summaryrefslogtreecommitdiff
path: root/src/librustc/ty/mod.rs
blob: 880f75ab9ddba572f710b1f60e81a8d896d94096 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
pub use self::Variance::*;
pub use self::AssociatedItemContainer::*;
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
pub use self::fold::TypeFoldable;

use crate::hir::{map as hir_map, FreevarMap, GlobMap, TraitMap};
use crate::hir::{HirId, Node};
use crate::hir::def::{Def, CtorKind, ExportMap};
use crate::hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
use rustc_data_structures::svh::Svh;
use rustc_macros::HashStable;
use crate::ich::Fingerprint;
use crate::ich::StableHashingContext;
use crate::infer::canonical::Canonical;
use crate::middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
use crate::middle::resolve_lifetime::ObjectLifetimeDefault;
use crate::mir::Mir;
use crate::mir::interpret::{GlobalId, ErrorHandled};
use crate::mir::GeneratorLayout;
use crate::session::CrateDisambiguator;
use crate::traits::{self, Reveal};
use crate::ty;
use crate::ty::layout::VariantIdx;
use crate::ty::subst::{Subst, InternalSubsts, SubstsRef};
use crate::ty::util::{IntTypeExt, Discr};
use crate::ty::walk::TypeWalker;
use crate::util::captures::Captures;
use crate::util::nodemap::{NodeSet, DefIdMap, FxHashMap};
use arena::SyncDroplessArena;
use crate::session::DataTypeKind;

use serialize::{self, Encodable, Encoder};
use std::cell::RefCell;
use std::cmp::{self, Ordering};
use std::fmt;
use std::hash::{Hash, Hasher};
use std::ops::Deref;
use rustc_data_structures::sync::{self, Lrc, ParallelIterator, par_iter};
use std::slice;
use std::{mem, ptr};
use syntax::ast::{self, Name, Ident, NodeId};
use syntax::attr;
use syntax::ext::hygiene::Mark;
use syntax::symbol::{keywords, Symbol, LocalInternedString, InternedString};
use syntax_pos::Span;

use smallvec;
use rustc_data_structures::indexed_vec::{Idx, IndexVec};
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};

use crate::hir;

pub use self::sty::{Binder, BoundTy, BoundTyKind, BoundVar, DebruijnIndex, INNERMOST};
pub use self::sty::{FnSig, GenSig, CanonicalPolyFnSig, PolyFnSig, PolyGenSig};
pub use self::sty::{InferTy, ParamTy, ParamConst, InferConst, ProjectionTy, ExistentialPredicate};
pub use self::sty::{ClosureSubsts, GeneratorSubsts, UpvarSubsts, TypeAndMut};
pub use self::sty::{TraitRef, TyKind, PolyTraitRef};
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
pub use self::sty::RegionKind;
pub use self::sty::{TyVid, IntVid, FloatVid, ConstVid, RegionVid};
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
pub use self::sty::RegionKind::*;
pub use self::sty::TyKind::*;

pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

pub use self::context::{TyCtxt, FreeRegionInfo, GlobalArenas, AllArenas, tls, keep_local};
pub use self::context::{Lift, TypeckTables, CtxtInterners, GlobalCtxt};
pub use self::context::{
    UserTypeAnnotationIndex, UserType, CanonicalUserType,
    CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations, ResolvedOpaqueTy,
};

pub use self::instance::{Instance, InstanceDef};

pub use self::trait_def::TraitDef;

pub use self::query::queries;

pub mod adjustment;
pub mod binding;
pub mod cast;
#[macro_use]
pub mod codec;
mod constness;
pub mod error;
mod erase_regions;
pub mod fast_reject;
pub mod fold;
pub mod inhabitedness;
pub mod layout;
pub mod _match;
pub mod outlives;
pub mod print;
pub mod query;
pub mod relate;
pub mod steal;
pub mod subst;
pub mod trait_def;
pub mod walk;
pub mod wf;
pub mod util;

mod context;
mod flags;
mod instance;
mod structural_impls;
mod sty;

// Data types

#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
    pub export_map: ExportMap,
    pub glob_map: GlobMap,
    /// Extern prelude entries. The value is `true` if the entry was introduced
    /// via `extern crate` item and not `--extern` option or compiler built-in.
    pub extern_prelude: FxHashMap<Name, bool>,
}

#[derive(Clone, Copy, PartialEq, Eq, Debug, HashStable)]
pub enum AssociatedItemContainer {
    TraitContainer(DefId),
    ImplContainer(DefId),
}

impl AssociatedItemContainer {
    /// Asserts that this is the `DefId` of an associated item declared
    /// in a trait, and returns the trait `DefId`.
    pub fn assert_trait(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            _ => bug!("associated item has wrong container type: {:?}", self)
        }
    }

    pub fn id(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds / where-clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

#[derive(Copy, Clone, Debug, PartialEq, HashStable)]
pub struct AssociatedItem {
    pub def_id: DefId,
    #[stable_hasher(project(name))]
    pub ident: Ident,
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,

    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}

#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable, HashStable)]
pub enum AssociatedKind {
    Const,
    Method,
    Existential,
    Type
}

impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
            AssociatedKind::Existential => Def::AssociatedExistential(self.def_id),
        }
    }

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
            AssociatedKind::Existential |
            AssociatedKind::Const |
            AssociatedKind::Type => true,
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
                tcx.fn_sig(self.def_id).skip_binder().to_string()
            }
            ty::AssociatedKind::Type => format!("type {};", self.ident),
            ty::AssociatedKind::Existential => format!("existential type {};", self.ident),
            ty::AssociatedKind::Const => {
                format!("const {}: {:?};", self.ident, tcx.type_of(self.def_id))
            }
        }
    }
}

#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable, HashStable)]
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
    Restricted(DefId),
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
    Invisible,
}

pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
}

impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
    }
}

impl Visibility {
    pub fn from_hir(visibility: &hir::Visibility, id: hir::HirId, tcx: TyCtxt<'_, '_, '_>) -> Self {
        match visibility.node {
            hir::VisibilityKind::Public => Visibility::Public,
            hir::VisibilityKind::Crate(_) => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
            hir::VisibilityKind::Restricted { ref path, .. } => match path.def {
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
                Def::Err => Visibility::Public,
                def => Visibility::Restricted(def.def_id()),
            },
            hir::VisibilityKind::Inherited => {
                Visibility::Restricted(tcx.hir().get_module_parent_by_hir_id(id))
            }
        }
    }

    /// Returns `true` if an item with this visibility is accessible from the given block.
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
            Visibility::Invisible => return false,
            // Restricted items are visible in an arbitrary local module.
            Visibility::Restricted(other) if other.krate != module.krate => return false,
            Visibility::Restricted(module) => module,
        };

        tree.is_descendant_of(module, restriction)
    }

    /// Returns `true` if this visibility is at least as accessible as the given visibility
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
            Visibility::Invisible => return true,
            Visibility::Restricted(module) => module,
        };

        self.is_accessible_from(vis_restriction, tree)
    }

    // Returns `true` if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
}

#[derive(Copy, Clone, PartialEq, Eq, RustcDecodable, RustcEncodable, Hash, HashStable)]
pub enum Variance {
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
}

/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.variances_of()` to get the variance for a *particular*
/// item.
#[derive(HashStable)]
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics. If an item has no generics, it will have no
    /// entry.
    pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,

    /// An empty vector, useful for cloning.
    #[stable_hasher(ignore)]
    pub empty_variance: Lrc<Vec<ty::Variance>>,
}

impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning. If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`. The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct CReaderCacheKey {
    pub cnum: CrateNum,
    pub pos: usize,
}

// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
bitflags! {
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_PLACEHOLDER = 1 << 4;

        /// Does this have any `ReEarlyBound` regions? Used to
        /// determine whether substitition is required, since those
        /// represent regions that are bound in a `ty::Generics` and
        /// hence may be substituted.
        const HAS_RE_EARLY_BOUND = 1 << 5;

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
        const HAS_FREE_REGIONS   = 1 << 6;

        /// Is an error type reachable?
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;

        // FIXME: Rename this to the actual property since it's used for generators too
        const HAS_TY_CLOSURE     = 1 << 9;

        // `true` if there are "names" of types and regions and so forth
        // that are local to a particular fn
        const HAS_FREE_LOCAL_NAMES    = 1 << 10;

        // Present if the type belongs in a local type context.
        // Only set for Infer other than Fresh.
        const KEEP_IN_LOCAL_TCX  = 1 << 11;

        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;

        /// Does this have any `ReLateBound` regions? Used to check
        /// if a global bound is safe to evaluate.
        const HAS_RE_LATE_BOUND = 1 << 13;

        const HAS_TY_PLACEHOLDER = 1 << 14;

        const HAS_CT_INFER = 1 << 15;

        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;

        // Flags representing the nominal content of a type,
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
                                  TypeFlags::HAS_CT_INFER.bits |
                                  TypeFlags::HAS_RE_PLACEHOLDER.bits |
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
                                  TypeFlags::HAS_TY_ERR.bits |
                                  TypeFlags::HAS_PROJECTION.bits |
                                  TypeFlags::HAS_TY_CLOSURE.bits |
                                  TypeFlags::HAS_FREE_LOCAL_NAMES.bits |
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits |
                                  TypeFlags::HAS_RE_LATE_BOUND.bits |
                                  TypeFlags::HAS_TY_PLACEHOLDER.bits;
    }
}

pub struct TyS<'tcx> {
    pub sty: TyKind<'tcx>,
    pub flags: TypeFlags,

    /// This is a kind of confusing thing: it stores the smallest
    /// binder such that
    ///
    /// (a) the binder itself captures nothing but
    /// (b) all the late-bound things within the type are captured
    ///     by some sub-binder.
    ///
    /// So, for a type without any late-bound things, like `u32`, this
    /// will be *innermost*, because that is the innermost binder that
    /// captures nothing. But for a type `&'D u32`, where `'D` is a
    /// late-bound region with De Bruijn index `D`, this would be `D + 1`
    /// -- the binder itself does not capture `D`, but `D` is captured
    /// by an inner binder.
    ///
    /// We call this concept an "exclusive" binder `D` because all
    /// De Bruijn indices within the type are contained within `0..D`
    /// (exclusive).
    outer_exclusive_binder: ty::DebruijnIndex,
}

// `TyS` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(target_arch = "x86_64")]
static_assert!(MEM_SIZE_OF_TY_S: ::std::mem::size_of::<TyS<'_>>() == 32);

impl<'tcx> Ord for TyS<'tcx> {
    fn cmp(&self, other: &TyS<'tcx>) -> Ordering {
        self.sty.cmp(&other.sty)
    }
}

impl<'tcx> PartialOrd for TyS<'tcx> {
    fn partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering> {
        Some(self.sty.cmp(&other.sty))
    }
}

impl<'tcx> PartialEq for TyS<'tcx> {
    #[inline]
    fn eq(&self, other: &TyS<'tcx>) -> bool {
        ptr::eq(self, other)
    }
}
impl<'tcx> Eq for TyS<'tcx> {}

impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self as *const TyS<'_>).hash(s)
    }
}

impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
            TyKind::Bool |
            TyKind::Char |
            TyKind::Int(_) |
            TyKind::Uint(_) |
            TyKind::Float(_) |
            TyKind::Infer(InferTy::IntVar(_)) |
            TyKind::Infer(InferTy::FloatVar(_)) |
            TyKind::Infer(InferTy::FreshIntTy(_)) |
            TyKind::Infer(InferTy::FreshFloatTy(_)) => true,
            TyKind::Ref(_, x, _) => x.is_primitive_ty(),
            _ => false,
        }
    }

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
            TyKind::Opaque(..) |
            TyKind::FnDef(..) |
            TyKind::FnPtr(..) |
            TyKind::Dynamic(..) |
            TyKind::Closure(..) |
            TyKind::Infer(..) |
            TyKind::Projection(..) => false,
            _ => true,
        }
    }
}

impl<'a, 'gcx> HashStable<StableHashingContext<'a>> for ty::TyS<'gcx> {
    fn hash_stable<W: StableHasherResult>(&self,
                                          hcx: &mut StableHashingContext<'a>,
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,

            outer_exclusive_binder: _,
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

pub type Ty<'tcx> = &'tcx TyS<'tcx>;

impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}

pub type CanonicalTy<'gcx> = Canonical<'gcx, Ty<'gcx>>;

extern {
    /// A dummy type used to force List to by unsized without requiring fat pointers
    type OpaqueListContents;
}

/// A wrapper for slices with the additional invariant
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
/// This means we can use pointer for both
/// equality comparisons and hashing.
/// Note: `Slice` was already taken by the `Ty`.
#[repr(C)]
pub struct List<T> {
    len: usize,
    data: [T; 0],
    opaque: OpaqueListContents,
}

unsafe impl<T: Sync> Sync for List<T> {}

impl<T: Copy> List<T> {
    #[inline]
    fn from_arena<'tcx>(arena: &'tcx SyncDroplessArena, slice: &[T]) -> &'tcx List<T> {
        assert!(!mem::needs_drop::<T>());
        assert!(mem::size_of::<T>() != 0);
        assert!(slice.len() != 0);

        // Align up the size of the len (usize) field
        let align = mem::align_of::<T>();
        let align_mask = align - 1;
        let offset = mem::size_of::<usize>();
        let offset = (offset + align_mask) & !align_mask;

        let size = offset + slice.len() * mem::size_of::<T>();

        let mem = arena.alloc_raw(
            size,
            cmp::max(mem::align_of::<T>(), mem::align_of::<usize>()));
        unsafe {
            let result = &mut *(mem.as_mut_ptr() as *mut List<T>);
            // Write the length
            result.len = slice.len();

            // Write the elements
            let arena_slice = slice::from_raw_parts_mut(result.data.as_mut_ptr(), result.len);
            arena_slice.copy_from_slice(slice);

            result
        }
    }
}

impl<T: fmt::Debug> fmt::Debug for List<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T: Encodable> Encodable for List<T> {
    #[inline]
    fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
        (**self).encode(s)
    }
}

impl<T> Ord for List<T> where T: Ord {
    fn cmp(&self, other: &List<T>) -> Ordering {
        if self == other { Ordering::Equal } else {
            <[T] as Ord>::cmp(&**self, &**other)
        }
    }
}

impl<T> PartialOrd for List<T> where T: PartialOrd {
    fn partial_cmp(&self, other: &List<T>) -> Option<Ordering> {
        if self == other { Some(Ordering::Equal) } else {
            <[T] as PartialOrd>::partial_cmp(&**self, &**other)
        }
    }
}

impl<T: PartialEq> PartialEq for List<T> {
    #[inline]
    fn eq(&self, other: &List<T>) -> bool {
        ptr::eq(self, other)
    }
}
impl<T: Eq> Eq for List<T> {}

impl<T> Hash for List<T> {
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self as *const List<T>).hash(s)
    }
}

impl<T> Deref for List<T> {
    type Target = [T];
    #[inline(always)]
    fn deref(&self) -> &[T] {
        unsafe {
            slice::from_raw_parts(self.data.as_ptr(), self.len)
        }
    }
}

impl<'a, T> IntoIterator for &'a List<T> {
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
    #[inline(always)]
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

impl<'tcx> serialize::UseSpecializedDecodable for &'tcx List<Ty<'tcx>> {}

impl<T> List<T> {
    #[inline(always)]
    pub fn empty<'a>() -> &'a List<T> {
        #[repr(align(64), C)]
        struct EmptySlice([u8; 64]);
        static EMPTY_SLICE: EmptySlice = EmptySlice([0; 64]);
        assert!(mem::align_of::<T>() <= 64);
        unsafe {
            &*(&EMPTY_SLICE as *const _ as *const List<T>)
        }
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, HashStable)]
pub struct UpvarPath {
    pub hir_id: hir::HirId,
}

/// Upvars do not get their own `NodeId`. Instead, we use the pair of
/// the original var ID (that is, the root variable that is referenced
/// by the upvar) and the ID of the closure expression.
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, HashStable)]
pub struct UpvarId {
    pub var_path: UpvarPath,
    pub closure_expr_id: LocalDefId,
}

#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy, HashStable)]
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable. This kind of borrow
    /// cannot currently be expressed by the user and is used only in
    /// implicit closure bindings. It is needed when the closure
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
    ///    let x: &mut isize = ...;
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable, HashStable)]
pub enum UpvarCapture<'tcx> {
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
    ByRef(UpvarBorrow<'tcx>),
}

#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable, HashStable)]
pub struct UpvarBorrow<'tcx> {
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
    pub kind: BorrowKind,

    /// Region of the resulting reference.
    pub region: ty::Region<'tcx>,
}

pub type UpvarListMap = FxHashMap<DefId, Vec<UpvarId>>;
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;

#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
    pub def: Def,
    pub span: Span,
    pub ty: Ty<'tcx>,
}

#[derive(Clone, Copy, PartialEq, Eq)]
pub enum IntVarValue {
    IntType(ast::IntTy),
    UintType(ast::UintTy),
}

#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);

impl ty::EarlyBoundRegion {
    pub fn to_bound_region(&self) -> ty::BoundRegion {
        ty::BoundRegion::BrNamed(self.def_id, self.name)
    }

    /// Does this early bound region have a name? Early bound regions normally
    /// always have names except when using anonymous lifetimes (`'_`).
    pub fn has_name(&self) -> bool {
        self.name != keywords::UnderscoreLifetime.name().as_interned_str()
    }
}

#[derive(Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub enum GenericParamDefKind {
    Lifetime,
    Type {
        has_default: bool,
        object_lifetime_default: ObjectLifetimeDefault,
        synthetic: Option<hir::SyntheticTyParamKind>,
    },
    Const,
}

#[derive(Clone, RustcEncodable, RustcDecodable, HashStable)]
pub struct GenericParamDef {
    pub name: InternedString,
    pub def_id: DefId,
    pub index: u32,

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`/`T`, asserts data behind the parameter
    /// `'a`/`T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,

    pub kind: GenericParamDefKind,
}

impl GenericParamDef {
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
        if let GenericParamDefKind::Lifetime = self.kind {
            ty::EarlyBoundRegion {
                def_id: self.def_id,
                index: self.index,
                name: self.name,
            }
        } else {
            bug!("cannot convert a non-lifetime parameter def to an early bound region")
        }
    }

    pub fn to_bound_region(&self) -> ty::BoundRegion {
        if let GenericParamDefKind::Lifetime = self.kind {
            self.to_early_bound_region_data().to_bound_region()
        } else {
            bug!("cannot convert a non-lifetime parameter def to an early bound region")
        }
    }
}

#[derive(Default)]
pub struct GenericParamCount {
    pub lifetimes: usize,
    pub types: usize,
    pub consts: usize,
}

/// Information about the formal type/lifetime parameters associated
/// with an item or method. Analogous to `hir::Generics`.
///
/// The ordering of parameters is the same as in `Subst` (excluding child generics):
/// `Self` (optionally), `Lifetime` params..., `Type` params...
#[derive(Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub struct Generics {
    pub parent: Option<DefId>,
    pub parent_count: usize,
    pub params: Vec<GenericParamDef>,

    /// Reverse map to the `index` field of each `GenericParamDef`
    #[stable_hasher(ignore)]
    pub param_def_id_to_index: FxHashMap<DefId, u32>,

    pub has_self: bool,
    pub has_late_bound_regions: Option<Span>,
}

impl<'a, 'gcx, 'tcx> Generics {
    pub fn count(&self) -> usize {
        self.parent_count + self.params.len()
    }

    pub fn own_counts(&self) -> GenericParamCount {
        // We could cache this as a property of `GenericParamCount`, but
        // the aim is to refactor this away entirely eventually and the
        // presence of this method will be a constant reminder.
        let mut own_counts: GenericParamCount = Default::default();

        for param in &self.params {
            match param.kind {
                GenericParamDefKind::Lifetime => own_counts.lifetimes += 1,
                GenericParamDefKind::Type { .. } => own_counts.types += 1,
                GenericParamDefKind::Const => own_counts.consts += 1,
            };
        }

        own_counts
    }

    pub fn requires_monomorphization(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        for param in &self.params {
            match param.kind {
                GenericParamDefKind::Type { .. } | GenericParamDefKind::Const => return true,
                GenericParamDefKind::Lifetime => {}
            }
        }
        if let Some(parent_def_id) = self.parent {
            let parent = tcx.generics_of(parent_def_id);
            parent.requires_monomorphization(tcx)
        } else {
            false
        }
    }

    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
                        -> &'tcx GenericParamDef
    {
        if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
            let param = &self.params[index as usize];
            match param.kind {
                GenericParamDefKind::Lifetime => param,
                _ => bug!("expected lifetime parameter, but found another generic parameter")
            }
        } else {
            tcx.generics_of(self.parent.expect("parent_count > 0 but no parent?"))
               .region_param(param, tcx)
        }
    }

    /// Returns the `GenericParamDef` associated with this `ParamTy`.
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
                      -> &'tcx GenericParamDef {
        if let Some(index) = param.idx.checked_sub(self.parent_count as u32) {
            let param = &self.params[index as usize];
            match param.kind {
                GenericParamDefKind::Type { .. } => param,
                _ => bug!("expected type parameter, but found another generic parameter")
            }
        } else {
            tcx.generics_of(self.parent.expect("parent_count > 0 but no parent?"))
               .type_param(param, tcx)
        }
    }

    /// Returns the `ConstParameterDef` associated with this `ParamConst`.
    pub fn const_param(&'tcx self,
                       param: &ParamConst,
                       tcx: TyCtxt<'a, 'gcx, 'tcx>)
                       -> &GenericParamDef {
        if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
            let param = &self.params[index as usize];
            match param.kind {
                GenericParamDefKind::Const => param,
                _ => bug!("expected const parameter, but found another generic parameter")
            }
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .const_param(param, tcx)
        }
    }
}

/// Bounds on generics.
#[derive(Clone, Default, Debug, HashStable)]
pub struct GenericPredicates<'tcx> {
    pub parent: Option<DefId>,
    pub predicates: Vec<(Predicate<'tcx>, Span)>,
}

impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: SubstsRef<'tcx>)
                       -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }

    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: SubstsRef<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
        InstantiatedPredicates {
            predicates: self.predicates.iter().map(|(p, _)| p.subst(tcx, substs)).collect(),
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: SubstsRef<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
        }
        instantiated.predicates.extend(
            self.predicates.iter().map(|(p, _)| p.subst(tcx, substs)),
        );
    }

    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
        instantiated.predicates.extend(self.predicates.iter().map(|&(p, _)| p))
    }

    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
        assert_eq!(self.parent, None);
        InstantiatedPredicates {
            predicates: self.predicates.iter().map(|(pred, _)| {
                pred.subst_supertrait(tcx, poly_trait_ref)
            }).collect()
        }
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, HashStable)]
pub enum Predicate<'tcx> {
    /// Corresponds to `where Foo: Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
    /// would be the type parameters.
    Trait(PolyTraitPredicate<'tcx>),

    /// where `'a: 'b`
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),

    /// where `T: 'a`
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),

    /// where `<T as TraitRef>::Name == X`, approximately.
    /// See the `ProjectionPredicate` struct for details.
    Projection(PolyProjectionPredicate<'tcx>),

    /// no syntax: `T` well-formed
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
    ObjectSafe(DefId),

    /// No direct syntax. May be thought of as `where T: FnFoo<...>`
    /// for some substitutions `...` and `T` being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
    ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, SubstsRef<'tcx>),
}

/// The crate outlives map is computed during typeck and contains the
/// outlives of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
/// item.
#[derive(HashStable)]
pub struct CratePredicatesMap<'tcx> {
    /// For each struct with outlive bounds, maps to a vector of the
    /// predicate of its outlive bounds. If an item has no outlives
    /// bounds, it will have no entry.
    pub predicates: FxHashMap<DefId, Lrc<Vec<ty::Predicate<'tcx>>>>,

    /// An empty vector, useful for cloning.
    #[stable_hasher(ignore)]
    pub empty_predicate: Lrc<Vec<ty::Predicate<'tcx>>>,
}

impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
    fn as_ref(&self) -> &Predicate<'tcx> {
        self
    }
}

impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
    /// Performs a substitution suitable for going from a
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions. See
    /// lengthy comment below for details.
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a>: Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T: Foo<'x>`, then
        // we can deduce that `for<'x> T: Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a>: for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T: Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T: Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T: Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T: Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T: Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

        let substs = &trait_ref.skip_binder().substs;
        match *self {
            Predicate::Trait(ref binder) =>
                Predicate::Trait(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Subtype(ref binder) =>
                Predicate::Subtype(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::RegionOutlives(ref binder) =>
                Predicate::RegionOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::TypeOutlives(ref binder) =>
                Predicate::TypeOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Projection(ref binder) =>
                Predicate::Projection(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
            Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
                Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
        }
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, HashStable)]
pub struct TraitPredicate<'tcx> {
    pub trait_ref: TraitRef<'tcx>
}

pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
    pub fn def_id(&self) -> DefId {
        self.trait_ref.def_id
    }

    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
        self.trait_ref.input_types()
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
    pub fn def_id(&self) -> DefId {
        // ok to skip binder since trait def-id does not care about regions
        self.skip_binder().def_id()
    }
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord,
         Hash, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A: B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>,
                                                           ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>,
                                                         ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;

#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T: TraitRef<..., Item = Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T: TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
/// instances to normalize the LHS.
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, HashStable)]
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

impl<'tcx> PolyProjectionPredicate<'tcx> {
    /// Returns the `DefId` of the associated item being projected.
    pub fn item_def_id(&self) -> DefId {
        self.skip_binder().projection_ty.item_def_id
    }

    #[inline]
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt<'_, '_, '_>) -> PolyTraitRef<'tcx> {
        // Note: unlike with `TraitRef::to_poly_trait_ref()`,
        // `self.0.trait_ref` is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
        self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
    }

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
        self.map_bound(|predicate| predicate.ty)
    }

    /// The `DefId` of the `TraitItem` for the associated type.
    ///
    /// Note that this is not the `DefId` of the `TraitRef` containing this
    /// associated type, which is in `tcx.associated_item(projection_def_id()).container`.
    pub fn projection_def_id(&self) -> DefId {
        // okay to skip binder since trait def-id does not care about regions
        self.skip_binder().projection_ty.item_def_id
    }
}

pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
        ty::Binder::dummy(self.clone())
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
    }
}

pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
}

impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
        ty::Predicate::Trait(ty::Binder::dummy(ty::TraitPredicate {
            trait_ref: self.clone()
        }))
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
        ty::Predicate::Trait(self.to_poly_trait_predicate())
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
        Predicate::RegionOutlives(self.clone())
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
        Predicate::TypeOutlives(self.clone())
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
        Predicate::Projection(self.clone())
    }
}

// A custom iterator used by Predicate::walk_tys.
enum WalkTysIter<'tcx, I, J, K>
    where I: Iterator<Item = Ty<'tcx>>,
          J: Iterator<Item = Ty<'tcx>>,
          K: Iterator<Item = Ty<'tcx>>
{
    None,
    One(Ty<'tcx>),
    Two(Ty<'tcx>, Ty<'tcx>),
    Types(I),
    InputTypes(J),
    ProjectionTypes(K)
}

impl<'tcx, I, J, K> Iterator for WalkTysIter<'tcx, I, J, K>
    where I: Iterator<Item = Ty<'tcx>>,
          J: Iterator<Item = Ty<'tcx>>,
          K: Iterator<Item = Ty<'tcx>>
{
    type Item = Ty<'tcx>;

    fn next(&mut self) -> Option<Ty<'tcx>> {
        match *self {
            WalkTysIter::None => None,
            WalkTysIter::One(item) => {
                *self = WalkTysIter::None;
                Some(item)
            },
            WalkTysIter::Two(item1, item2) => {
                *self = WalkTysIter::One(item2);
                Some(item1)
            },
            WalkTysIter::Types(ref mut iter) => {
                iter.next()
            },
            WalkTysIter::InputTypes(ref mut iter) => {
                iter.next()
            },
            WalkTysIter::ProjectionTypes(ref mut iter) => {
                iter.next()
            }
        }
    }
}

impl<'tcx> Predicate<'tcx> {
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&'a self) -> impl Iterator<Item = Ty<'tcx>> + 'a {
        match *self {
            ty::Predicate::Trait(ref data) => {
                WalkTysIter::InputTypes(data.skip_binder().input_types())
            }
            ty::Predicate::Subtype(binder) => {
                let SubtypePredicate { a, b, a_is_expected: _ } = binder.skip_binder();
                WalkTysIter::Two(a, b)
            }
            ty::Predicate::TypeOutlives(binder) => {
                WalkTysIter::One(binder.skip_binder().0)
            }
            ty::Predicate::RegionOutlives(..) => {
                WalkTysIter::None
            }
            ty::Predicate::Projection(ref data) => {
                let inner = data.skip_binder();
                WalkTysIter::ProjectionTypes(
                    inner.projection_ty.substs.types().chain(Some(inner.ty)))
            }
            ty::Predicate::WellFormed(data) => {
                WalkTysIter::One(data)
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                WalkTysIter::None
            }
            ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
                WalkTysIter::Types(closure_substs.substs.types())
            }
            ty::Predicate::ConstEvaluatable(_, substs) => {
                WalkTysIter::Types(substs.types())
            }
        }
    }

    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
        match *self {
            Predicate::Trait(ref t) => {
                Some(t.to_poly_trait_ref())
            }
            Predicate::Projection(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }

    pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        match *self {
            Predicate::TypeOutlives(data) => {
                Some(data)
            }
            Predicate::Trait(..) |
            Predicate::Projection(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
}

/// Represents the bounds declared on a particular set of type
/// parameters. Should eventually be generalized into a flag list of
/// where-clauses. You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
/// `[[], [U:Bar<T>]]`. Now if there were some particular reference
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
#[derive(Clone, Debug)]
pub struct InstantiatedPredicates<'tcx> {
    pub predicates: Vec<Predicate<'tcx>>,
}

impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
        InstantiatedPredicates { predicates: vec![] }
    }

    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
    }
}

newtype_index! {
    /// "Universes" are used during type- and trait-checking in the
    /// presence of `for<..>` binders to control what sets of names are
    /// visible. Universes are arranged into a tree: the root universe
    /// contains names that are always visible. Each child then adds a new
    /// set of names that are visible, in addition to those of its parent.
    /// We say that the child universe "extends" the parent universe with
    /// new names.
    ///
    /// To make this more concrete, consider this program:
    ///
    /// ```
    /// struct Foo { }
    /// fn bar<T>(x: T) {
    ///   let y: for<'a> fn(&'a u8, Foo) = ...;
    /// }
    /// ```
    ///
    /// The struct name `Foo` is in the root universe U0. But the type
    /// parameter `T`, introduced on `bar`, is in an extended universe U1
    /// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
    /// of `bar`, we cannot name `T`. Then, within the type of `y`, the
    /// region `'a` is in a universe U2 that extends U1, because we can
    /// name it inside the fn type but not outside.
    ///
    /// Universes are used to do type- and trait-checking around these
    /// "forall" binders (also called **universal quantification**). The
    /// idea is that when, in the body of `bar`, we refer to `T` as a
    /// type, we aren't referring to any type in particular, but rather a
    /// kind of "fresh" type that is distinct from all other types we have
    /// actually declared. This is called a **placeholder** type, and we
    /// use universes to talk about this. In other words, a type name in
    /// universe 0 always corresponds to some "ground" type that the user
    /// declared, but a type name in a non-zero universe is a placeholder
    /// type -- an idealized representative of "types in general" that we
    /// use for checking generic functions.
    pub struct UniverseIndex {
        DEBUG_FORMAT = "U{}",
    }
}

impl_stable_hash_for!(struct UniverseIndex { private });

impl UniverseIndex {
    pub const ROOT: UniverseIndex = UniverseIndex::from_u32_const(0);

    /// Returns the "next" universe index in order -- this new index
    /// is considered to extend all previous universes. This
    /// corresponds to entering a `forall` quantifier. So, for
    /// example, suppose we have this type in universe `U`:
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// new universe that extends `U` -- in this new universe, we can
    /// name the region `'a`, but that region was not nameable from
    /// `U` because it was not in scope there.
    pub fn next_universe(self) -> UniverseIndex {
        UniverseIndex::from_u32(self.private.checked_add(1).unwrap())
    }

    /// Returns `true` if `self` can name a name from `other` -- in other words,
    /// if the set of names in `self` is a superset of those in
    /// `other` (`self >= other`).
    pub fn can_name(self, other: UniverseIndex) -> bool {
        self.private >= other.private
    }

    /// Returns `true` if `self` cannot name some names from `other` -- in other
    /// words, if the set of names in `self` is a strict subset of
    /// those in `other` (`self < other`).
    pub fn cannot_name(self, other: UniverseIndex) -> bool {
        self.private < other.private
    }
}

/// The "placeholder index" fully defines a placeholder region.
/// Placeholder regions are identified by both a **universe** as well
/// as a "bound-region" within that universe. The `bound_region` is
/// basically a name -- distinct bound regions within the same
/// universe are just two regions with an unknown relationship to one
/// another.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, PartialOrd, Ord)]
pub struct Placeholder<T> {
    pub universe: UniverseIndex,
    pub name: T,
}

impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for Placeholder<T>
    where T: HashStable<StableHashingContext<'a>>
{
    fn hash_stable<W: StableHasherResult>(
        &self,
        hcx: &mut StableHashingContext<'a>,
        hasher: &mut StableHasher<W>
    ) {
        self.universe.hash_stable(hcx, hasher);
        self.name.hash_stable(hcx, hasher);
    }
}

pub type PlaceholderRegion = Placeholder<BoundRegion>;

pub type PlaceholderType = Placeholder<BoundVar>;

/// When type checking, we use the `ParamEnv` to track
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
pub struct ParamEnv<'tcx> {
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
    /// into Obligations, and elaborated and normalized.
    pub caller_bounds: &'tcx List<ty::Predicate<'tcx>>,

    /// Typically, this is `Reveal::UserFacing`, but during codegen we
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,

    /// If this `ParamEnv` comes from a call to `tcx.param_env(def_id)`,
    /// register that `def_id` (useful for transitioning to the chalk trait
    /// solver).
    pub def_id: Option<DefId>,
}

impl<'tcx> ParamEnv<'tcx> {
    /// Construct a trait environment suitable for contexts where
    /// there are no where-clauses in scope. Hidden types (like `impl
    /// Trait`) are left hidden, so this is suitable for ordinary
    /// type-checking.
    #[inline]
    pub fn empty() -> Self {
        Self::new(List::empty(), Reveal::UserFacing, None)
    }

    /// Construct a trait environment with no where-clauses in scope
    /// where the values of all `impl Trait` and other hidden types
    /// are revealed. This is suitable for monomorphized, post-typeck
    /// environments like codegen or doing optimizations.
    ///
    /// N.B., if you want to have predicates in scope, use `ParamEnv::new`,
    /// or invoke `param_env.with_reveal_all()`.
    #[inline]
    pub fn reveal_all() -> Self {
        Self::new(List::empty(), Reveal::All, None)
    }

    /// Construct a trait environment with the given set of predicates.
    #[inline]
    pub fn new(
        caller_bounds: &'tcx List<ty::Predicate<'tcx>>,
        reveal: Reveal,
        def_id: Option<DefId>
    ) -> Self {
        ty::ParamEnv { caller_bounds, reveal, def_id }
    }

    /// Returns a new parameter environment with the same clauses, but
    /// which "reveals" the true results of projections in all cases
    /// (even for associated types that are specializable). This is
    /// the desired behavior during codegen and certain other special
    /// contexts; normally though we want to use `Reveal::UserFacing`,
    /// which is the default.
    pub fn with_reveal_all(self) -> Self {
        ty::ParamEnv { reveal: Reveal::All, ..self }
    }

    /// Returns this same environment but with no caller bounds.
    pub fn without_caller_bounds(self) -> Self {
        ty::ParamEnv { caller_bounds: List::empty(), ..self }
    }

    /// Creates a suitable environment in which to perform trait
    /// queries on the given value. When type-checking, this is simply
    /// the pair of the environment plus value. But when reveal is set to
    /// All, then if `value` does not reference any type parameters, we will
    /// pair it with the empty environment. This improves caching and is generally
    /// invisible.
    ///
    /// N.B., we preserve the environment when type-checking because it
    /// is possible for the user to have wacky where-clauses like
    /// `where Box<u32>: Copy`, which are clearly never
    /// satisfiable. We generally want to behave as if they were true,
    /// although the surrounding function is never reachable.
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
        match self.reveal {
            Reveal::UserFacing => {
                ParamEnvAnd {
                    param_env: self,
                    value,
                }
            }

            Reveal::All => {
                if value.has_placeholders()
                    || value.needs_infer()
                    || value.has_param_types()
                    || value.has_self_ty()
                {
                    ParamEnvAnd {
                        param_env: self,
                        value,
                    }
                } else {
                    ParamEnvAnd {
                        param_env: self.without_caller_bounds(),
                        value,
                    }
                }
            }
        }
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
    pub value: T,
}

impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
        (self.param_env, self.value)
    }
}

impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'a>>
{
    fn hash_stable<W: StableHasherResult>(&self,
                                          hcx: &mut StableHashingContext<'a>,
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

#[derive(Copy, Clone, Debug, HashStable)]
pub struct Destructor {
    /// The `DefId` of the destructor method
    pub did: DefId,
}

bitflags! {
    #[derive(HashStable)]
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        /// Indicates whether the ADT is an enum.
        const IS_ENUM             = 1 << 0;
        /// Indicates whether the ADT is a union.
        const IS_UNION            = 1 << 1;
        /// Indicates whether the ADT is a struct.
        const IS_STRUCT           = 1 << 2;
        /// Indicates whether the ADT is a struct and has a constructor.
        const HAS_CTOR            = 1 << 3;
        /// Indicates whether the type is a `PhantomData`.
        const IS_PHANTOM_DATA     = 1 << 4;
        /// Indicates whether the type has a `#[fundamental]` attribute.
        const IS_FUNDAMENTAL      = 1 << 5;
        /// Indicates whether the type is a `Box`.
        const IS_BOX              = 1 << 6;
        /// Indicates whether the type is an `Arc`.
        const IS_ARC              = 1 << 7;
        /// Indicates whether the type is an `Rc`.
        const IS_RC               = 1 << 8;
        /// Indicates whether the variant list of this ADT is `#[non_exhaustive]`.
        /// (i.e., this flag is never set unless this ADT is an enum).
        const IS_VARIANT_LIST_NON_EXHAUSTIVE = 1 << 9;
    }
}

bitflags! {
    #[derive(HashStable)]
    pub struct VariantFlags: u32 {
        const NO_VARIANT_FLAGS        = 0;
        /// Indicates whether the field list of this variant is `#[non_exhaustive]`.
        const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
    }
}

/// Definition of a variant -- a struct's fields or a enum variant.
#[derive(Debug)]
pub struct VariantDef {
    /// `DefId` that identifies the variant itself.
    /// If this variant belongs to a struct or union, then this is a copy of its `DefId`.
    pub def_id: DefId,
    /// `DefId` that identifies the variant's constructor.
    /// If this variant is a struct variant, then this is `None`.
    pub ctor_def_id: Option<DefId>,
    /// Variant or struct name.
    pub ident: Ident,
    /// Discriminant of this variant.
    pub discr: VariantDiscr,
    /// Fields of this variant.
    pub fields: Vec<FieldDef>,
    /// Type of constructor of variant.
    pub ctor_kind: CtorKind,
    /// Flags of the variant (e.g. is field list non-exhaustive)?
    flags: VariantFlags,
    /// Recovered?
    pub recovered: bool,
}

impl<'a, 'gcx, 'tcx> VariantDef {
    /// Creates a new `VariantDef`.
    ///
    /// `variant_did` is the `DefId` that identifies the enum variant (if this `VariantDef`
    /// represents an enum variant).
    ///
    /// `ctor_did` is the `DefId` that identifies the constructor of unit or
    /// tuple-variants/structs. If this is a `struct`-variant then this should be `None`.
    ///
    /// `parent_did` is the `DefId` of the `AdtDef` representing the enum or struct that
    /// owns this variant. It is used for checking if a struct has `#[non_exhaustive]` w/out having
    /// to go through the redirect of checking the ctor's attributes - but compiling a small crate
    /// requires loading the `AdtDef`s for all the structs in the universe (e.g., coherence for any
    /// built-in trait), and we do not want to load attributes twice.
    ///
    /// If someone speeds up attribute loading to not be a performance concern, they can
    /// remove this hack and use the constructor `DefId` everywhere.
    pub fn new(
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
        ident: Ident,
        variant_did: Option<DefId>,
        ctor_def_id: Option<DefId>,
        discr: VariantDiscr,
        fields: Vec<FieldDef>,
        ctor_kind: CtorKind,
        adt_kind: AdtKind,
        parent_did: DefId,
        recovered: bool,
    ) -> Self {
        debug!(
            "VariantDef::new(ident = {:?}, variant_did = {:?}, ctor_def_id = {:?}, discr = {:?},
             fields = {:?}, ctor_kind = {:?}, adt_kind = {:?}, parent_did = {:?})",
             ident, variant_did, ctor_def_id, discr, fields, ctor_kind, adt_kind, parent_did,
        );

        let mut flags = VariantFlags::NO_VARIANT_FLAGS;
        if adt_kind == AdtKind::Struct && tcx.has_attr(parent_did, "non_exhaustive") {
            debug!("found non-exhaustive field list for {:?}", parent_did);
            flags = flags | VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
        }

        VariantDef {
            def_id: variant_did.unwrap_or(parent_did),
            ctor_def_id,
            ident,
            discr,
            fields,
            ctor_kind,
            flags,
            recovered,
        }
    }

    /// Is this field list non-exhaustive?
    #[inline]
    pub fn is_field_list_non_exhaustive(&self) -> bool {
        self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
    }
}

impl_stable_hash_for!(struct VariantDef {
    def_id,
    ctor_def_id,
    ident -> (ident.name),
    discr,
    fields,
    ctor_kind,
    flags,
    recovered
});

#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e., `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(u32),
}

#[derive(Debug, HashStable)]
pub struct FieldDef {
    pub did: DefId,
    #[stable_hasher(project(name))]
    pub ident: Ident,
    pub vis: Visibility,
}

/// The definition of an abstract data type -- a struct or enum.
///
/// These are all interned (by `intern_adt_def`) into the `adt_defs` table.
pub struct AdtDef {
    /// `DefId` of the struct, enum or union item.
    pub did: DefId,
    /// Variants of the ADT. If this is a struct or enum, then there will be a single variant.
    pub variants: IndexVec<self::layout::VariantIdx, VariantDef>,
    /// Flags of the ADT (e.g. is this a struct? is this non-exhaustive?)
    flags: AdtFlags,
    /// Repr options provided by the user.
    pub repr: ReprOptions,
}

impl PartialOrd for AdtDef {
    fn partial_cmp(&self, other: &AdtDef) -> Option<Ordering> {
        Some(self.cmp(&other))
    }
}

/// There should be only one AdtDef for each `did`, therefore
/// it is fine to implement `Ord` only based on `did`.
impl Ord for AdtDef {
    fn cmp(&self, other: &AdtDef) -> Ordering {
        self.did.cmp(&other.did)
    }
}

impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
    #[inline]
    fn eq(&self, other: &Self) -> bool { ptr::eq(self, other) }
}

impl Eq for AdtDef {}

impl Hash for AdtDef {
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self as *const AdtDef).hash(s)
    }
}

impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
        self.did.encode(s)
    }
}

impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}


impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
    fn hash_stable<W: StableHasherResult>(&self,
                                          hcx: &mut StableHashingContext<'a>,
                                          hasher: &mut StableHasher<W>) {
        thread_local! {
            static CACHE: RefCell<FxHashMap<usize, Fingerprint>> = Default::default();
        }

        let hash: Fingerprint = CACHE.with(|cache| {
            let addr = self as *const AdtDef as usize;
            *cache.borrow_mut().entry(addr).or_insert_with(|| {
                let ty::AdtDef {
                    did,
                    ref variants,
                    ref flags,
                    ref repr,
                } = *self;

                let mut hasher = StableHasher::new();
                did.hash_stable(hcx, &mut hasher);
                variants.hash_stable(hcx, &mut hasher);
                flags.hash_stable(hcx, &mut hasher);
                repr.hash_stable(hcx, &mut hasher);

                hasher.finish()
           })
        });

        hash.hash_stable(hcx, hasher);
    }
}

#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub enum AdtKind { Struct, Union, Enum }

impl Into<DataTypeKind> for AdtKind {
    fn into(self) -> DataTypeKind {
        match self {
            AdtKind::Struct => DataTypeKind::Struct,
            AdtKind::Union => DataTypeKind::Union,
            AdtKind::Enum => DataTypeKind::Enum,
        }
    }
}

bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
        const IS_SIMD            = 1 << 1;
        const IS_TRANSPARENT     = 1 << 2;
        // Internal only for now. If true, don't reorder fields.
        const IS_LINEAR          = 1 << 3;

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_SIMD.bits |
                                   ReprFlags::IS_LINEAR.bits;
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});

/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Debug, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
    pub align: u32,
    pub pack: u32,
    pub flags: ReprFlags,
}

impl_stable_hash_for!(struct ReprOptions {
    align,
    pack,
    int,
    flags
});

impl ReprOptions {
    pub fn new(tcx: TyCtxt<'_, '_, '_>, did: DefId) -> ReprOptions {
        let mut flags = ReprFlags::empty();
        let mut size = None;
        let mut max_align = 0;
        let mut min_pack = 0;
        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(&tcx.sess.parse_sess, attr) {
                flags.insert(match r {
                    attr::ReprC => ReprFlags::IS_C,
                    attr::ReprPacked(pack) => {
                        min_pack = if min_pack > 0 {
                            cmp::min(pack, min_pack)
                        } else {
                            pack
                        };
                        ReprFlags::empty()
                    },
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
                });
            }
        }

        // This is here instead of layout because the choice must make it into metadata.
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.def_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
        ReprOptions { int: size, align: max_align, pack: min_pack, flags: flags }
    }

    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
    pub fn packed(&self) -> bool { self.pack > 0 }
    #[inline]
    pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
    #[inline]
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

    pub fn discr_type(&self) -> attr::IntType {
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
    }

    /// Returns `true` if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
        self.c() || self.int.is_some()
    }

    /// Returns `true` if this `#[repr()]` should inhibit struct field reordering
    /// optimizations, such as with `repr(C)`, `repr(packed(1))`, or `repr(<int>)`.
    pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
        self.flags.intersects(ReprFlags::IS_UNOPTIMISABLE) || self.pack == 1 ||
            self.int.is_some()
    }

    /// Returns `true` if this `#[repr()]` should inhibit union ABI optimisations.
    pub fn inhibit_union_abi_opt(&self) -> bool {
        self.c()
    }

}

impl<'a, 'gcx, 'tcx> AdtDef {
    /// Creates a new `AdtDef`.
    fn new(
        tcx: TyCtxt<'_, '_, '_>,
        did: DefId,
        kind: AdtKind,
        variants: IndexVec<VariantIdx, VariantDef>,
        repr: ReprOptions
    ) -> Self {
        debug!("AdtDef::new({:?}, {:?}, {:?}, {:?})", did, kind, variants, repr);
        let mut flags = AdtFlags::NO_ADT_FLAGS;

        if kind == AdtKind::Enum && tcx.has_attr(did, "non_exhaustive") {
            debug!("found non-exhaustive variant list for {:?}", did);
            flags = flags | AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE;
        }
        flags |= match kind {
            AdtKind::Enum => AdtFlags::IS_ENUM,
            AdtKind::Union => AdtFlags::IS_UNION,
            AdtKind::Struct => AdtFlags::IS_STRUCT,
        };

        if kind == AdtKind::Struct && variants[VariantIdx::new(0)].ctor_def_id.is_some() {
            flags |= AdtFlags::HAS_CTOR;
        }

        let attrs = tcx.get_attrs(did);
        if attr::contains_name(&attrs, "fundamental") {
            flags |= AdtFlags::IS_FUNDAMENTAL;
        }
        if Some(did) == tcx.lang_items().phantom_data() {
            flags |= AdtFlags::IS_PHANTOM_DATA;
        }
        if Some(did) == tcx.lang_items().owned_box() {
            flags |= AdtFlags::IS_BOX;
        }
        if Some(did) == tcx.lang_items().arc() {
            flags |= AdtFlags::IS_ARC;
        }
        if Some(did) == tcx.lang_items().rc() {
            flags |= AdtFlags::IS_RC;
        }

        AdtDef {
            did,
            variants,
            flags,
            repr,
        }
    }

    /// Returns `true` if this is a struct.
    #[inline]
    pub fn is_struct(&self) -> bool {
        self.flags.contains(AdtFlags::IS_STRUCT)
    }

    /// Returns `true` if this is a union.
    #[inline]
    pub fn is_union(&self) -> bool {
        self.flags.contains(AdtFlags::IS_UNION)
    }

    /// Returns `true` if this is a enum.
    #[inline]
    pub fn is_enum(&self) -> bool {
        self.flags.contains(AdtFlags::IS_ENUM)
    }

    /// Returns `true` if the variant list of this ADT is `#[non_exhaustive]`.
    #[inline]
    pub fn is_variant_list_non_exhaustive(&self) -> bool {
        self.flags.contains(AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE)
    }

    /// Returns the kind of the ADT.
    #[inline]
    pub fn adt_kind(&self) -> AdtKind {
        if self.is_enum() {
            AdtKind::Enum
        } else if self.is_union() {
            AdtKind::Union
        } else {
            AdtKind::Struct
        }
    }

    /// Returns a description of this abstract data type.
    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    /// Returns a description of a variant of this abstract data type.
    #[inline]
    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

    /// If this function returns `true`, it implies that `is_struct` must return `true`.
    #[inline]
    pub fn has_ctor(&self) -> bool {
        self.flags.contains(AdtFlags::HAS_CTOR)
    }

    /// Returns `true` if this type is `#[fundamental]` for the purposes
    /// of coherence checking.
    #[inline]
    pub fn is_fundamental(&self) -> bool {
        self.flags.contains(AdtFlags::IS_FUNDAMENTAL)
    }

    /// Returns `true` if this is `PhantomData<T>`.
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
        self.flags.contains(AdtFlags::IS_PHANTOM_DATA)
    }

    /// Returns `true` if this is `Arc<T>`.
    pub fn is_arc(&self) -> bool {
        self.flags.contains(AdtFlags::IS_ARC)
    }

    /// Returns `true` if this is `Rc<T>`.
    pub fn is_rc(&self) -> bool {
        self.flags.contains(AdtFlags::IS_RC)
    }

    /// Returns `true` if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
        self.flags.contains(AdtFlags::IS_BOX)
    }

    /// Returns `true` if this type has a destructor.
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
    }

    /// Asserts this is a struct or union and returns its unique variant.
    pub fn non_enum_variant(&self) -> &VariantDef {
        assert!(self.is_struct() || self.is_union());
        &self.variants[VariantIdx::new(0)]
    }

    #[inline]
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Lrc<GenericPredicates<'gcx>> {
        tcx.predicates_of(self.did)
    }

    /// Returns an iterator over all fields contained
    /// by this ADT.
    #[inline]
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
        self.variants.iter().find(|v| v.def_id == vid)
            .expect("variant_with_id: unknown variant")
    }

    pub fn variant_with_ctor_id(&self, cid: DefId) -> &VariantDef {
        self.variants.iter().find(|v| v.ctor_def_id == Some(cid))
            .expect("variant_with_ctor_id: unknown variant")
    }

    pub fn variant_index_with_id(&self, vid: DefId) -> VariantIdx {
        self.variants.iter_enumerated().find(|(_, v)| v.def_id == vid)
            .expect("variant_index_with_id: unknown variant").0
    }

    pub fn variant_index_with_ctor_id(&self, cid: DefId) -> VariantIdx {
        self.variants.iter_enumerated().find(|(_, v)| v.ctor_def_id == Some(cid))
            .expect("variant_index_with_ctor_id: unknown variant").0
    }

    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
        match def {
            Def::Variant(vid) => self.variant_with_id(vid),
            Def::Ctor(_, cid, ..) => self.variant_with_ctor_id(cid),
            Def::Struct(..) | Def::Union(..) |
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) |
            Def::SelfCtor(..) => self.non_enum_variant(),
            _ => bug!("unexpected def {:?} in variant_of_def", def)
        }
    }

    #[inline]
    pub fn eval_explicit_discr(
        &self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
        expr_did: DefId,
    ) -> Option<Discr<'tcx>> {
        let param_env = ParamEnv::empty();
        let repr_type = self.repr.discr_type();
        let substs = InternalSubsts::identity_for_item(tcx.global_tcx(), expr_did);
        let instance = ty::Instance::new(expr_did, substs);
        let cid = GlobalId {
            instance,
            promoted: None
        };
        match tcx.const_eval(param_env.and(cid)) {
            Ok(val) => {
                // FIXME: Find the right type and use it instead of `val.ty` here
                if let Some(b) = val.assert_bits(tcx.global_tcx(), param_env.and(val.ty)) {
                    trace!("discriminants: {} ({:?})", b, repr_type);
                    Some(Discr {
                        val: b,
                        ty: val.ty,
                    })
                } else {
                    info!("invalid enum discriminant: {:#?}", val);
                    crate::mir::interpret::struct_error(
                        tcx.at(tcx.def_span(expr_did)),
                        "constant evaluation of enum discriminant resulted in non-integer",
                    ).emit();
                    None
                }
            }
            Err(ErrorHandled::Reported) => {
                if !expr_did.is_local() {
                    span_bug!(tcx.def_span(expr_did),
                        "variant discriminant evaluation succeeded \
                         in its crate but failed locally");
                }
                None
            }
            Err(ErrorHandled::TooGeneric) => span_bug!(
                tcx.def_span(expr_did),
                "enum discriminant depends on generic arguments",
            ),
        }
    }

    #[inline]
    pub fn discriminants(
        &'a self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
    ) -> impl Iterator<Item=(VariantIdx, Discr<'tcx>)> + Captures<'gcx> + 'a {
        let repr_type = self.repr.discr_type();
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
        let mut prev_discr = None::<Discr<'tcx>>;
        self.variants.iter_enumerated().map(move |(i, v)| {
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
            if let VariantDiscr::Explicit(expr_did) = v.discr {
                if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
                    discr = new_discr;
                }
            }
            prev_discr = Some(discr);

            (i, discr)
        })
    }

    /// Computes the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: VariantIdx)
                                    -> Discr<'tcx> {
        let (val, offset) = self.discriminant_def_for_variant(variant_index);
        let explicit_value = val
            .and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
            .unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx.global_tcx()));
        explicit_value.checked_add(tcx, offset as u128).0
    }

    /// Yields a `DefId` for the discriminant and an offset to add to it
    /// Alternatively, if there is no explicit discriminant, returns the
    /// inferred discriminant directly.
    pub fn discriminant_def_for_variant(
        &self,
        variant_index: VariantIdx,
    ) -> (Option<DefId>, u32) {
        let mut explicit_index = variant_index.as_u32();
        let expr_did;
        loop {
            match self.variants[VariantIdx::from_u32(explicit_index)].discr {
                ty::VariantDiscr::Relative(0) => {
                    expr_did = None;
                    break;
                },
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
                ty::VariantDiscr::Explicit(did) => {
                    expr_did = Some(did);
                    break;
                }
            }
        }
        (expr_did, variant_index.as_u32() - explicit_index)
    }

    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
        tcx.adt_destructor(self.did)
    }

    /// Returns a list of types such that `Self: Sized` if and only
    /// if that type is `Sized`, or `TyErr` if this type is recursive.
    ///
    /// Oddly enough, checking that the sized-constraint is `Sized` is
    /// actually more expressive than checking all members:
    /// the `Sized` trait is inductive, so an associated type that references
    /// `Self` would prevent its containing ADT from being `Sized`.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer (e.g., issue #31299).
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
        tcx.adt_sized_constraint(self.did).0
    }

    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
        let result = match ty.sty {
            Bool | Char | Int(..) | Uint(..) | Float(..) |
            RawPtr(..) | Ref(..) | FnDef(..) | FnPtr(_) |
            Array(..) | Closure(..) | Generator(..) | Never => {
                vec![]
            }

            Str |
            Dynamic(..) |
            Slice(_) |
            Foreign(..) |
            Error |
            GeneratorWitness(..) => {
                // these are never sized - return the target type
                vec![ty]
            }

            Tuple(ref tys) => {
                match tys.last() {
                    None => vec![],
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
                }
            }

            Adt(adt, substs) => {
                // recursive case
                let adt_tys = adt.sized_constraint(tcx);
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
                       ty, adt_tys);
                adt_tys.iter()
                       .map(|ty| ty.subst(tcx, substs))
                       .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                       .collect()
            }

            Projection(..) | Opaque(..) => {
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
                vec![ty]
            }

            UnnormalizedProjection(..) => bug!("only used with chalk-engine"),

            Param(..) => {
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

                let sized_trait = match tcx.lang_items().sized_trait() {
                    Some(x) => x,
                    _ => return vec![ty]
                };
                let sized_predicate = Binder::dummy(TraitRef {
                    def_id: sized_trait,
                    substs: tcx.mk_substs_trait(ty, &[])
                }).to_predicate();
                let predicates = &tcx.predicates_of(self.did).predicates;
                if predicates.iter().any(|(p, _)| *p == sized_predicate) {
                    vec![]
                } else {
                    vec![ty]
                }
            }

            Placeholder(..) |
            Bound(..) |
            Infer(..) => {
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
}

impl<'a, 'gcx, 'tcx> FieldDef {
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: SubstsRef<'tcx>) -> Ty<'tcx> {
        tcx.type_of(self.did).subst(tcx, subst)
    }
}

/// Represents the various closure traits in the language. This
/// will determine the type of the environment (`self`, in the
/// desugaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug,
         RustcEncodable, RustcDecodable, HashStable)]
pub enum ClosureKind {
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
    Fn,
    FnMut,
    FnOnce,
}

impl<'a, 'tcx> ClosureKind {
    // This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
            ClosureKind::FnMut => {
                tcx.require_lang_item(FnMutTraitLangItem)
            }
            ClosureKind::FnOnce => {
                tcx.require_lang_item(FnOnceTraitLangItem)
            }
        }
    }

    /// Returns `true` if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
            _ => false,
        }
    }

    /// Returns the representative scalar type for this closure kind.
    /// See `TyS::to_opt_closure_kind` for more details.
    pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
        match self {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
    }
}

impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
    }

    /// Iterator that walks the immediate children of `self`. Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
    pub fn walk_shallow(&'tcx self) -> smallvec::IntoIter<walk::TypeWalkerArray<'tcx>> {
        walk::walk_shallow(self)
    }

    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns `false`, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F: FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
    }
}

impl BorrowKind {
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
        match m {
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
        }
    }

    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
        match self {
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
            UniqueImmBorrow => hir::MutMutable,
        }
    }

    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
    }
}

#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
    Owned(Lrc<[ast::Attribute]>),
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

#[derive(Debug, PartialEq, Eq)]
pub enum ImplOverlapKind {
    /// These impls are always allowed to overlap.
    Permitted,
    /// These impls are allowed to overlap, but that raises
    /// an issue #33140 future-compatibility warning.
    ///
    /// Some background: in Rust 1.0, the trait-object types `Send + Sync` (today's
    /// `dyn Send + Sync`) and `Sync + Send` (now `dyn Sync + Send`) were different.
    ///
    /// The widely-used version 0.1.0 of the crate `traitobject` had accidentally relied
    /// that difference, making what reduces to the following set of impls:
    ///
    /// ```
    /// trait Trait {}
    /// impl Trait for dyn Send + Sync {}
    /// impl Trait for dyn Sync + Send {}
    /// ```
    ///
    /// Obviously, once we made these types be identical, that code causes a coherence
    /// error and a fairly big headache for us. However, luckily for us, the trait
    /// `Trait` used in this case is basically a marker trait, and therefore having
    /// overlapping impls for it is sound.
    ///
    /// To handle this, we basically regard the trait as a marker trait, with an additional
    /// future-compatibility warning. To avoid accidentally "stabilizing" this feature,
    /// it has the following restrictions:
    ///
    /// 1. The trait must indeed be a marker-like trait (i.e., no items), and must be
    /// positive impls.
    /// 2. The trait-ref of both impls must be equal.
    /// 3. The trait-ref of both impls must be a trait object type consisting only of
    /// marker traits.
    /// 4. Neither of the impls can have any where-clauses.
    ///
    /// Once `traitobject` 0.1.0 is no longer an active concern, this hack can be removed.
    Issue33140
}

impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
        self.typeck_tables_of(self.hir().body_owner_def_id(body))
    }

    /// Returns an iterator of the `DefId`s for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir().krate().body_ids.iter()`.
    pub fn body_owners(
        self,
    ) -> impl Iterator<Item = DefId> + Captures<'tcx> + Captures<'gcx> + 'a {
        self.hir().krate()
                  .body_ids
                  .iter()
                  .map(move |&body_id| self.hir().body_owner_def_id(body_id))
    }

    pub fn par_body_owners<F: Fn(DefId) + sync::Sync + sync::Send>(self, f: F) {
        par_iter(&self.hir().krate().body_ids).for_each(|&body_id| {
            f(self.hir().body_owner_def_id(body_id))
        });
    }

    pub fn expr_span(self, id: NodeId) -> Span {
        match self.hir().find(id) {
            Some(Node::Expr(e)) => {
                e.span
            }
            Some(f) => {
                bug!("Node id {} is not an expr: {:?}", id, f);
            }
            None => {
                bug!("Node id {} is not present in the node map", id);
            }
        }
    }

    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
            .collect()
    }

    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(hir_id) = self.hir().as_local_hir_id(def_id) {
            match self.hir().get_by_hir_id(hir_id) {
                Node::TraitItem(_) | Node::ImplItem(_) => true,
                _ => false,
            }
        } else {
            match self.describe_def(def_id).expect("no def for def-id") {
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
                                           parent_vis: &hir::Visibility,
                                           trait_item_ref: &hir::TraitItemRef)
                                           -> AssociatedItem {
        let def_id = self.hir().local_def_id_from_hir_id(trait_item_ref.id.hir_id);
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
            hir::AssociatedItemKind::Existential => bug!("only impls can have existentials"),
        };

        AssociatedItem {
            ident: trait_item_ref.ident,
            kind,
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.hir_id, self),
            defaultness: trait_item_ref.defaultness,
            def_id,
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
        let def_id = self.hir().local_def_id_from_hir_id(impl_item_ref.id.hir_id);
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
            hir::AssociatedItemKind::Existential => (ty::AssociatedKind::Existential, false),
        };

        AssociatedItem {
            ident: impl_item_ref.ident,
            kind,
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.hir_id, self),
            defaultness: impl_item_ref.defaultness,
            def_id,
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    pub fn field_index(self, hir_id: hir::HirId, tables: &TypeckTables<'_>) -> usize {
        tables.field_indices().get(hir_id).cloned().expect("no index for a field")
    }

    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
        variant.fields.iter().position(|field| {
            self.adjust_ident(ident, variant.def_id, hir::DUMMY_HIR_ID).0 == field.ident.modern()
        })
    }

    pub fn associated_items(
        self,
        def_id: DefId,
    ) -> AssociatedItemsIterator<'a, 'gcx, 'tcx> {
        // Ideally, we would use `-> impl Iterator` here, but it falls
        // afoul of the conservative "capture [restrictions]" we put
        // in place, so we use a hand-written iterator.
        //
        // [restrictions]: https://github.com/rust-lang/rust/issues/34511#issuecomment-373423999
        AssociatedItemsIterator {
            tcx: self,
            def_ids: self.associated_item_def_ids(def_id),
            next_index: 0,
        }
    }

    /// Returns `true` if the impls are the same polarity and the trait either
    /// has no items or is annotated #[marker] and prevents item overrides.
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId)
                                        -> Option<ImplOverlapKind>
    {
        let is_legit = if self.features().overlapping_marker_traits {
            let trait1_is_empty = self.impl_trait_ref(def_id1)
                .map_or(false, |trait_ref| {
                    self.associated_item_def_ids(trait_ref.def_id).is_empty()
                });
            let trait2_is_empty = self.impl_trait_ref(def_id2)
                .map_or(false, |trait_ref| {
                    self.associated_item_def_ids(trait_ref.def_id).is_empty()
                });
            self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
                && trait1_is_empty
                && trait2_is_empty
        } else {
            let is_marker_impl = |def_id: DefId| -> bool {
                let trait_ref = self.impl_trait_ref(def_id);
                trait_ref.map_or(false, |tr| self.trait_def(tr.def_id).is_marker)
            };
            self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
                && is_marker_impl(def_id1)
                && is_marker_impl(def_id2)
        };

        if is_legit {
            debug!("impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted)",
                  def_id1, def_id2);
            Some(ImplOverlapKind::Permitted)
        } else {
            if let Some(self_ty1) = self.issue33140_self_ty(def_id1) {
                if let Some(self_ty2) = self.issue33140_self_ty(def_id2) {
                    if self_ty1 == self_ty2 {
                        debug!("impls_are_allowed_to_overlap({:?}, {:?}) - issue #33140 HACK",
                               def_id1, def_id2);
                        return Some(ImplOverlapKind::Issue33140);
                    } else {
                        debug!("impls_are_allowed_to_overlap({:?}, {:?}) - found {:?} != {:?}",
                              def_id1, def_id2, self_ty1, self_ty2);
                    }
                }
            }

            debug!("impls_are_allowed_to_overlap({:?}, {:?}) = None",
                  def_id1, def_id2);
            None
        }
    }

    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
        match def {
            Def::Variant(did) => {
                let enum_did = self.parent(did).unwrap();
                self.adt_def(enum_did).variant_with_id(did)
            }
            Def::Struct(did) | Def::Union(did) => {
                self.adt_def(did).non_enum_variant()
            }
            Def::Ctor(hir::CtorOf::Variant, variant_ctor_did, ..) => {
                let variant_did = self.parent(variant_ctor_did).unwrap();
                let enum_did = self.parent(variant_did).unwrap();
                self.adt_def(enum_did).variant_with_ctor_id(variant_ctor_did)
            }
            Def::Ctor(hir::CtorOf::Struct, ctor_did, ..) => {
                let struct_did = self.parent(ctor_did).expect("struct ctor has no parent");
                self.adt_def(struct_did).non_enum_variant()
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

    pub fn item_name(self, id: DefId) -> InternedString {
        if id.index == CRATE_DEF_INDEX {
            self.original_crate_name(id.krate).as_interned_str()
        } else {
            let def_key = self.def_key(id);
            match def_key.disambiguated_data.data {
                // The name of a constructor is that of its parent.
                hir_map::DefPathData::Ctor =>
                    self.item_name(DefId {
                        krate: id.krate,
                        index: def_key.parent.unwrap()
                    }),
                _ => def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                }),
            }
        }
    }

    /// Returns the possibly-auto-generated MIR of a `(DefId, Subst)` pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
                        -> &'gcx Mir<'gcx>
    {
        match instance {
            ty::InstanceDef::Item(did) => {
                self.optimized_mir(did)
            }
            ty::InstanceDef::VtableShim(..) |
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
            ty::InstanceDef::DropGlue(..) |
            ty::InstanceDef::CloneShim(..) => {
                self.mir_shims(instance)
            }
        }
    }

    /// Gets the attributes of a definition.
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
        if let Some(id) = self.hir().as_local_hir_id(did) {
            Attributes::Borrowed(self.hir().attrs_by_hir_id(id))
        } else {
            Attributes::Owned(self.item_attrs(did))
        }
    }

    /// Determines whether an item is annotated with an attribute.
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
        attr::contains_name(&self.get_attrs(did), attr)
    }

    /// Returns `true` if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
        self.trait_def(trait_def_id).has_auto_impl
    }

    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

    /// Given the `DefId` of an impl, returns the `DefId` of the trait it implements.
    /// If it implements no trait, returns `None`.
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
    }

    /// If the given defid describes a method belonging to an impl, returns the
    /// `DefId` of the impl that the method belongs to; otherwise, returns `None`.
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
        let item = if def_id.krate != LOCAL_CRATE {
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
            self.opt_associated_item(def_id)
        };

        item.and_then(|trait_item|
            match trait_item.container {
                TraitContainer(_) => None,
                ImplContainer(def_id) => Some(def_id),
            }
        )
    }

    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
        if impl_did.is_local() {
            let hir_id = self.hir().as_local_hir_id(impl_did).unwrap();
            Ok(self.hir().span_by_hir_id(hir_id))
        } else {
            Err(self.crate_name(impl_did.krate))
        }
    }

    /// Hygienically compares a use-site name (`use_name`) for a field or an associated item with
    /// its supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    /// definition's parent/scope to perform comparison.
    pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
        self.adjust_ident(use_name, def_parent_def_id, hir::DUMMY_HIR_ID).0 == def_name.modern()
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: hir::HirId) -> (Ident, DefId) {
        ident = ident.modern();
        let target_expansion = match scope.krate {
            LOCAL_CRATE => self.hir().definitions().expansion_that_defined(scope.index),
            _ => Mark::root(),
        };
        let scope = match ident.span.adjust(target_expansion) {
            Some(actual_expansion) =>
                self.hir().definitions().parent_module_of_macro_def(actual_expansion),
            None if block == hir::DUMMY_HIR_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
            None => self.hir().get_module_parent_by_hir_id(block),
        };
        (ident, scope)
    }
}

pub struct AssociatedItemsIterator<'a, 'gcx: 'tcx, 'tcx: 'a> {
    tcx: TyCtxt<'a, 'gcx, 'tcx>,
    def_ids: Lrc<Vec<DefId>>,
    next_index: usize,
}

impl Iterator for AssociatedItemsIterator<'_, '_, '_> {
    type Item = AssociatedItem;

    fn next(&mut self) -> Option<AssociatedItem> {
        let def_id = self.def_ids.get(self.next_index)?;
        self.next_index += 1;
        Some(self.tcx.associated_item(*def_id))
    }
}

impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
    pub fn with_freevars<T, F>(self, fid: HirId, f: F) -> T where
        F: FnOnce(&[hir::Freevar]) -> T,
    {
        let def_id = self.hir().local_def_id_from_hir_id(fid);
        match self.freevars(def_id) {
            None => f(&[]),
            Some(d) => f(&d),
        }
    }
}

fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> AssociatedItem {
    let id = tcx.hir().as_local_hir_id(def_id).unwrap();
    let parent_id = tcx.hir().get_parent_item(id);
    let parent_def_id = tcx.hir().local_def_id_from_hir_id(parent_id);
    let parent_item = tcx.hir().expect_item_by_hir_id(parent_id);
    match parent_item.node {
        hir::ItemKind::Impl(.., ref impl_item_refs) => {
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.hir_id == id) {
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
            }
        }

        hir::ItemKind::Trait(.., ref trait_item_refs) => {
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.hir_id == id) {
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
            }
        }

        _ => { }
    }

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
}

#[derive(Clone, HashStable)]
pub struct AdtSizedConstraint<'tcx>(pub &'tcx [Ty<'tcx>]);

/// Calculates the `Sized` constraint.
///
/// In fact, there are only a few options for the types in the constraint:
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
///     - a Error, if a type contained itself. The representability
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
                                  -> AdtSizedConstraint<'tcx> {
    let def = tcx.adt_def(def_id);

    let result = tcx.mk_type_list(def.variants.iter().flat_map(|v| {
        v.fields.last()
    }).flat_map(|f| {
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
    }));

    debug!("adt_sized_constraint: {:?} => {:?}", def, result);

    AdtSizedConstraint(result)
}

fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
                                     -> Lrc<Vec<DefId>> {
    let id = tcx.hir().as_local_hir_id(def_id).unwrap();
    let item = tcx.hir().expect_item_by_hir_id(id);
    let vec: Vec<_> = match item.node {
        hir::ItemKind::Trait(.., ref trait_item_refs) => {
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir().local_def_id_from_hir_id(id.hir_id))
                           .collect()
        }
        hir::ItemKind::Impl(.., ref impl_item_refs) => {
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir().local_def_id_from_hir_id(id.hir_id))
                          .collect()
        }
        hir::ItemKind::TraitAlias(..) => vec![],
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
    Lrc::new(vec)
}

fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
    tcx.hir().span_if_local(def_id).unwrap()
}

/// If the given `DefId` describes an item belonging to a trait,
/// returns the `DefId` of the trait that the trait item belongs to;
/// otherwise, returns `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

/// Yields the parent function's `DefId` if `def_id` is an `impl Trait` definition.
pub fn is_impl_trait_defn(tcx: TyCtxt<'_, '_, '_>, def_id: DefId) -> Option<DefId> {
    if let Some(hir_id) = tcx.hir().as_local_hir_id(def_id) {
        if let Node::Item(item) = tcx.hir().get_by_hir_id(hir_id) {
            if let hir::ItemKind::Existential(ref exist_ty) = item.node {
                return exist_ty.impl_trait_fn;
            }
        }
    }
    None
}

/// See `ParamEnv` struct definition for details.
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                       def_id: DefId)
                       -> ParamEnv<'tcx>
{
    // The param_env of an impl Trait type is its defining function's param_env
    if let Some(parent) = is_impl_trait_defn(tcx, def_id) {
        return param_env(tcx, parent);
    }
    // Compute the bounds on Self and the type parameters.

    let InstantiatedPredicates { predicates } =
        tcx.predicates_of(def_id).instantiate_identity(tcx);

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

    let unnormalized_env = ty::ParamEnv::new(
        tcx.intern_predicates(&predicates),
        traits::Reveal::UserFacing,
        if tcx.sess.opts.debugging_opts.chalk { Some(def_id) } else { None }
    );

    let body_id = tcx.hir().as_local_hir_id(def_id).map_or(hir::DUMMY_HIR_ID, |id| {
        tcx.hir().maybe_body_owned_by_by_hir_id(id).map_or(id, |body| body.hir_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}

fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> CrateDisambiguator {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        crate_num: CrateNum)
                        -> Svh {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.hir().crate_hash
}

fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        instance_def: InstanceDef<'tcx>)
                                        -> usize {
    match instance_def {
        InstanceDef::Item(..) |
        InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        },
        // Estimate the size of other compiler-generated shims to be 1.
        _ => 1
    }
}

/// If `def_id` is an issue 33140 hack impl, returns its self type; otherwise, returns `None`.
///
/// See [`ImplOverlapKind::Issue33140`] for more details.
fn issue33140_self_ty<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                def_id: DefId)
                                -> Option<Ty<'tcx>>
{
    debug!("issue33140_self_ty({:?})", def_id);

    let trait_ref = tcx.impl_trait_ref(def_id).unwrap_or_else(|| {
        bug!("issue33140_self_ty called on inherent impl {:?}", def_id)
    });

    debug!("issue33140_self_ty({:?}), trait-ref={:?}", def_id, trait_ref);

    let is_marker_like =
        tcx.impl_polarity(def_id) == hir::ImplPolarity::Positive &&
        tcx.associated_item_def_ids(trait_ref.def_id).is_empty();

    // Check whether these impls would be ok for a marker trait.
    if !is_marker_like {
        debug!("issue33140_self_ty - not marker-like!");
        return None;
    }

    // impl must be `impl Trait for dyn Marker1 + Marker2 + ...`
    if trait_ref.substs.len() != 1 {
        debug!("issue33140_self_ty - impl has substs!");
        return None;
    }

    let predicates = tcx.predicates_of(def_id);
    if predicates.parent.is_some() || !predicates.predicates.is_empty() {
        debug!("issue33140_self_ty - impl has predicates {:?}!", predicates);
        return None;
    }

    let self_ty = trait_ref.self_ty();
    let self_ty_matches = match self_ty.sty {
        ty::Dynamic(ref data, ty::ReStatic) => data.principal().is_none(),
        _ => false
    };

    if self_ty_matches {
        debug!("issue33140_self_ty - MATCHES!");
        Some(self_ty)
    } else {
        debug!("issue33140_self_ty - non-matching self type");
        None
    }
}

pub fn provide(providers: &mut ty::query::Providers<'_>) {
    context::provide(providers);
    erase_regions::provide(providers);
    layout::provide(providers);
    util::provide(providers);
    constness::provide(providers);
    *providers = ty::query::Providers {
        associated_item,
        associated_item_def_ids,
        adt_sized_constraint,
        def_span,
        param_env,
        trait_of_item,
        crate_disambiguator,
        original_crate_name,
        crate_hash,
        trait_impls_of: trait_def::trait_impls_of_provider,
        instance_def_size_estimate,
        issue33140_self_ty,
        ..*providers
    };
}

/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
#[derive(Clone, Debug, Default, HashStable)]
pub struct CrateInherentImpls {
    pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

impl_stable_hash_for!(struct self::SymbolName {
    name
});

impl SymbolName {
    pub fn new(name: &str) -> SymbolName {
        SymbolName {
            name: Symbol::intern(name).as_interned_str()
        }
    }

    pub fn as_str(&self) -> LocalInternedString {
        self.name.as_str()
    }
}

impl fmt::Display for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}

impl fmt::Debug for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}