summaryrefslogtreecommitdiff
path: root/src/librustc/ty/mod.rs
blob: c4192ffc697cecefaad97bae83db8aaddf5b5be1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

pub use self::Variance::*;
pub use self::AssociatedItemContainer::*;
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
pub use self::LvaluePreference::*;
pub use self::fold::TypeFoldable;

use dep_graph::{self, DepNode};
use hir::{map as hir_map, FreevarMap, TraitMap};
use middle;
use hir::def::{Def, CtorKind, ExportMap};
use hir::def_id::{CrateNum, DefId, DefIndex, CRATE_DEF_INDEX, LOCAL_CRATE};
use middle::const_val::ConstVal;
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
use middle::region::{CodeExtent, ROOT_CODE_EXTENT};
use middle::resolve_lifetime::ObjectLifetimeDefault;
use mir::Mir;
use traits;
use ty;
use ty::subst::{Subst, Substs};
use ty::util::IntTypeExt;
use ty::walk::TypeWalker;
use util::common::MemoizationMap;
use util::nodemap::{NodeSet, FxHashMap};

use serialize::{self, Encodable, Encoder};
use std::borrow::Cow;
use std::cell::{Cell, RefCell, Ref};
use std::collections::BTreeMap;
use std::hash::{Hash, Hasher};
use std::ops::Deref;
use std::rc::Rc;
use std::slice;
use std::vec::IntoIter;
use std::mem;
use syntax::ast::{self, Name, NodeId};
use syntax::attr;
use syntax::symbol::{Symbol, InternedString};
use syntax_pos::{DUMMY_SP, Span};
use rustc_const_math::ConstInt;

use rustc_data_structures::accumulate_vec::IntoIter as AccIntoIter;

use hir;
use hir::itemlikevisit::ItemLikeVisitor;

pub use self::sty::{Binder, DebruijnIndex};
pub use self::sty::{FnSig, PolyFnSig};
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
pub use self::sty::{ClosureSubsts, TypeAndMut};
pub use self::sty::{TraitRef, TypeVariants, PolyTraitRef};
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
pub use self::sty::{ExistentialProjection, PolyExistentialProjection};
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
pub use self::sty::Issue32330;
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid, SkolemizedRegionVid};
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
pub use self::sty::Region::*;
pub use self::sty::TypeVariants::*;

pub use self::contents::TypeContents;
pub use self::context::{TyCtxt, GlobalArenas, tls};
pub use self::context::{Lift, TypeckTables};

pub use self::instance::{Instance, InstanceDef};

pub use self::trait_def::{TraitDef, TraitFlags};

pub use self::maps::queries;

pub mod adjustment;
pub mod cast;
pub mod error;
pub mod fast_reject;
pub mod fold;
pub mod inhabitedness;
pub mod item_path;
pub mod layout;
pub mod _match;
pub mod maps;
pub mod outlives;
pub mod relate;
pub mod subst;
pub mod trait_def;
pub mod walk;
pub mod wf;
pub mod util;

mod contents;
mod context;
mod flags;
mod instance;
mod structural_impls;
mod sty;

// Data types

/// The complete set of all analyses described in this module. This is
/// produced by the driver and fed to trans and later passes.
#[derive(Clone)]
pub struct CrateAnalysis {
    pub export_map: ExportMap,
    pub access_levels: middle::privacy::AccessLevels,
    pub reachable: NodeSet,
    pub name: String,
    pub glob_map: Option<hir::GlobMap>,
}

#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
}

#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum AssociatedItemContainer {
    TraitContainer(DefId),
    ImplContainer(DefId),
}

impl AssociatedItemContainer {
    pub fn id(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

impl<'a, 'gcx, 'tcx> ImplHeader<'tcx> {
    pub fn with_fresh_ty_vars(selcx: &mut traits::SelectionContext<'a, 'gcx, 'tcx>,
                              impl_def_id: DefId)
                              -> ImplHeader<'tcx>
    {
        let tcx = selcx.tcx();
        let impl_substs = selcx.infcx().fresh_substs_for_item(DUMMY_SP, impl_def_id);

        let header = ImplHeader {
            impl_def_id: impl_def_id,
            self_ty: tcx.item_type(impl_def_id),
            trait_ref: tcx.impl_trait_ref(impl_def_id),
            predicates: tcx.item_predicates(impl_def_id).predicates
        }.subst(tcx, impl_substs);

        let traits::Normalized { value: mut header, obligations } =
            traits::normalize(selcx, traits::ObligationCause::dummy(), &header);

        header.predicates.extend(obligations.into_iter().map(|o| o.predicate));
        header
    }
}

#[derive(Copy, Clone, Debug)]
pub struct AssociatedItem {
    pub def_id: DefId,
    pub name: Name,
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,

    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}

#[derive(Copy, Clone, PartialEq, Eq, Debug, RustcEncodable, RustcDecodable)]
pub enum AssociatedKind {
    Const,
    Method,
    Type
}

impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
        }
    }

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
            AssociatedKind::Const => true,
            AssociatedKind::Type => true,
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }
}

#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
    Restricted(DefId),
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
    Invisible,
}

pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
}

impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
    }
}

impl Visibility {
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt) -> Self {
        match *visibility {
            hir::Public => Visibility::Public,
            hir::Visibility::Crate => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
            hir::Visibility::Restricted { ref path, .. } => match path.def {
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
                Def::Err => Visibility::Public,
                def => Visibility::Restricted(def.def_id()),
            },
            hir::Inherited => {
                Visibility::Restricted(tcx.hir.local_def_id(tcx.hir.get_module_parent(id)))
            }
        }
    }

    /// Returns true if an item with this visibility is accessible from the given block.
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
            Visibility::Invisible => return false,
            // Restricted items are visible in an arbitrary local module.
            Visibility::Restricted(other) if other.krate != module.krate => return false,
            Visibility::Restricted(module) => module,
        };

        tree.is_descendant_of(module, restriction)
    }

    /// Returns true if this visibility is at least as accessible as the given visibility
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
            Visibility::Invisible => return true,
            Visibility::Restricted(module) => module,
        };

        self.is_accessible_from(vis_restriction, tree)
    }
}

#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
pub enum Variance {
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
}

#[derive(Clone, Copy, Debug, RustcDecodable, RustcEncodable)]
pub struct MethodCallee<'tcx> {
    /// Impl method ID, for inherent methods, or trait method ID, otherwise.
    pub def_id: DefId,
    pub ty: Ty<'tcx>,
    pub substs: &'tcx Substs<'tcx>
}

/// With method calls, we store some extra information in
/// side tables (i.e method_map). We use
/// MethodCall as a key to index into these tables instead of
/// just directly using the expression's NodeId. The reason
/// for this being that we may apply adjustments (coercions)
/// with the resulting expression also needing to use the
/// side tables. The problem with this is that we don't
/// assign a separate NodeId to this new expression
/// and so it would clash with the base expression if both
/// needed to add to the side tables. Thus to disambiguate
/// we also keep track of whether there's an adjustment in
/// our key.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct MethodCall {
    pub expr_id: NodeId,
    pub autoderef: u32
}

impl MethodCall {
    pub fn expr(id: NodeId) -> MethodCall {
        MethodCall {
            expr_id: id,
            autoderef: 0
        }
    }

    pub fn autoderef(expr_id: NodeId, autoderef: u32) -> MethodCall {
        MethodCall {
            expr_id: expr_id,
            autoderef: 1 + autoderef
        }
    }
}

// maps from an expression id that corresponds to a method call to the details
// of the method to be invoked
pub type MethodMap<'tcx> = FxHashMap<MethodCall, MethodCallee<'tcx>>;

// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct CReaderCacheKey {
    pub cnum: CrateNum,
    pub pos: usize,
}

/// Describes the fragment-state associated with a NodeId.
///
/// Currently only unfragmented paths have entries in the table,
/// but longer-term this enum is expected to expand to also
/// include data for fragmented paths.
#[derive(Copy, Clone, Debug)]
pub enum FragmentInfo {
    Moved { var: NodeId, move_expr: NodeId },
    Assigned { var: NodeId, assign_expr: NodeId, assignee_id: NodeId },
}

// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
bitflags! {
    flags TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0,
        const HAS_SELF           = 1 << 1,
        const HAS_TY_INFER       = 1 << 2,
        const HAS_RE_INFER       = 1 << 3,
        const HAS_RE_SKOL        = 1 << 4,
        const HAS_RE_EARLY_BOUND = 1 << 5,
        const HAS_FREE_REGIONS   = 1 << 6,
        const HAS_TY_ERR         = 1 << 7,
        const HAS_PROJECTION     = 1 << 8,
        const HAS_TY_CLOSURE     = 1 << 9,

        // true if there are "names" of types and regions and so forth
        // that are local to a particular fn
        const HAS_LOCAL_NAMES    = 1 << 10,

        // Present if the type belongs in a local type context.
        // Only set for TyInfer other than Fresh.
        const KEEP_IN_LOCAL_TCX  = 1 << 11,

        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12,

        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits,

        // Flags representing the nominal content of a type,
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
                                  TypeFlags::HAS_RE_SKOL.bits |
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
                                  TypeFlags::HAS_TY_ERR.bits |
                                  TypeFlags::HAS_PROJECTION.bits |
                                  TypeFlags::HAS_TY_CLOSURE.bits |
                                  TypeFlags::HAS_LOCAL_NAMES.bits |
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits,

        // Caches for type_is_sized, type_moves_by_default
        const SIZEDNESS_CACHED  = 1 << 16,
        const IS_SIZED          = 1 << 17,
        const MOVENESS_CACHED   = 1 << 18,
        const MOVES_BY_DEFAULT  = 1 << 19,
    }
}

pub struct TyS<'tcx> {
    pub sty: TypeVariants<'tcx>,
    pub flags: Cell<TypeFlags>,

    // the maximal depth of any bound regions appearing in this type.
    region_depth: u32,
}

impl<'tcx> PartialEq for TyS<'tcx> {
    #[inline]
    fn eq(&self, other: &TyS<'tcx>) -> bool {
        // (self as *const _) == (other as *const _)
        (self as *const TyS<'tcx>) == (other as *const TyS<'tcx>)
    }
}
impl<'tcx> Eq for TyS<'tcx> {}

impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self as *const TyS).hash(s)
    }
}

pub type Ty<'tcx> = &'tcx TyS<'tcx>;

impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}

/// A wrapper for slices with the additional invariant
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
/// This means we can use pointer + length for both
/// equality comparisons and hashing.
#[derive(Debug, RustcEncodable)]
pub struct Slice<T>([T]);

impl<T> PartialEq for Slice<T> {
    #[inline]
    fn eq(&self, other: &Slice<T>) -> bool {
        (&self.0 as *const [T]) == (&other.0 as *const [T])
    }
}
impl<T> Eq for Slice<T> {}

impl<T> Hash for Slice<T> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self.as_ptr(), self.len()).hash(s)
    }
}

impl<T> Deref for Slice<T> {
    type Target = [T];
    fn deref(&self) -> &[T] {
        &self.0
    }
}

impl<'a, T> IntoIterator for &'a Slice<T> {
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

impl<'tcx> serialize::UseSpecializedDecodable for &'tcx Slice<Ty<'tcx>> {}

impl<T> Slice<T> {
    pub fn empty<'a>() -> &'a Slice<T> {
        unsafe {
            mem::transmute(slice::from_raw_parts(0x1 as *const T, 0))
        }
    }
}

/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct UpvarId {
    pub var_id: NodeId,
    pub closure_expr_id: NodeId,
}

#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
    /// implicit closure bindings. It is needed when the closure
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
    ///    let x: &mut isize = ...;
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
pub enum UpvarCapture<'tcx> {
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
    ByRef(UpvarBorrow<'tcx>),
}

#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
pub struct UpvarBorrow<'tcx> {
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
    pub kind: BorrowKind,

    /// Region of the resulting reference.
    pub region: &'tcx ty::Region,
}

pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;

#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
    pub def: Def,
    pub span: Span,
    pub ty: Ty<'tcx>,
}

#[derive(Clone, Copy, PartialEq)]
pub enum IntVarValue {
    IntType(ast::IntTy),
    UintType(ast::UintTy),
}

#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct TypeParameterDef {
    pub name: Name,
    pub def_id: DefId,
    pub index: u32,
    pub has_default: bool,
    pub object_lifetime_default: ObjectLifetimeDefault,

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `T`, asserts data behind the parameter
    /// `T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,
}

#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct RegionParameterDef {
    pub name: Name,
    pub def_id: DefId,
    pub index: u32,
    pub issue_32330: Option<ty::Issue32330>,

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`, asserts data of lifetime `'a`
    /// won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,
}

impl RegionParameterDef {
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
        ty::EarlyBoundRegion {
            index: self.index,
            name: self.name,
        }
    }

    pub fn to_bound_region(&self) -> ty::BoundRegion {
        ty::BoundRegion::BrNamed(self.def_id, self.name)
    }
}

/// Information about the formal type/lifetime parameters associated
/// with an item or method. Analogous to hir::Generics.
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
pub struct Generics {
    pub parent: Option<DefId>,
    pub parent_regions: u32,
    pub parent_types: u32,
    pub regions: Vec<RegionParameterDef>,
    pub types: Vec<TypeParameterDef>,

    /// Reverse map to each `TypeParameterDef`'s `index` field, from
    /// `def_id.index` (`def_id.krate` is the same as the item's).
    pub type_param_to_index: BTreeMap<DefIndex, u32>,

    pub has_self: bool,
}

impl Generics {
    pub fn parent_count(&self) -> usize {
        self.parent_regions as usize + self.parent_types as usize
    }

    pub fn own_count(&self) -> usize {
        self.regions.len() + self.types.len()
    }

    pub fn count(&self) -> usize {
        self.parent_count() + self.own_count()
    }

    pub fn region_param(&self, param: &EarlyBoundRegion) -> &RegionParameterDef {
        assert_eq!(self.parent_count(), 0);
        &self.regions[param.index as usize - self.has_self as usize]
    }

    pub fn type_param(&self, param: &ParamTy) -> &TypeParameterDef {
        assert_eq!(self.parent_count(), 0);
        &self.types[param.idx as usize - self.has_self as usize - self.regions.len()]
    }
}

/// Bounds on generics.
#[derive(Clone, Default)]
pub struct GenericPredicates<'tcx> {
    pub parent: Option<DefId>,
    pub predicates: Vec<Predicate<'tcx>>,
}

impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                       -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
        InstantiatedPredicates {
            predicates: self.predicates.subst(tcx, substs)
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.item_predicates(def_id).instantiate_into(tcx, instantiated, substs);
        }
        instantiated.predicates.extend(self.predicates.iter().map(|p| p.subst(tcx, substs)))
    }

    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
        assert_eq!(self.parent, None);
        InstantiatedPredicates {
            predicates: self.predicates.iter().map(|pred| {
                pred.subst_supertrait(tcx, poly_trait_ref)
            }).collect()
        }
    }
}

#[derive(Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub enum Predicate<'tcx> {
    /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
    /// would be the type parameters.
    Trait(PolyTraitPredicate<'tcx>),

    /// where `T1 == T2`.
    Equate(PolyEquatePredicate<'tcx>),

    /// where 'a : 'b
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),

    /// where T : 'a
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),

    /// where <T as TraitRef>::Name == X, approximately.
    /// See `ProjectionPredicate` struct for details.
    Projection(PolyProjectionPredicate<'tcx>),

    /// no syntax: T WF
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
    ObjectSafe(DefId),

    /// No direct syntax. May be thought of as `where T : FnFoo<...>`
    /// for some substitutions `...` and T being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
    ClosureKind(DefId, ClosureKind),
}

impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
    /// Performs a substitution suitable for going from a
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a> : Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
        // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

        let substs = &trait_ref.0.substs;
        match *self {
            Predicate::Trait(ty::Binder(ref data)) =>
                Predicate::Trait(ty::Binder(data.subst(tcx, substs))),
            Predicate::Equate(ty::Binder(ref data)) =>
                Predicate::Equate(ty::Binder(data.subst(tcx, substs))),
            Predicate::RegionOutlives(ty::Binder(ref data)) =>
                Predicate::RegionOutlives(ty::Binder(data.subst(tcx, substs))),
            Predicate::TypeOutlives(ty::Binder(ref data)) =>
                Predicate::TypeOutlives(ty::Binder(data.subst(tcx, substs))),
            Predicate::Projection(ty::Binder(ref data)) =>
                Predicate::Projection(ty::Binder(data.subst(tcx, substs))),
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
            Predicate::ClosureKind(closure_def_id, kind) =>
                Predicate::ClosureKind(closure_def_id, kind),
        }
    }
}

#[derive(Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct TraitPredicate<'tcx> {
    pub trait_ref: TraitRef<'tcx>
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
    pub fn def_id(&self) -> DefId {
        self.trait_ref.def_id
    }

    /// Creates the dep-node for selecting/evaluating this trait reference.
    fn dep_node(&self) -> DepNode<DefId> {
        // Extact the trait-def and first def-id from inputs.  See the
        // docs for `DepNode::TraitSelect` for more information.
        let trait_def_id = self.def_id();
        let input_def_id =
            self.input_types()
                .flat_map(|t| t.walk())
                .filter_map(|t| match t.sty {
                    ty::TyAdt(adt_def, _) => Some(adt_def.did),
                    _ => None
                })
                .next()
                .unwrap_or(trait_def_id);
        DepNode::TraitSelect {
            trait_def_id: trait_def_id,
            input_def_id: input_def_id
        }
    }

    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
        self.trait_ref.input_types()
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
    pub fn def_id(&self) -> DefId {
        // ok to skip binder since trait def-id does not care about regions
        self.0.def_id()
    }

    pub fn dep_node(&self) -> DepNode<DefId> {
        // ok to skip binder since depnode does not care about regions
        self.0.dep_node()
    }
}

#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct EquatePredicate<'tcx>(pub Ty<'tcx>, pub Ty<'tcx>); // `0 == 1`
pub type PolyEquatePredicate<'tcx> = ty::Binder<EquatePredicate<'tcx>>;

#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
pub type PolyRegionOutlivesPredicate<'tcx> = PolyOutlivesPredicate<&'tcx ty::Region,
                                                                   &'tcx ty::Region>;
pub type PolyTypeOutlivesPredicate<'tcx> = PolyOutlivesPredicate<Ty<'tcx>, &'tcx ty::Region>;

/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
/// equality between arbitrary types. Processing an instance of Form
/// #2 eventually yields one of these `ProjectionPredicate`
/// instances to normalize the LHS.
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

impl<'tcx> PolyProjectionPredicate<'tcx> {
    pub fn item_name(&self) -> Name {
        self.0.projection_ty.item_name // safe to skip the binder to access a name
    }
}

pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
        assert!(!self.has_escaping_regions());
        ty::Binder(self.clone())
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
        // Note: unlike with TraitRef::to_poly_trait_ref(),
        // self.0.trait_ref is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
        ty::Binder(self.0.projection_ty.trait_ref)
    }
}

pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
}

impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
        // we're about to add a binder, so let's check that we don't
        // accidentally capture anything, or else that might be some
        // weird debruijn accounting.
        assert!(!self.has_escaping_regions());

        ty::Predicate::Trait(ty::Binder(ty::TraitPredicate {
            trait_ref: self.clone()
        }))
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
        ty::Predicate::Trait(self.to_poly_trait_predicate())
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyEquatePredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
        Predicate::Equate(self.clone())
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
        Predicate::RegionOutlives(self.clone())
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
        Predicate::TypeOutlives(self.clone())
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
        Predicate::Projection(self.clone())
    }
}

impl<'tcx> Predicate<'tcx> {
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
                data.skip_binder().input_types().collect()
            }
            ty::Predicate::Equate(ty::Binder(ref data)) => {
                vec![data.0, data.1]
            }
            ty::Predicate::TypeOutlives(ty::Binder(ref data)) => {
                vec![data.0]
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
                let trait_inputs = data.0.projection_ty.trait_ref.input_types();
                trait_inputs.chain(Some(data.0.ty)).collect()
            }
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
            ty::Predicate::ClosureKind(_closure_def_id, _kind) => {
                vec![]
            }
        };

        // The only reason to collect into a vector here is that I was
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
        match *self {
            Predicate::Trait(ref t) => {
                Some(t.to_poly_trait_ref())
            }
            Predicate::Projection(..) |
            Predicate::Equate(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::TypeOutlives(..) => {
                None
            }
        }
    }
}

/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
#[derive(Clone)]
pub struct InstantiatedPredicates<'tcx> {
    pub predicates: Vec<Predicate<'tcx>>,
}

impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
        InstantiatedPredicates { predicates: vec![] }
    }

    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
    }
}

/// When type checking, we use the `ParameterEnvironment` to track
/// details about the type/lifetime parameters that are in scope.
/// It primarily stores the bounds information.
///
/// Note: This information might seem to be redundant with the data in
/// `tcx.ty_param_defs`, but it is not. That table contains the
/// parameter definitions from an "outside" perspective, but this
/// struct will contain the bounds for a parameter as seen from inside
/// the function body. Currently the only real distinction is that
/// bound lifetime parameters are replaced with free ones, but in the
/// future I hope to refine the representation of types so as to make
/// more distinctions clearer.
#[derive(Clone)]
pub struct ParameterEnvironment<'tcx> {
    /// See `construct_free_substs` for details.
    pub free_substs: &'tcx Substs<'tcx>,

    /// Each type parameter has an implicit region bound that
    /// indicates it must outlive at least the function body (the user
    /// may specify stronger requirements). This field indicates the
    /// region of the callee.
    pub implicit_region_bound: &'tcx ty::Region,

    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
    /// into Obligations, and elaborated and normalized.
    pub caller_bounds: Vec<ty::Predicate<'tcx>>,

    /// Scope that is attached to free regions for this scope. This
    /// is usually the id of the fn body, but for more abstract scopes
    /// like structs we often use the node-id of the struct.
    ///
    /// FIXME(#3696). It would be nice to refactor so that free
    /// regions don't have this implicit scope and instead introduce
    /// relationships in the environment.
    pub free_id_outlive: CodeExtent,

    /// A cache for `moves_by_default`.
    pub is_copy_cache: RefCell<FxHashMap<Ty<'tcx>, bool>>,

    /// A cache for `type_is_sized`
    pub is_sized_cache: RefCell<FxHashMap<Ty<'tcx>, bool>>,
}

impl<'a, 'tcx> ParameterEnvironment<'tcx> {
    pub fn with_caller_bounds(&self,
                              caller_bounds: Vec<ty::Predicate<'tcx>>)
                              -> ParameterEnvironment<'tcx>
    {
        ParameterEnvironment {
            free_substs: self.free_substs,
            implicit_region_bound: self.implicit_region_bound,
            caller_bounds: caller_bounds,
            free_id_outlive: self.free_id_outlive,
            is_copy_cache: RefCell::new(FxHashMap()),
            is_sized_cache: RefCell::new(FxHashMap()),
        }
    }

    /// Construct a parameter environment given an item, impl item, or trait item
    pub fn for_item(tcx: TyCtxt<'a, 'tcx, 'tcx>, id: NodeId)
                    -> ParameterEnvironment<'tcx> {
        match tcx.hir.find(id) {
            Some(hir_map::NodeImplItem(ref impl_item)) => {
                match impl_item.node {
                    hir::ImplItemKind::Type(_) | hir::ImplItemKind::Const(..) => {
                        // associated types don't have their own entry (for some reason),
                        // so for now just grab environment for the impl
                        let impl_id = tcx.hir.get_parent(id);
                        let impl_def_id = tcx.hir.local_def_id(impl_id);
                        tcx.construct_parameter_environment(impl_item.span,
                                                            impl_def_id,
                                                            tcx.region_maps.item_extent(id))
                    }
                    hir::ImplItemKind::Method(_, ref body) => {
                        tcx.construct_parameter_environment(
                            impl_item.span,
                            tcx.hir.local_def_id(id),
                            tcx.region_maps.call_site_extent(id, body.node_id))
                    }
                }
            }
            Some(hir_map::NodeTraitItem(trait_item)) => {
                match trait_item.node {
                    hir::TraitItemKind::Type(..) | hir::TraitItemKind::Const(..) => {
                        // associated types don't have their own entry (for some reason),
                        // so for now just grab environment for the trait
                        let trait_id = tcx.hir.get_parent(id);
                        let trait_def_id = tcx.hir.local_def_id(trait_id);
                        tcx.construct_parameter_environment(trait_item.span,
                                                            trait_def_id,
                                                            tcx.region_maps.item_extent(id))
                    }
                    hir::TraitItemKind::Method(_, ref body) => {
                        // Use call-site for extent (unless this is a
                        // trait method with no default; then fallback
                        // to the method id).
                        let extent = if let hir::TraitMethod::Provided(body_id) = *body {
                            // default impl: use call_site extent as free_id_outlive bound.
                            tcx.region_maps.call_site_extent(id, body_id.node_id)
                        } else {
                            // no default impl: use item extent as free_id_outlive bound.
                            tcx.region_maps.item_extent(id)
                        };
                        tcx.construct_parameter_environment(
                            trait_item.span,
                            tcx.hir.local_def_id(id),
                            extent)
                    }
                }
            }
            Some(hir_map::NodeItem(item)) => {
                match item.node {
                    hir::ItemFn(.., body_id) => {
                        // We assume this is a function.
                        let fn_def_id = tcx.hir.local_def_id(id);

                        tcx.construct_parameter_environment(
                            item.span,
                            fn_def_id,
                            tcx.region_maps.call_site_extent(id, body_id.node_id))
                    }
                    hir::ItemEnum(..) |
                    hir::ItemStruct(..) |
                    hir::ItemUnion(..) |
                    hir::ItemTy(..) |
                    hir::ItemImpl(..) |
                    hir::ItemConst(..) |
                    hir::ItemStatic(..) => {
                        let def_id = tcx.hir.local_def_id(id);
                        tcx.construct_parameter_environment(item.span,
                                                            def_id,
                                                            tcx.region_maps.item_extent(id))
                    }
                    hir::ItemTrait(..) => {
                        let def_id = tcx.hir.local_def_id(id);
                        tcx.construct_parameter_environment(item.span,
                                                            def_id,
                                                            tcx.region_maps.item_extent(id))
                    }
                    _ => {
                        span_bug!(item.span,
                                  "ParameterEnvironment::for_item():
                                   can't create a parameter \
                                   environment for this kind of item")
                    }
                }
            }
            Some(hir_map::NodeExpr(expr)) => {
                // This is a convenience to allow closures to work.
                if let hir::ExprClosure(.., body, _) = expr.node {
                    let def_id = tcx.hir.local_def_id(id);
                    let base_def_id = tcx.closure_base_def_id(def_id);
                    tcx.construct_parameter_environment(
                        expr.span,
                        base_def_id,
                        tcx.region_maps.call_site_extent(id, body.node_id))
                } else {
                    tcx.empty_parameter_environment()
                }
            }
            Some(hir_map::NodeForeignItem(item)) => {
                let def_id = tcx.hir.local_def_id(id);
                tcx.construct_parameter_environment(item.span,
                                                    def_id,
                                                    ROOT_CODE_EXTENT)
            }
            Some(hir_map::NodeStructCtor(..)) |
            Some(hir_map::NodeVariant(..)) => {
                let def_id = tcx.hir.local_def_id(id);
                tcx.construct_parameter_environment(tcx.hir.span(id),
                                                    def_id,
                                                    ROOT_CODE_EXTENT)
            }
            it => {
                bug!("ParameterEnvironment::from_item(): \
                      `{}` = {:?} is unsupported",
                     tcx.hir.node_to_string(id), it)
            }
        }
    }
}

#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
    /// Invoking the destructor of a dtorck type during usual cleanup
    /// (e.g. the glue emitted for stack unwinding) requires all
    /// lifetimes in the type-structure of `adt` to strictly outlive
    /// the adt value itself.
    ///
    /// If `adt` is not dtorck, then the adt's destructor can be
    /// invoked even when there are lifetimes in the type-structure of
    /// `adt` that do not strictly outlive the adt value itself.
    /// (This allows programs to make cyclic structures without
    /// resorting to unsafe means; see RFCs 769 and 1238).
    pub is_dtorck: bool,
}

bitflags! {
    flags AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0,
        const IS_ENUM             = 1 << 0,
        const IS_PHANTOM_DATA     = 1 << 1,
        const IS_FUNDAMENTAL      = 1 << 2,
        const IS_UNION            = 1 << 3,
        const IS_BOX              = 1 << 4,
    }
}

#[derive(Debug)]
pub struct VariantDef {
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
    pub discr: VariantDiscr,
    pub fields: Vec<FieldDef>,
    pub ctor_kind: CtorKind,
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

#[derive(Debug)]
pub struct FieldDef {
    pub did: DefId,
    pub name: Name,
    pub vis: Visibility,
}

/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
pub struct AdtDef {
    pub did: DefId,
    pub variants: Vec<VariantDef>,
    flags: AdtFlags,
    pub repr: ReprOptions,
}

impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
    #[inline]
    fn eq(&self, other: &Self) -> bool { self as *const _ == other as *const _ }
}

impl Eq for AdtDef {}

impl Hash for AdtDef {
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self as *const AdtDef).hash(s)
    }
}

impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
        self.did.encode(s)
    }
}

impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum AdtKind { Struct, Union, Enum }

/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
pub struct ReprOptions {
    pub c: bool,
    pub packed: bool,
    pub simd: bool,
    pub int: Option<attr::IntType>,
}

impl ReprOptions {
    pub fn new(tcx: TyCtxt, did: DefId) -> ReprOptions {
        let mut ret = ReprOptions::default();

        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
                match r {
                    attr::ReprExtern => ret.c = true,
                    attr::ReprPacked => ret.packed = true,
                    attr::ReprSimd => ret.simd = true,
                    attr::ReprInt(i) => ret.int = Some(i),
                }
            }
        }

        // FIXME(eddyb) This is deprecated and should be removed.
        if tcx.has_attr(did, "simd") {
            ret.simd = true;
        }

        ret
    }

    pub fn discr_type(&self) -> attr::IntType {
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Is))
    }

    /// Returns true if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
        self.c || self.int.is_some()
    }
}

impl<'a, 'gcx, 'tcx> AdtDef {
    fn new(tcx: TyCtxt,
           did: DefId,
           kind: AdtKind,
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
        let mut flags = AdtFlags::NO_ADT_FLAGS;
        let attrs = tcx.get_attrs(did);
        if attr::contains_name(&attrs, "fundamental") {
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
        }
        if Some(did) == tcx.lang_items.phantom_data() {
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
        }
        if Some(did) == tcx.lang_items.owned_box() {
            flags = flags | AdtFlags::IS_BOX;
        }
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
        }
        AdtDef {
            did: did,
            variants: variants,
            flags: flags,
            repr: repr,
        }
    }

    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_UNION)
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_ENUM)
    }

    /// Returns the kind of the ADT - Struct or Enum.
    #[inline]
    pub fn adt_kind(&self) -> AdtKind {
        if self.is_enum() {
            AdtKind::Enum
        } else if self.is_union() {
            AdtKind::Union
        } else {
            AdtKind::Struct
        }
    }

    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

    /// Returns whether this is a dtorck type. If this returns
    /// true, this type being safe for destruction requires it to be
    /// alive; Otherwise, only the contents are required to be.
    #[inline]
    pub fn is_dtorck(&'gcx self, tcx: TyCtxt) -> bool {
        self.destructor(tcx).map_or(false, |d| d.is_dtorck)
    }

    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
    #[inline]
    pub fn is_fundamental(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
    }

    /// Returns true if this is PhantomData<T>.
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
    }

    /// Returns true if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_BOX)
    }

    /// Returns whether this type has a destructor.
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
    }

    /// Asserts this is a struct and returns the struct's unique
    /// variant.
    pub fn struct_variant(&self) -> &VariantDef {
        assert!(!self.is_enum());
        &self.variants[0]
    }

    #[inline]
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
        tcx.item_predicates(self.did)
    }

    /// Returns an iterator over all fields contained
    /// by this ADT.
    #[inline]
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
    }

    #[inline]
    pub fn is_univariant(&self) -> bool {
        self.variants.len() == 1
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
        match def {
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => self.struct_variant(),
            _ => bug!("unexpected def {:?} in variant_of_def", def)
        }
    }

    pub fn discriminants(&'a self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                         -> impl Iterator<Item=ConstInt> + 'a {
        let repr_type = self.repr.discr_type();
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
        let mut prev_discr = None::<ConstInt>;
        self.variants.iter().map(move |v| {
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr());
            if let VariantDiscr::Explicit(expr_did) = v.discr {
                match tcx.maps.monomorphic_const_eval.borrow()[&expr_did] {
                    Ok(ConstVal::Integral(v)) => {
                        discr = v;
                    }
                    _ => {}
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
        queries::adt_destructor::get(tcx, DUMMY_SP, self.did)
    }

    /// Returns a simpler type such that `Self: Sized` if and only
    /// if that type is Sized, or `TyErr` if this type is recursive.
    ///
    /// HACK: instead of returning a list of types, this function can
    /// return a tuple. In that case, the result is Sized only if
    /// all elements of the tuple are Sized.
    ///
    /// This is generally the `struct_tail` if this is a struct, or a
    /// tuple of them if this is an enum.
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx> {
        self.calculate_sized_constraint_inner(tcx.global_tcx(), &mut Vec::new())
    }

    /// Calculates the Sized-constraint.
    ///
    /// As the Sized-constraint of enums can be a *set* of types,
    /// the Sized-constraint may need to be a set also. Because introducing
    /// a new type of IVar is currently a complex affair, the Sized-constraint
    /// may be a tuple.
    ///
    /// In fact, there are only a few options for the constraint:
    ///     - `bool`, if the type is always Sized
    ///     - an obviously-unsized type
    ///     - a type parameter or projection whose Sizedness can't be known
    ///     - a tuple of type parameters or projections, if there are multiple
    ///       such.
    ///     - a TyError, if a type contained itself. The representability
    ///       check should catch this case.
    fn calculate_sized_constraint_inner(&self,
                                        tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        stack: &mut Vec<DefId>)
                                        -> Ty<'tcx>
    {
        if let Some(ty) = tcx.maps.adt_sized_constraint.borrow().get(&self.did) {
            return ty;
        }

        // Follow the memoization pattern: push the computation of
        // DepNode::SizedConstraint as our current task.
        let _task = tcx.dep_graph.in_task(DepNode::SizedConstraint(self.did));

        if stack.contains(&self.did) {
            debug!("calculate_sized_constraint: {:?} is recursive", self);
            // This should be reported as an error by `check_representable`.
            //
            // Consider the type as Sized in the meanwhile to avoid
            // further errors.
            tcx.maps.adt_sized_constraint.borrow_mut().insert(self.did, tcx.types.err);
            return tcx.types.err;
        }

        stack.push(self.did);

        let tys : Vec<_> =
            self.variants.iter().flat_map(|v| {
                v.fields.last()
            }).flat_map(|f| {
                let ty = tcx.item_type(f.did);
                self.sized_constraint_for_ty(tcx, stack, ty)
            }).collect();

        let self_ = stack.pop().unwrap();
        assert_eq!(self_, self.did);

        let ty = match tys.len() {
            _ if tys.references_error() => tcx.types.err,
            0 => tcx.types.bool,
            1 => tys[0],
            _ => tcx.intern_tup(&tys[..], false)
        };

        let old = tcx.maps.adt_sized_constraint.borrow().get(&self.did).cloned();
        match old {
            Some(old_ty) => {
                debug!("calculate_sized_constraint: {:?} recurred", self);
                assert_eq!(old_ty, tcx.types.err);
                old_ty
            }
            None => {
                debug!("calculate_sized_constraint: {:?} => {:?}", self, ty);
                tcx.maps.adt_sized_constraint.borrow_mut().insert(self.did, ty);
                ty
            }
        }
    }

    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               stack: &mut Vec<DefId>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
        let result = match ty.sty {
            TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
            TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
            TyArray(..) | TyClosure(..) | TyNever => {
                vec![]
            }

            TyStr | TyDynamic(..) | TySlice(_) | TyError => {
                // these are never sized - return the target type
                vec![ty]
            }

            TyTuple(ref tys, _) => {
                match tys.last() {
                    None => vec![],
                    Some(ty) => self.sized_constraint_for_ty(tcx, stack, ty)
                }
            }

            TyAdt(adt, substs) => {
                // recursive case
                let adt_ty =
                    adt.calculate_sized_constraint_inner(tcx, stack)
                       .subst(tcx, substs);
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
                       ty, adt_ty);
                if let ty::TyTuple(ref tys, _) = adt_ty.sty {
                    tys.iter().flat_map(|ty| {
                        self.sized_constraint_for_ty(tcx, stack, ty)
                    }).collect()
                } else {
                    self.sized_constraint_for_ty(tcx, stack, adt_ty)
                }
            }

            TyProjection(..) | TyAnon(..) => {
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
                vec![ty]
            }

            TyParam(..) => {
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

                let sized_trait = match tcx.lang_items.sized_trait() {
                    Some(x) => x,
                    _ => return vec![ty]
                };
                let sized_predicate = Binder(TraitRef {
                    def_id: sized_trait,
                    substs: tcx.mk_substs_trait(ty, &[])
                }).to_predicate();
                let predicates = tcx.item_predicates(self.did).predicates;
                if predicates.into_iter().any(|p| p == sized_predicate) {
                    vec![]
                } else {
                    vec![ty]
                }
            }

            TyInfer(..) => {
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
}

impl<'a, 'gcx, 'tcx> VariantDef {
    #[inline]
    pub fn find_field_named(&self,
                            name: ast::Name)
                            -> Option<&FieldDef> {
        self.fields.iter().find(|f| f.name == name)
    }

    #[inline]
    pub fn index_of_field_named(&self,
                                name: ast::Name)
                                -> Option<usize> {
        self.fields.iter().position(|f| f.name == name)
    }

    #[inline]
    pub fn field_named(&self, name: ast::Name) -> &FieldDef {
        self.find_field_named(name).unwrap()
    }
}

impl<'a, 'gcx, 'tcx> FieldDef {
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
        tcx.item_type(self.did).subst(tcx, subst)
    }
}

/// Records the substitutions used to translate the polytype for an
/// item into the monotype of an item reference.
#[derive(Clone, RustcEncodable, RustcDecodable)]
pub struct ItemSubsts<'tcx> {
    pub substs: &'tcx Substs<'tcx>,
}

#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub enum ClosureKind {
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
    Fn,
    FnMut,
    FnOnce,
}

impl<'a, 'tcx> ClosureKind {
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
            ClosureKind::FnMut => {
                tcx.require_lang_item(FnMutTraitLangItem)
            }
            ClosureKind::FnOnce => {
                tcx.require_lang_item(FnOnceTraitLangItem)
            }
        }
    }

    /// True if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
            _ => false,
        }
    }
}

impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
    }

    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
    pub fn walk_shallow(&'tcx self) -> AccIntoIter<walk::TypeWalkerArray<'tcx>> {
        walk::walk_shallow(self)
    }

    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F : FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
    }
}

impl<'tcx> ItemSubsts<'tcx> {
    pub fn is_noop(&self) -> bool {
        self.substs.is_noop()
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum LvaluePreference {
    PreferMutLvalue,
    NoPreference
}

impl LvaluePreference {
    pub fn from_mutbl(m: hir::Mutability) -> Self {
        match m {
            hir::MutMutable => PreferMutLvalue,
            hir::MutImmutable => NoPreference,
        }
    }
}

impl BorrowKind {
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
        match m {
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
        }
    }

    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
        match self {
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
            UniqueImmBorrow => hir::MutMutable,
        }
    }

    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
    }
}

impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
        self.item_tables(self.hir.body_owner_def_id(body))
    }

    pub fn item_tables(self, def_id: DefId) -> &'gcx TypeckTables<'gcx> {
        queries::typeck_tables::get(self, DUMMY_SP, def_id)
    }

    pub fn expr_span(self, id: NodeId) -> Span {
        match self.hir.find(id) {
            Some(hir_map::NodeExpr(e)) => {
                e.span
            }
            Some(f) => {
                bug!("Node id {} is not an expr: {:?}", id, f);
            }
            None => {
                bug!("Node id {} is not present in the node map", id);
            }
        }
    }

    pub fn local_var_name_str(self, id: NodeId) -> InternedString {
        match self.hir.find(id) {
            Some(hir_map::NodeLocal(pat)) => {
                match pat.node {
                    hir::PatKind::Binding(_, _, ref path1, _) => path1.node.as_str(),
                    _ => {
                        bug!("Variable id {} maps to {:?}, not local", id, pat);
                    },
                }
            },
            r => bug!("Variable id {} maps to {:?}, not local", id, r),
        }
    }

    pub fn expr_is_lval(self, expr: &hir::Expr) -> bool {
         match expr.node {
            hir::ExprPath(hir::QPath::Resolved(_, ref path)) => {
                match path.def {
                    Def::Local(..) | Def::Upvar(..) | Def::Static(..) | Def::Err => true,
                    _ => false,
                }
            }

            hir::ExprType(ref e, _) => {
                self.expr_is_lval(e)
            }

            hir::ExprUnary(hir::UnDeref, _) |
            hir::ExprField(..) |
            hir::ExprTupField(..) |
            hir::ExprIndex(..) => {
                true
            }

            // Partially qualified paths in expressions can only legally
            // refer to associated items which are always rvalues.
            hir::ExprPath(hir::QPath::TypeRelative(..)) |

            hir::ExprCall(..) |
            hir::ExprMethodCall(..) |
            hir::ExprStruct(..) |
            hir::ExprTup(..) |
            hir::ExprIf(..) |
            hir::ExprMatch(..) |
            hir::ExprClosure(..) |
            hir::ExprBlock(..) |
            hir::ExprRepeat(..) |
            hir::ExprArray(..) |
            hir::ExprBreak(..) |
            hir::ExprAgain(..) |
            hir::ExprRet(..) |
            hir::ExprWhile(..) |
            hir::ExprLoop(..) |
            hir::ExprAssign(..) |
            hir::ExprInlineAsm(..) |
            hir::ExprAssignOp(..) |
            hir::ExprLit(_) |
            hir::ExprUnary(..) |
            hir::ExprBox(..) |
            hir::ExprAddrOf(..) |
            hir::ExprBinary(..) |
            hir::ExprCast(..) => {
                false
            }
        }
    }

    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
            .collect()
    }

    pub fn trait_impl_polarity(self, id: DefId) -> hir::ImplPolarity {
        if let Some(id) = self.hir.as_local_node_id(id) {
            match self.hir.expect_item(id).node {
                hir::ItemImpl(_, polarity, ..) => polarity,
                ref item => bug!("trait_impl_polarity: {:?} not an impl", item)
            }
        } else {
            self.sess.cstore.impl_polarity(id)
        }
    }

    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

    pub fn custom_coerce_unsized_kind(self, did: DefId) -> adjustment::CustomCoerceUnsized {
        queries::custom_coerce_unsized_kind::get(self, DUMMY_SP, did)
    }

    pub fn associated_item(self, def_id: DefId) -> AssociatedItem {
        if !def_id.is_local() {
            return queries::associated_item::get(self, DUMMY_SP, def_id);
        }

        self.maps.associated_item.memoize(def_id, || {
            // When the user asks for a given associated item, we
            // always go ahead and convert all the associated items in
            // the container. Note that we are also careful only to
            // ever register a read on the *container* of the assoc
            // item, not the assoc item itself. This prevents changes
            // in the details of an item (for example, the type to
            // which an associated type is bound) from contaminating
            // those tasks that just need to scan the names of items
            // and so forth.

            let id = self.hir.as_local_node_id(def_id).unwrap();
            let parent_id = self.hir.get_parent(id);
            let parent_def_id = self.hir.local_def_id(parent_id);
            let parent_item = self.hir.expect_item(parent_id);
            match parent_item.node {
                hir::ItemImpl(.., ref impl_trait_ref, _, ref impl_item_refs) => {
                    for impl_item_ref in impl_item_refs {
                        let assoc_item =
                            self.associated_item_from_impl_item_ref(parent_def_id,
                                                                    impl_trait_ref.is_some(),
                                                                    impl_item_ref);
                        self.maps.associated_item.borrow_mut()
                            .insert(assoc_item.def_id, assoc_item);
                    }
                }

                hir::ItemTrait(.., ref trait_item_refs) => {
                    for trait_item_ref in trait_item_refs {
                        let assoc_item =
                            self.associated_item_from_trait_item_ref(parent_def_id, trait_item_ref);
                        self.maps.associated_item.borrow_mut()
                            .insert(assoc_item.def_id, assoc_item);
                    }
                }

                ref r => {
                    panic!("unexpected container of associated items: {:?}", r)
                }
            }

            // memoize wants us to return something, so return
            // the one we generated for this def-id
            *self.maps.associated_item.borrow().get(&def_id).unwrap()
        })
    }

    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
                                           trait_item_ref: &hir::TraitItemRef)
                                           -> AssociatedItem {
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
        };

        AssociatedItem {
            name: trait_item_ref.name,
            kind: kind,
            vis: Visibility::from_hir(&hir::Inherited, trait_item_ref.id.node_id, self),
            defaultness: trait_item_ref.defaultness,
            def_id: def_id,
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          from_trait_impl: bool,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
        };

        // Trait impl items are always public.
        let public = hir::Public;
        let vis = if from_trait_impl { &public } else { &impl_item_ref.vis };

        ty::AssociatedItem {
            name: impl_item_ref.name,
            kind: kind,
            vis: ty::Visibility::from_hir(vis, impl_item_ref.id.node_id, self),
            defaultness: impl_item_ref.defaultness,
            def_id: def_id,
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    pub fn associated_item_def_ids(self, def_id: DefId) -> Rc<Vec<DefId>> {
        if !def_id.is_local() {
            return queries::associated_item_def_ids::get(self, DUMMY_SP, def_id);
        }

        self.maps.associated_item_def_ids.memoize(def_id, || {
            let id = self.hir.as_local_node_id(def_id).unwrap();
            let item = self.hir.expect_item(id);
            let vec: Vec<_> = match item.node {
                hir::ItemTrait(.., ref trait_item_refs) => {
                    trait_item_refs.iter()
                                   .map(|trait_item_ref| trait_item_ref.id)
                                   .map(|id| self.hir.local_def_id(id.node_id))
                                   .collect()
                }
                hir::ItemImpl(.., ref impl_item_refs) => {
                    impl_item_refs.iter()
                                  .map(|impl_item_ref| impl_item_ref.id)
                                  .map(|id| self.hir.local_def_id(id.node_id))
                                  .collect()
                }
                _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
            };
            Rc::new(vec)
        })
    }

    #[inline] // FIXME(#35870) Avoid closures being unexported due to impl Trait.
    pub fn associated_items(self, def_id: DefId)
                            -> impl Iterator<Item = ty::AssociatedItem> + 'a {
        let def_ids = self.associated_item_def_ids(def_id);
        (0..def_ids.len()).map(move |i| self.associated_item(def_ids[i]))
    }

    /// Returns the trait-ref corresponding to a given impl, or None if it is
    /// an inherent impl.
    pub fn impl_trait_ref(self, id: DefId) -> Option<TraitRef<'gcx>> {
        queries::impl_trait_ref::get(self, DUMMY_SP, id)
    }

    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
        match def {
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
                let enum_did = self.parent_def_id(did).unwrap();
                self.lookup_adt_def(enum_did).variant_with_id(did)
            }
            Def::Struct(did) | Def::Union(did) => {
                self.lookup_adt_def(did).struct_variant()
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
                self.lookup_adt_def(did).struct_variant()
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

    pub fn def_key(self, id: DefId) -> hir_map::DefKey {
        if id.is_local() {
            self.hir.def_key(id)
        } else {
            self.sess.cstore.def_key(id)
        }
    }

    /// Convert a `DefId` into its fully expanded `DefPath` (every
    /// `DefId` is really just an interned def-path).
    ///
    /// Note that if `id` is not local to this crate, the result will
    //  be a non-local `DefPath`.
    pub fn def_path(self, id: DefId) -> hir_map::DefPath {
        if id.is_local() {
            self.hir.def_path(id)
        } else {
            self.sess.cstore.def_path(id)
        }
    }

    pub fn def_span(self, def_id: DefId) -> Span {
        if let Some(id) = self.hir.as_local_node_id(def_id) {
            self.hir.span(id)
        } else {
            self.sess.cstore.def_span(&self.sess, def_id)
        }
    }

    pub fn vis_is_accessible_from(self, vis: Visibility, block: NodeId) -> bool {
        vis.is_accessible_from(self.hir.local_def_id(self.hir.get_module_parent(block)), self)
    }

    pub fn item_name(self, id: DefId) -> ast::Name {
        if let Some(id) = self.hir.as_local_node_id(id) {
            self.hir.name(id)
        } else if id.index == CRATE_DEF_INDEX {
            self.sess.cstore.original_crate_name(id.krate)
        } else {
            let def_key = self.sess.cstore.def_key(id);
            // The name of a StructCtor is that of its struct parent.
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
        }
    }

    // If the given item is in an external crate, looks up its type and adds it to
    // the type cache. Returns the type parameters and type.
    pub fn item_type(self, did: DefId) -> Ty<'gcx> {
        queries::ty::get(self, DUMMY_SP, did)
    }

    /// Given the did of a trait, returns its canonical trait ref.
    pub fn lookup_trait_def(self, did: DefId) -> &'gcx TraitDef {
        queries::trait_def::get(self, DUMMY_SP, did)
    }

    /// Given the did of an ADT, return a reference to its definition.
    pub fn lookup_adt_def(self, did: DefId) -> &'gcx AdtDef {
        queries::adt_def::get(self, DUMMY_SP, did)
    }

    /// Given the did of an item, returns its generics.
    pub fn item_generics(self, did: DefId) -> &'gcx Generics {
        queries::generics::get(self, DUMMY_SP, did)
    }

    /// Given the did of an item, returns its full set of predicates.
    pub fn item_predicates(self, did: DefId) -> GenericPredicates<'gcx> {
        queries::predicates::get(self, DUMMY_SP, did)
    }

    /// Given the did of a trait, returns its superpredicates.
    pub fn item_super_predicates(self, did: DefId) -> GenericPredicates<'gcx> {
        queries::super_predicates::get(self, DUMMY_SP, did)
    }

    /// Given the did of an item, returns its MIR, borrowed immutably.
    pub fn item_mir(self, did: DefId) -> Ref<'gcx, Mir<'gcx>> {
        queries::mir::get(self, DUMMY_SP, did).borrow()
    }

    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
                        -> Ref<'gcx, Mir<'gcx>>
    {
        match instance {
            ty::InstanceDef::Item(did) if true => self.item_mir(did),
            _ => queries::mir_shims::get(self, DUMMY_SP, instance).borrow(),
        }
    }

    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
    pub fn maybe_item_mir(self, did: DefId) -> Option<Ref<'gcx, Mir<'gcx>>> {
        if did.is_local() && !self.maps.mir.borrow().contains_key(&did) {
            return None;
        }

        if !did.is_local() && !self.sess.cstore.is_item_mir_available(did) {
            return None;
        }

        Some(self.item_mir(did))
    }

    /// If `type_needs_drop` returns true, then `ty` is definitely
    /// non-copy and *might* have a destructor attached; if it returns
    /// false, then `ty` definitely has no destructor (i.e. no drop glue).
    ///
    /// (Note that this implies that if `ty` has a destructor attached,
    /// then `type_needs_drop` will definitely return `true` for `ty`.)
    pub fn type_needs_drop_given_env(self,
                                     ty: Ty<'gcx>,
                                     param_env: &ty::ParameterEnvironment<'gcx>) -> bool {
        // Issue #22536: We first query type_moves_by_default.  It sees a
        // normalized version of the type, and therefore will definitely
        // know whether the type implements Copy (and thus needs no
        // cleanup/drop/zeroing) ...
        let tcx = self.global_tcx();
        let implements_copy = !ty.moves_by_default(tcx, param_env, DUMMY_SP);

        if implements_copy { return false; }

        // ... (issue #22536 continued) but as an optimization, still use
        // prior logic of asking if the `needs_drop` bit is set; we need
        // not zero non-Copy types if they have no destructor.

        // FIXME(#22815): Note that calling `ty::type_contents` is a
        // conservative heuristic; it may report that `needs_drop` is set
        // when actual type does not actually have a destructor associated
        // with it. But since `ty` absolutely did not have the `Copy`
        // bound attached (see above), it is sound to treat it as having a
        // destructor (e.g. zero its memory on move).

        let contents = ty.type_contents(tcx);
        debug!("type_needs_drop ty={:?} contents={:?}", ty, contents);
        contents.needs_drop(tcx)
    }

    /// Get the attributes of a definition.
    pub fn get_attrs(self, did: DefId) -> Cow<'gcx, [ast::Attribute]> {
        if let Some(id) = self.hir.as_local_node_id(did) {
            Cow::Borrowed(self.hir.attrs(id))
        } else {
            Cow::Owned(self.sess.cstore.item_attrs(did))
        }
    }

    /// Determine whether an item is annotated with an attribute
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
        self.get_attrs(did).iter().any(|item| item.check_name(attr))
    }

    pub fn item_variances(self, item_id: DefId) -> Rc<Vec<ty::Variance>> {
        queries::variances::get(self, DUMMY_SP, item_id)
    }

    pub fn trait_has_default_impl(self, trait_def_id: DefId) -> bool {
        let def = self.lookup_trait_def(trait_def_id);
        def.flags.get().intersects(TraitFlags::HAS_DEFAULT_IMPL)
    }

    /// Populates the type context with all the inherent implementations for
    /// the given type if necessary.
    pub fn populate_inherent_implementations_for_type_if_necessary(self,
                                                                   span: Span,
                                                                   type_id: DefId) {
        if type_id.is_local() {
            // Make sure coherence of inherent impls ran already.
            ty::queries::coherent_inherent_impls::force(self, span, LOCAL_CRATE);
            return
        }

        // The type is not local, hence we are reading this out of
        // metadata and don't need to track edges.
        let _ignore = self.dep_graph.in_ignore();

        if self.populated_external_types.borrow().contains(&type_id) {
            return
        }

        debug!("populate_inherent_implementations_for_type_if_necessary: searching for {:?}",
               type_id);

        let inherent_impls = self.sess.cstore.inherent_implementations_for_type(type_id);

        self.maps.inherent_impls.borrow_mut().insert(type_id, inherent_impls);
        self.populated_external_types.borrow_mut().insert(type_id);
    }

    /// Populates the type context with all the implementations for the given
    /// trait if necessary.
    pub fn populate_implementations_for_trait_if_necessary(self, trait_id: DefId) {
        if trait_id.is_local() {
            return
        }

        // The type is not local, hence we are reading this out of
        // metadata and don't need to track edges.
        let _ignore = self.dep_graph.in_ignore();

        let def = self.lookup_trait_def(trait_id);
        if def.flags.get().intersects(TraitFlags::HAS_REMOTE_IMPLS) {
            return;
        }

        debug!("populate_implementations_for_trait_if_necessary: searching for {:?}", def);

        for impl_def_id in self.sess.cstore.implementations_of_trait(Some(trait_id)) {
            let trait_ref = self.impl_trait_ref(impl_def_id).unwrap();

            // Record the trait->implementation mapping.
            let parent = self.sess.cstore.impl_parent(impl_def_id).unwrap_or(trait_id);
            def.record_remote_impl(self, impl_def_id, trait_ref, parent);
        }

        def.flags.set(def.flags.get() | TraitFlags::HAS_REMOTE_IMPLS);
    }

    pub fn closure_kind(self, def_id: DefId) -> ty::ClosureKind {
        queries::closure_kind::get(self, DUMMY_SP, def_id)
    }

    pub fn closure_type(self, def_id: DefId) -> ty::PolyFnSig<'tcx> {
        queries::closure_type::get(self, DUMMY_SP, def_id)
    }

    /// Given the def_id of an impl, return the def_id of the trait it implements.
    /// If it implements no trait, return `None`.
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
    }

    /// If the given def ID describes a method belonging to an impl, return the
    /// ID of the impl that the method belongs to. Otherwise, return `None`.
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
        let item = if def_id.krate != LOCAL_CRATE {
            if let Some(Def::Method(_)) = self.sess.cstore.describe_def(def_id) {
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
            self.maps.associated_item.borrow().get(&def_id).cloned()
        };

        match item {
            Some(trait_item) => {
                match trait_item.container {
                    TraitContainer(_) => None,
                    ImplContainer(def_id) => Some(def_id),
                }
            }
            None => None
        }
    }

    /// If the given def ID describes an item belonging to a trait,
    /// return the ID of the trait that the trait item belongs to.
    /// Otherwise, return `None`.
    pub fn trait_of_item(self, def_id: DefId) -> Option<DefId> {
        if def_id.krate != LOCAL_CRATE {
            return self.sess.cstore.trait_of_item(def_id);
        }
        match self.maps.associated_item.borrow().get(&def_id) {
            Some(associated_item) => {
                match associated_item.container {
                    TraitContainer(def_id) => Some(def_id),
                    ImplContainer(_) => None
                }
            }
            None => None
        }
    }

    /// Construct a parameter environment suitable for static contexts or other contexts where there
    /// are no free type/lifetime parameters in scope.
    pub fn empty_parameter_environment(self) -> ParameterEnvironment<'tcx> {

        // for an empty parameter environment, there ARE no free
        // regions, so it shouldn't matter what we use for the free id
        let free_id_outlive = self.region_maps.node_extent(ast::DUMMY_NODE_ID);
        ty::ParameterEnvironment {
            free_substs: self.intern_substs(&[]),
            caller_bounds: Vec::new(),
            implicit_region_bound: self.mk_region(ty::ReEmpty),
            free_id_outlive: free_id_outlive,
            is_copy_cache: RefCell::new(FxHashMap()),
            is_sized_cache: RefCell::new(FxHashMap()),
        }
    }

    /// Constructs and returns a substitution that can be applied to move from
    /// the "outer" view of a type or method to the "inner" view.
    /// In general, this means converting from bound parameters to
    /// free parameters. Since we currently represent bound/free type
    /// parameters in the same way, this only has an effect on regions.
    pub fn construct_free_substs(self, def_id: DefId,
                                 free_id_outlive: CodeExtent)
                                 -> &'gcx Substs<'gcx> {

        let substs = Substs::for_item(self.global_tcx(), def_id, |def, _| {
            // map bound 'a => free 'a
            self.global_tcx().mk_region(ReFree(FreeRegion {
                scope: free_id_outlive,
                bound_region: def.to_bound_region()
            }))
        }, |def, _| {
            // map T => T
            self.global_tcx().mk_param_from_def(def)
        });

        debug!("construct_parameter_environment: {:?}", substs);
        substs
    }

    /// See `ParameterEnvironment` struct def'n for details.
    /// If you were using `free_id: NodeId`, you might try `self.region_maps.item_extent(free_id)`
    /// for the `free_id_outlive` parameter. (But note that this is not always quite right.)
    pub fn construct_parameter_environment(self,
                                           span: Span,
                                           def_id: DefId,
                                           free_id_outlive: CodeExtent)
                                           -> ParameterEnvironment<'gcx>
    {
        //
        // Construct the free substs.
        //

        let free_substs = self.construct_free_substs(def_id, free_id_outlive);

        //
        // Compute the bounds on Self and the type parameters.
        //

        let tcx = self.global_tcx();
        let generic_predicates = tcx.item_predicates(def_id);
        let bounds = generic_predicates.instantiate(tcx, free_substs);
        let bounds = tcx.liberate_late_bound_regions(free_id_outlive, &ty::Binder(bounds));
        let predicates = bounds.predicates;

        // Finally, we have to normalize the bounds in the environment, in
        // case they contain any associated type projections. This process
        // can yield errors if the put in illegal associated types, like
        // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
        // report these errors right here; this doesn't actually feel
        // right to me, because constructing the environment feels like a
        // kind of a "idempotent" action, but I'm not sure where would be
        // a better place. In practice, we construct environments for
        // every fn once during type checking, and we'll abort if there
        // are any errors at that point, so after type checking you can be
        // sure that this will succeed without errors anyway.
        //

        let unnormalized_env = ty::ParameterEnvironment {
            free_substs: free_substs,
            implicit_region_bound: tcx.mk_region(ty::ReScope(free_id_outlive)),
            caller_bounds: predicates,
            free_id_outlive: free_id_outlive,
            is_copy_cache: RefCell::new(FxHashMap()),
            is_sized_cache: RefCell::new(FxHashMap()),
        };

        let cause = traits::ObligationCause::misc(span, free_id_outlive.node_id(&self.region_maps));
        traits::normalize_param_env_or_error(tcx, unnormalized_env, cause)
    }

    pub fn node_scope_region(self, id: NodeId) -> &'tcx Region {
        self.mk_region(ty::ReScope(self.region_maps.node_extent(id)))
    }

    pub fn visit_all_item_likes_in_krate<V,F>(self,
                                              dep_node_fn: F,
                                              visitor: &mut V)
        where F: FnMut(DefId) -> DepNode<DefId>, V: ItemLikeVisitor<'gcx>
    {
        dep_graph::visit_all_item_likes_in_krate(self.global_tcx(), dep_node_fn, visitor);
    }

    /// Invokes `callback` for each body in the krate. This will
    /// create a read edge from `DepNode::Krate` to the current task;
    /// it is meant to be run in the context of some global task like
    /// `BorrowckCrate`. The callback would then create a task like
    /// `BorrowckBody(DefId)` to process each individual item.
    pub fn visit_all_bodies_in_krate<C>(self, callback: C)
        where C: Fn(/* body_owner */ DefId, /* body id */ hir::BodyId),
    {
        dep_graph::visit_all_bodies_in_krate(self.global_tcx(), callback)
    }

    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
        if impl_did.is_local() {
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
        } else {
            Err(self.sess.cstore.crate_name(impl_did.krate))
        }
    }
}

impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
        F: FnOnce(&[hir::Freevar]) -> T,
    {
        match self.freevars.borrow().get(&fid) {
            None => f(&[]),
            Some(d) => f(&d[..])
        }
    }
}