
                self.walk_block(&then_blk);
                if let Some(ref else_expr) = *opt_else_expr {
                    self.consume_expr(&else_expr);
                }
            }

            hir::ExprMatch(ref discr, ref arms, _) => {
                let discr_cmt = return_if_err!(self.mc.cat_expr(&discr));
                self.borrow_expr(&discr, ty::ReEmpty, ty::ImmBorrow, MatchDiscriminant);

                // treatment of the discriminant is handled while walking the arms.
                for arm in arms {
                    let mode = self.arm_move_mode(discr_cmt.clone(), arm);
                    let mode = mode.match_mode();
                    self.walk_arm(discr_cmt.clone(), arm, mode);
                }
            }

            hir::ExprVec(ref exprs) => {
                self.consume_exprs(exprs);
            }

            hir::ExprAddrOf(m, ref base) => {   // &base
                // make sure that the thing we are pointing out stays valid
                // for the lifetime `scope_r` of the resulting ptr:
                let expr_ty = return_if_err!(self.typer.node_ty(expr.id));
                if let ty::TyRef(&r, _) = expr_ty.sty {
                    let bk = ty::BorrowKind::from_mutbl(m);
                    self.borrow_expr(&base, r, bk, AddrOf);
                }
            }

            hir::ExprInlineAsm(ref ia, ref outputs, ref inputs) => {
                for (o, output) in ia.outputs.iter().zip(outputs) {
                    if o.is_indirect {
                        self.consume_expr(output);
                    } else {
                        self.mutate_expr(expr, output,
                                         if o.is_rw {
                                             MutateMode::WriteAndRead
                                         } else {
                                             MutateMode::JustWrite
                                         });
                    }
                }
                self.consume_exprs(inputs);
            }

            hir::ExprBreak(..) |
            hir::ExprAgain(..) |
            hir::ExprLit(..) => {}

            hir::ExprLoop(ref blk, _) => {
                self.walk_block(&blk);
            }

            hir::ExprWhile(ref cond_expr, ref blk, _) => {
                self.consume_expr(&cond_expr);
                self.walk_block(&blk);
            }

            hir::ExprUnary(op, ref lhs) => {
                let pass_args = if ::rustc_front::util::is_by_value_unop(op) {
                    PassArgs::ByValue
                } else {
                    PassArgs::ByRef
                };

                if !self.walk_overloaded_operator(expr, &lhs, Vec::new(), pass_args) {
                    self.consume_expr(&lhs);
                }
            }

            hir::ExprBinary(op, ref lhs, ref rhs) => {
                let pass_args = if ::rustc_front::util::is_by_value_binop(op.node) {
                    PassArgs::ByValue
                } else {
                    PassArgs::ByRef
                };

                if !self.walk_overloaded_operator(expr, &lhs, vec![&rhs], pass_args) {
                    self.consume_expr(&lhs);
                    self.consume_expr(&rhs);
                }
            }

            hir::ExprBlock(ref blk) => {
                self.walk_block(&blk);
            }

            hir::ExprRet(ref opt_expr) => {
                if let Some(ref expr) = *opt_expr {
                    self.consume_expr(&expr);
                }
            }

            hir::ExprAssign(ref lhs, ref rhs) => {
                self.mutate_expr(expr, &lhs, MutateMode::JustWrite);
                self.consume_expr(&rhs);
            }

            hir::ExprCast(ref base, _) => {
                self.consume_expr(&base);
            }

            hir::ExprAssignOp(op, ref lhs, ref rhs) => {
                // NB All our assignment operations take the RHS by value
                assert!(::rustc_front::util::is_by_value_binop(op.node));

                if !self.walk_overloaded_operator(expr, lhs, vec![rhs], PassArgs::ByValue) {
                    self.mutate_expr(expr, &lhs, MutateMode::WriteAndRead);
                    self.consume_expr(&rhs);
                }
            }

            hir::ExprRepeat(ref base, ref count) => {
                self.consume_expr(&base);
                self.consume_expr(&count);
            }

            hir::ExprClosure(..) => {
                self.walk_captures(expr)
            }

            hir::ExprBox(ref base) => {
                self.consume_expr(&base);
            }
        }
    }

    fn walk_callee(&mut self, call: &hir::Expr, callee: &hir::Expr) {
        let callee_ty = return_if_err!(self.typer.expr_ty_adjusted(callee));
        debug!("walk_callee: callee={:?} callee_ty={:?}",
               callee, callee_ty);
        let call_scope = self.tcx().region_maps.node_extent(call.id);
        match callee_ty.sty {
            ty::TyFnDef(..) | ty::TyFnPtr(_) => {
                self.consume_expr(callee);
            }
            ty::TyError => { }
            _ => {
                let overloaded_call_type =
                    match self.typer.node_method_id(ty::MethodCall::expr(call.id)) {
                        Some(method_id) => {
                            OverloadedCallType::from_method_id(self.tcx(), method_id)
                        }
                        None => {
                            self.tcx().sess.span_bug(
                                callee.span,
                                &format!("unexpected callee type {}", callee_ty))
                        }
                    };
                match overloaded_call_type {
                    FnMutOverloadedCall => {
                        self.borrow_expr(callee,
                                         ty::ReScope(call_scope),
                                         ty::MutBorrow,
                                         ClosureInvocation);
                    }
                    FnOverloadedCall => {
                        self.borrow_expr(callee,
                                         ty::ReScope(call_scope),
                                         ty::ImmBorrow,
                                         ClosureInvocation);
                    }
                    FnOnceOverloadedCall => self.consume_expr(callee),
                }
            }
        }
    }

    fn walk_stmt(&mut self, stmt: &hir::Stmt) {
        match stmt.node {
            hir::StmtDecl(ref decl, _) => {
                match decl.node {
                    hir::DeclLocal(ref local) => {
                        self.walk_local(&local);
                    }

                    hir::DeclItem(_) => {
                        // we don't visit nested items in this visitor,
                        // only the fn body we were given.
                    }
                }
            }

            hir::StmtExpr(ref expr, _) |
            hir::StmtSemi(ref expr, _) => {
                self.consume_expr(&expr);
            }
        }
    }

    fn walk_local(&mut self, local: &hir::Local) {
        match local.init {
            None => {
                let delegate = &mut self.delegate;
                pat_util::pat_bindings(&self.typer.tcx.def_map, &local.pat,
                                       |_, id, span, _| {
                    delegate.decl_without_init(id, span);
                })
            }

            Some(ref expr) => {
                // Variable declarations with
                // initializers are considered
                // "assigns", which is handled by
                // `walk_pat`:
                self.walk_expr(&expr);
                let init_cmt = return_if_err!(self.mc.cat_expr(&expr));
                self.walk_irrefutable_pat(init_cmt, &local.pat);
            }
        }
    }

    /// Indicates that the value of `blk` will be consumed, meaning either copied or moved
    /// depending on its type.
    fn walk_block(&mut self, blk: &hir::Block) {
        debug!("walk_block(blk.id={})", blk.id);

        for stmt in &blk.stmts {
            self.walk_stmt(stmt);
        }

        if let Some(ref tail_expr) = blk.expr {
            self.consume_expr(&tail_expr);
        }
    }

    fn walk_struct_expr(&mut self,
                        _expr: &hir::Expr,
                        fields: &[hir::Field],
                        opt_with: &Option<P<hir::Expr>>) {
        // Consume the expressions supplying values for each field.
        for field in fields {
            self.consume_expr(&field.expr);
        }

        let with_expr = match *opt_with {
            Some(ref w) => &**w,
            None => { return; }
        };

        let with_cmt = return_if_err!(self.mc.cat_expr(&with_expr));

        // Select just those fields of the `with`
        // expression that will actually be used
        if let ty::TyStruct(def, substs) = with_cmt.ty.sty {
            // Consume those fields of the with expression that are needed.
            for with_field in &def.struct_variant().fields {
                if !contains_field_named(with_field, fields) {
                    let cmt_field = self.mc.cat_field(
                        &*with_expr,
                        with_cmt.clone(),
                        with_field.name,
                        with_field.ty(self.tcx(), substs)
                    );
                    self.delegate_consume(with_expr.id, with_expr.span, cmt_field);
                }
            }
        } else {
            // the base expression should always evaluate to a
            // struct; however, when EUV is run during typeck, it
            // may not. This will generate an error earlier in typeck,
            // so we can just ignore it.
            if !self.tcx().sess.has_errors() {
                self.tcx().sess.span_bug(
                    with_expr.span,
                    "with expression doesn't evaluate to a struct");
            }
        };

        // walk the with expression so that complex expressions
        // are properly handled.
        self.walk_expr(with_expr);

        fn contains_field_named(field: ty::FieldDef,
                                fields: &[hir::Field])
                                -> bool
        {
            fields.iter().any(
                |f| f.name.node == field.name)
        }
    }

    // Invoke the appropriate delegate calls for anything that gets
    // consumed or borrowed as part of the automatic adjustment
    // process.
    fn walk_adjustment(&mut self, expr: &hir::Expr) {
        let typer = self.typer;
        //NOTE(@jroesch): mixed RefCell borrow causes crash
        let adj = typer.adjustments().get(&expr.id).map(|x| x.clone());
        if let Some(adjustment) = adj {
            match adjustment {
                adjustment::AdjustReifyFnPointer |
                adjustment::AdjustUnsafeFnPointer |
                adjustment::AdjustMutToConstPointer => {
                    // Creating a closure/fn-pointer or unsizing consumes
                    // the input and stores it into the resulting rvalue.
                    debug!("walk_adjustment: trivial adjustment");
                    let cmt_unadjusted =
                        return_if_err!(self.mc.cat_expr_unadjusted(expr));
                    self.delegate_consume(expr.id, expr.span, cmt_unadjusted);
                }
                adjustment::AdjustDerefRef(ref adj) => {
                    self.walk_autoderefref(expr, adj);
                }
            }
        }
    }

    /// Autoderefs for overloaded Deref calls in fact reference their receiver. That is, if we have
    /// `(*x)` where `x` is of type `Rc<T>`, then this in fact is equivalent to `x.deref()`. Since
    /// `deref()` is declared with `&self`, this is an autoref of `x`.
    fn walk_autoderefs(&mut self,
                       expr: &hir::Expr,
                       autoderefs: usize) {
        debug!("walk_autoderefs expr={:?} autoderefs={}", expr, autoderefs);

        for i in 0..autoderefs {
            let deref_id = ty::MethodCall::autoderef(expr.id, i as u32);
            match self.typer.node_method_ty(deref_id) {
                None => {}
                Some(method_ty) => {
                    let cmt = return_if_err!(self.mc.cat_expr_autoderefd(expr, i));

                    // the method call infrastructure should have
                    // replaced all late-bound regions with variables:
                    let self_ty = method_ty.fn_sig().input(0);
                    let self_ty = self.tcx().no_late_bound_regions(&self_ty).unwrap();

                    let (m, r) = match self_ty.sty {
                        ty::TyRef(r, ref m) => (m.mutbl, r),
                        _ => self.tcx().sess.span_bug(expr.span,
                                &format!("bad overloaded deref type {:?}",
                                    method_ty))
                    };
                    let bk = ty::BorrowKind::from_mutbl(m);
                    self.delegate.borrow(expr.id, expr.span, cmt,
                                         *r, bk, AutoRef);
                }
            }
        }
    }

    fn walk_autoderefref(&mut self,
                         expr: &hir::Expr,
                         adj: &adjustment::AutoDerefRef<'tcx>) {
        debug!("walk_autoderefref expr={:?} adj={:?}",
               expr,
               adj);

        self.walk_autoderefs(expr, adj.autoderefs);

        let cmt_derefd =
            return_if_err!(self.mc.cat_expr_autoderefd(expr, adj.autoderefs));

        let cmt_refd =
            self.walk_autoref(expr, cmt_derefd, adj.autoref);

        if adj.unsize.is_some() {
            // Unsizing consumes the thin pointer and produces a fat one.
            self.delegate_consume(expr.id, expr.span, cmt_refd);
        }
    }


    /// Walks the autoref `opt_autoref` applied to the autoderef'd
    /// `expr`. `cmt_derefd` is the mem-categorized form of `expr`
    /// after all relevant autoderefs have occurred. Because AutoRefs
    /// can be recursive, this function is recursive: it first walks
    /// deeply all the way down the autoref chain, and then processes
    /// the autorefs on the way out. At each point, it returns the
    /// `cmt` for the rvalue that will be produced by introduced an
    /// autoref.
    fn walk_autoref(&mut self,
                    expr: &hir::Expr,
                    cmt_base: mc::cmt<'tcx>,
                    opt_autoref: Option<adjustment::AutoRef<'tcx>>)
                    -> mc::cmt<'tcx>
    {
        debug!("walk_autoref(expr.id={} cmt_derefd={:?} opt_autoref={:?})",
               expr.id,
               cmt_base,
               opt_autoref);

        let cmt_base_ty = cmt_base.ty;

        let autoref = match opt_autoref {
            Some(ref autoref) => autoref,
            None => {
                // No AutoRef.
                return cmt_base;
            }
        };

        match *autoref {
            adjustment::AutoPtr(r, m) => {
                self.delegate.borrow(expr.id,
                                     expr.span,
                                     cmt_base,
                                     *r,
                                     ty::BorrowKind::from_mutbl(m),
                                     AutoRef);
            }

            adjustment::AutoUnsafe(m) => {
                debug!("walk_autoref: expr.id={} cmt_base={:?}",
                       expr.id,
                       cmt_base);

                // Converting from a &T to *T (or &mut T to *mut T) is
                // treated as borrowing it for the enclosing temporary
                // scope.
                let r = ty::ReScope(self.tcx().region_maps.node_extent(expr.id));

                self.delegate.borrow(expr.id,
                                     expr.span,
                                     cmt_base,
                                     r,
                                     ty::BorrowKind::from_mutbl(m),
                                     AutoUnsafe);
            }
        }

        // Construct the categorization for the result of the autoref.
        // This is always an rvalue, since we are producing a new
        // (temporary) indirection.

        let adj_ty = cmt_base_ty.adjust_for_autoref(self.tcx(), opt_autoref);

        self.mc.cat_rvalue_node(expr.id, expr.span, adj_ty)
    }


    // When this returns true, it means that the expression *is* a
    // method-call (i.e. via the operator-overload).  This true result
    // also implies that walk_overloaded_operator already took care of
    // recursively processing the input arguments, and thus the caller
    // should not do so.
    fn walk_overloaded_operator(&mut self,
                                expr: &hir::Expr,
                                receiver: &hir::Expr,
                                rhs: Vec<&hir::Expr>,
                                pass_args: PassArgs)
                                -> bool
    {
        if !self.typer.is_method_call(expr.id) {
            return false;
        }

        match pass_args {
            PassArgs::ByValue => {
                self.consume_expr(receiver);
                for &arg in &rhs {
                    self.consume_expr(arg);
                }

                return true;
            },
            PassArgs::ByRef => {},
        }

        self.walk_expr(receiver);

        // Arguments (but not receivers) to overloaded operator
        // methods are implicitly autoref'd which sadly does not use
        // adjustments, so we must hardcode the borrow here.

        let r = ty::ReScope(self.tcx().region_maps.node_extent(expr.id));
        let bk = ty::ImmBorrow;

        for &arg in &rhs {
            self.borrow_expr(arg, r, bk, OverloadedOperator);
        }
        return true;
    }

    fn arm_move_mode(&mut self, discr_cmt: mc::cmt<'tcx>, arm: &hir::Arm) -> TrackMatchMode {
        let mut mode = Unknown;
        for pat in &arm.pats {
            self.determine_pat_move_mode(discr_cmt.clone(), &pat, &mut mode);
        }
        mode
    }

    fn walk_arm(&mut self, discr_cmt: mc::cmt<'tcx>, arm: &hir::Arm, mode: MatchMode) {
        for pat in &arm.pats {
            self.walk_pat(discr_cmt.clone(), &pat, mode);
        }

        if let Some(ref guard) = arm.guard {
            self.consume_expr(&guard);
        }

        self.consume_expr(&arm.body);
    }

    /// Walks a pat that occurs in isolation (i.e. top-level of fn
    /// arg or let binding.  *Not* a match arm or nested pat.)
    fn walk_irrefutable_pat(&mut self, cmt_discr: mc::cmt<'tcx>, pat: &hir::Pat) {
        let mut mode = Unknown;
        self.determine_pat_move_mode(cmt_discr.clone(), pat, &mut mode);
        let mode = mode.match_mode();
        self.walk_pat(cmt_discr, pat, mode);
    }

    /// Identifies any bindings within `pat` and accumulates within
    /// `mode` whether the overall pattern/match structure is a move,
    /// copy, or borrow.
    fn determine_pat_move_mode(&mut self,
                               cmt_discr: mc::cmt<'tcx>,
                               pat: &hir::Pat,
                               mode: &mut TrackMatchMode) {
        debug!("determine_pat_move_mode cmt_discr={:?} pat={:?}", cmt_discr,
               pat);
        return_if_err!(self.mc.cat_pattern(cmt_discr, pat, |_mc, cmt_pat, pat| {
            let tcx = self.tcx();
            let def_map = &self.tcx().def_map;
            if pat_util::pat_is_binding(&def_map.borrow(), pat) {
                match pat.node {
                    PatKind::Ident(hir::BindByRef(_), _, _) =>
                        mode.lub(BorrowingMatch),
                    PatKind::Ident(hir::BindByValue(_), _, _) => {
                        match copy_or_move(self.typer, &cmt_pat, PatBindingMove) {
                            Copy => mode.lub(CopyingMatch),
                            Move(_) => mode.lub(MovingMatch),
                        }
                    }
                    _ => {
                        tcx.sess.span_bug(
                            pat.span,
                            "binding pattern not an identifier");
                    }
                }
            }
        }));
    }

    /// The core driver for walking a pattern; `match_mode` must be
    /// established up front, e.g. via `determine_pat_move_mode` (see
    /// also `walk_irrefutable_pat` for patterns that stand alone).
    fn walk_pat(&mut self,
                cmt_discr: mc::cmt<'tcx>,
                pat: &hir::Pat,
                match_mode: MatchMode) {
        debug!("walk_pat cmt_discr={:?} pat={:?}", cmt_discr,
               pat);

        let mc = &self.mc;
        let typer = self.typer;
        let def_map = &self.tcx().def_map;
        let delegate = &mut self.delegate;
        return_if_err!(mc.cat_pattern(cmt_discr.clone(), pat, |mc, cmt_pat, pat| {
            if pat_util::pat_is_binding(&def_map.borrow(), pat) {
                let tcx = typer.tcx;

                debug!("binding cmt_pat={:?} pat={:?} match_mode={:?}",
                       cmt_pat,
                       pat,
                       match_mode);

                // pat_ty: the type of the binding being produced.
                let pat_ty = return_if_err!(typer.node_ty(pat.id));

                // Each match binding is effectively an assignment to the
                // binding being produced.
                let def = def_map.borrow().get(&pat.id).unwrap().full_def();
                match mc.cat_def(pat.id, pat.span, pat_ty, def) {
                    Ok(binding_cmt) => {
                        delegate.mutate(pat.id, pat.span, binding_cmt, MutateMode::Init);
                    }
                    Err(_) => { }
                }

                // It is also a borrow or copy/move of the value being matched.
                match pat.node {
                    PatKind::Ident(hir::BindByRef(m), _, _) => {
                        if let ty::TyRef(&r, _) = pat_ty.sty {
                            let bk = ty::BorrowKind::from_mutbl(m);
                            delegate.borrow(pat.id, pat.span, cmt_pat,
                                            r, bk, RefBinding);
                        }
                    }
                    PatKind::Ident(hir::BindByValue(_), _, _) => {
                        let mode = copy_or_move(typer, &cmt_pat, PatBindingMove);
                        debug!("walk_pat binding consuming pat");
                        delegate.consume_pat(pat, cmt_pat, mode);
                    }
                    _ => {
                        tcx.sess.span_bug(
                            pat.span,
                            "binding pattern not an identifier");
                    }
                }
            } else {
                match pat.node {
                    PatKind::Vec(_, Some(ref slice_pat), _) => {
                        // The `slice_pat` here creates a slice into
                        // the original vector.  This is effectively a
                        // borrow of the elements of the vector being
                        // matched.

                        let (slice_cmt, slice_mutbl, slice_r) =
                            return_if_err!(mc.cat_slice_pattern(cmt_pat, &slice_pat));

                        // Note: We declare here that the borrow
                        // occurs upon entering the `[...]`
                        // pattern. This implies that something like
                        // `[a; b]` where `a` is a move is illegal,
                        // because the borrow is already in effect.
                        // In fact such a move would be safe-ish, but
                        // it effectively *requires* that we use the
                        // nulling out semantics to indicate when a
                        // value has been moved, which we are trying
                        // to move away from.  Otherwise, how can we
                        // indicate that the first element in the
                        // vector has been moved?  Eventually, we
                        // could perhaps modify this rule to permit
                        // `[..a, b]` where `b` is a move, because in
                        // that case we can adjust the length of the
                        // original vec accordingly, but we'd have to
                        // make trans do the right thing, and it would
                        // only work for `Box<[T]>`s. It seems simpler
                        // to just require that people call
                        // `vec.pop()` or `vec.unshift()`.
                        let slice_bk = ty::BorrowKind::from_mutbl(slice_mutbl);
                        delegate.borrow(pat.id, pat.span,
                                        slice_cmt, slice_r,
                                        slice_bk, RefBinding);
                    }
                    _ => { }
                }
            }
        }));

        // Do a second pass over the pattern, calling `matched_pat` on
        // the interior nodes (enum variants and structs), as opposed
        // to the above loop's visit of than the bindings that form
        // the leaves of the pattern tree structure.
        return_if_err!(mc.cat_pattern(cmt_discr, pat, |mc, cmt_pat, pat| {
            let def_map = def_map.borrow();
            let tcx = typer.tcx;

            match pat.node {
                PatKind::TupleStruct(..) | PatKind::Path(..) | PatKind::QPath(..) |
                PatKind::Ident(_, _, None) | PatKind::Struct(..) => {
                    match def_map.get(&pat.id).map(|d| d.full_def()) {
                        None => {
                            // no definition found: pat is not a
                            // struct or enum pattern.
                        }

                        Some(Def::Variant(enum_did, variant_did)) => {
                            let downcast_cmt =
                                if tcx.lookup_adt_def(enum_did).is_univariant() {
                                    cmt_pat
                                } else {
                                    let cmt_pat_ty = cmt_pat.ty;
                                    mc.cat_downcast(pat, cmt_pat, cmt_pat_ty, variant_did)
                                };

                            debug!("variant downcast_cmt={:?} pat={:?}",
                                   downcast_cmt,
                                   pat);

                            delegate.matched_pat(pat, downcast_cmt, match_mode);
                        }

                        Some(Def::Struct(..)) | Some(Def::TyAlias(..)) => {
                            // A struct (in either the value or type
                            // namespace; we encounter the former on
                            // e.g. patterns for unit structs).

                            debug!("struct cmt_pat={:?} pat={:?}",
                                   cmt_pat,
                                   pat);

                            delegate.matched_pat(pat, cmt_pat, match_mode);
                        }

                        Some(Def::Const(..)) |
                        Some(Def::AssociatedConst(..)) |
                        Some(Def::Local(..)) => {
                            // This is a leaf (i.e. identifier binding
                            // or constant value to match); thus no
                            // `matched_pat` call.
                        }

                        Some(def) => {
                            // An enum type should never be in a pattern.
                            // Remaining cases are e.g. Def::Fn, to
                            // which identifiers within patterns
                            // should not resolve. However, we do
                            // encouter this when using the
                            // expr-use-visitor during typeck. So just
                            // ignore it, an error should have been
                            // reported.

                            if !tcx.sess.has_errors() {
                                let msg = format!("Pattern has unexpected def: {:?} and type {:?}",
                                                  def,
                                                  cmt_pat.ty);
                                tcx.sess.span_bug(pat.span, &msg[..])
                            }
                        }
                    }
                }

                PatKind::Ident(_, _, Some(_)) => {
                    // Do nothing; this is a binding (not an enum
                    // variant or struct), and the cat_pattern call
                    // will visit the substructure recursively.
                }

                PatKind::Wild | PatKind::Tup(..) | PatKind::Box(..) |
                PatKind::Ref(..) | PatKind::Lit(..) | PatKind::Range(..) |
                PatKind::Vec(..) => {
                    // Similarly, each of these cases does not
                    // correspond to an enum variant or struct, so we
                    // do not do any `matched_pat` calls for these
                    // cases either.
                }
            }
        }));
    }

    fn walk_captures(&mut self, closure_expr: &hir::Expr) {
        debug!("walk_captures({:?})", closure_expr);

        self.tcx().with_freevars(closure_expr.id, |freevars| {
            for freevar in freevars {
                let id_var = freevar.def.var_id();
                let upvar_id = ty::UpvarId { var_id: id_var,
                                             closure_expr_id: closure_expr.id };
                let upvar_capture = self.typer.upvar_capture(upvar_id).unwrap();
                let cmt_var = return_if_err!(self.cat_captured_var(closure_expr.id,
                                                                   closure_expr.span,
                                                                   freevar.def));
                match upvar_capture {
                    ty::UpvarCapture::ByValue => {
                        let mode = copy_or_move(self.typer, &cmt_var, CaptureMove);
                        self.delegate.consume(closure_expr.id, freevar.span, cmt_var, mode);
                    }
                    ty::UpvarCapture::ByRef(upvar_borrow) => {
                        self.delegate.borrow(closure_expr.id,
                                             closure_expr.span,
                                             cmt_var,
                                             upvar_borrow.region,
                                             upvar_borrow.kind,
                                             ClosureCapture(freevar.span));
                    }
                }
            }
        });
    }

    fn cat_captured_var(&mut self,
                        closure_id: ast::NodeId,
                        closure_span: Span,
                        upvar_def: Def)
                        -> mc::McResult<mc::cmt<'tcx>> {
        // Create the cmt for the variable being borrowed, from the
        // caller's perspective
        let var_id = upvar_def.var_id();
        let var_ty = try!(self.typer.node_ty(var_id));
        self.mc.cat_def(closure_id, closure_span, var_ty, upvar_def)
    }
}

fn copy_or_move<'a, 'tcx>(typer: &infer::InferCtxt<'a, 'tcx>,
                      cmt: &mc::cmt<'tcx>,
                      move_reason: MoveReason)
                      -> ConsumeMode
{
    if typer.type_moves_by_default(cmt.ty, cmt.span) {
        Move(move_reason)
    } else {
        Copy
    }
}