summaryrefslogtreecommitdiff
path: root/src/librustc_borrowck/dataflow.rs
blob: 832b69cb2acc4d53860505a9d9e11028ba1bdb40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.


//! A module for propagating forward dataflow information. The analysis
//! assumes that the items to be propagated can be represented as bits
//! and thus uses bitvectors. Your job is simply to specify the so-called
//! GEN and KILL bits for each expression.

use rustc::cfg;
use rustc::cfg::CFGIndex;
use rustc::ty::TyCtxt;
use std::io;
use std::mem;
use std::usize;
use syntax::print::pprust::PrintState;

use rustc_data_structures::graph::implementation::OUTGOING;

use rustc::util::nodemap::FxHashMap;
use rustc::hir;
use rustc::hir::intravisit::{self, IdRange};
use rustc::hir::print as pprust;


#[derive(Copy, Clone, Debug)]
pub enum EntryOrExit {
    Entry,
    Exit,
}

#[derive(Clone)]
pub struct DataFlowContext<'a, 'tcx: 'a, O> {
    tcx: TyCtxt<'a, 'tcx, 'tcx>,

    /// a name for the analysis using this dataflow instance
    analysis_name: &'static str,

    /// the data flow operator
    oper: O,

    /// number of bits to propagate per id
    bits_per_id: usize,

    /// number of words we will use to store bits_per_id.
    /// equal to bits_per_id/usize::BITS rounded up.
    words_per_id: usize,

    // mapping from node to cfg node index
    // FIXME (#6298): Shouldn't this go with CFG?
    local_id_to_index: FxHashMap<hir::ItemLocalId, Vec<CFGIndex>>,

    // Bit sets per cfg node.  The following three fields (`gens`, `kills`,
    // and `on_entry`) all have the same structure. For each id in
    // `id_range`, there is a range of words equal to `words_per_id`.
    // So, to access the bits for any given id, you take a slice of
    // the full vector (see the method `compute_id_range()`).

    /// bits generated as we exit the cfg node. Updated by `add_gen()`.
    gens: Vec<usize>,

    /// bits killed as we exit the cfg node, or non-locally jump over
    /// it. Updated by `add_kill(KillFrom::ScopeEnd)`.
    scope_kills: Vec<usize>,

    /// bits killed as we exit the cfg node directly; if it is jumped
    /// over, e.g. via `break`, the kills are not reflected in the
    /// jump's effects. Updated by `add_kill(KillFrom::Execution)`.
    action_kills: Vec<usize>,

    /// bits that are valid on entry to the cfg node. Updated by
    /// `propagate()`.
    on_entry: Vec<usize>,
}

pub trait BitwiseOperator {
    /// Joins two predecessor bits together, typically either `|` or `&`
    fn join(&self, succ: usize, pred: usize) -> usize;
}

/// Parameterization for the precise form of data flow that is used.
pub trait DataFlowOperator : BitwiseOperator {
    /// Specifies the initial value for each bit in the `on_entry` set
    fn initial_value(&self) -> bool;
}

struct PropagationContext<'a, 'b: 'a, 'tcx: 'b, O: 'a> {
    dfcx: &'a mut DataFlowContext<'b, 'tcx, O>,
    changed: bool
}

fn get_cfg_indices<'a>(id: hir::ItemLocalId,
                       index: &'a FxHashMap<hir::ItemLocalId, Vec<CFGIndex>>)
                       -> &'a [CFGIndex] {
    index.get(&id).map_or(&[], |v| &v[..])
}

impl<'a, 'tcx, O:DataFlowOperator> DataFlowContext<'a, 'tcx, O> {
    fn has_bitset_for_local_id(&self, n: hir::ItemLocalId) -> bool {
        assert!(n != hir::DUMMY_ITEM_LOCAL_ID);
        self.local_id_to_index.contains_key(&n)
    }
}

impl<'a, 'tcx, O:DataFlowOperator> pprust::PpAnn for DataFlowContext<'a, 'tcx, O> {
    fn nested(&self, state: &mut pprust::State, nested: pprust::Nested) -> io::Result<()> {
        pprust::PpAnn::nested(&self.tcx.hir, state, nested)
    }
    fn pre(&self,
           ps: &mut pprust::State,
           node: pprust::AnnNode) -> io::Result<()> {
        let id = match node {
            pprust::AnnNode::Name(_) => return Ok(()),
            pprust::AnnNode::Expr(expr) => expr.hir_id.local_id,
            pprust::AnnNode::Block(blk) => blk.hir_id.local_id,
            pprust::AnnNode::Item(_) |
            pprust::AnnNode::SubItem(_) => return Ok(()),
            pprust::AnnNode::Pat(pat) => pat.hir_id.local_id
        };

        if !self.has_bitset_for_local_id(id) {
            return Ok(());
        }

        assert!(self.bits_per_id > 0);
        let indices = get_cfg_indices(id, &self.local_id_to_index);
        for &cfgidx in indices {
            let (start, end) = self.compute_id_range(cfgidx);
            let on_entry = &self.on_entry[start.. end];
            let entry_str = bits_to_string(on_entry);

            let gens = &self.gens[start.. end];
            let gens_str = if gens.iter().any(|&u| u != 0) {
                format!(" gen: {}", bits_to_string(gens))
            } else {
                String::new()
            };

            let action_kills = &self.action_kills[start .. end];
            let action_kills_str = if action_kills.iter().any(|&u| u != 0) {
                format!(" action_kill: {}", bits_to_string(action_kills))
            } else {
                String::new()
            };

            let scope_kills = &self.scope_kills[start .. end];
            let scope_kills_str = if scope_kills.iter().any(|&u| u != 0) {
                format!(" scope_kill: {}", bits_to_string(scope_kills))
            } else {
                String::new()
            };

            ps.synth_comment(
                format!("id {}: {}{}{}{}", id.as_usize(), entry_str,
                        gens_str, action_kills_str, scope_kills_str))?;
            ps.s.space()?;
        }
        Ok(())
    }
}

fn build_local_id_to_index(body: Option<&hir::Body>,
                           cfg: &cfg::CFG)
                           -> FxHashMap<hir::ItemLocalId, Vec<CFGIndex>> {
    let mut index = FxHashMap();

    // FIXME(#15020) Would it be better to fold formals from decl
    // into cfg itself?  i.e. introduce a fn-based flow-graph in
    // addition to the current block-based flow-graph, rather than
    // have to put traversals like this here?
    if let Some(body) = body {
        add_entries_from_fn_body(&mut index, body, cfg.entry);
    }

    cfg.graph.each_node(|node_idx, node| {
        if let cfg::CFGNodeData::AST(id) = node.data {
            index.entry(id).or_default().push(node_idx);
        }
        true
    });

    return index;

    /// Add mappings from the ast nodes for the formal bindings to
    /// the entry-node in the graph.
    fn add_entries_from_fn_body(index: &mut FxHashMap<hir::ItemLocalId, Vec<CFGIndex>>,
                                body: &hir::Body,
                                entry: CFGIndex) {
        use rustc::hir::intravisit::Visitor;

        struct Formals<'a> {
            entry: CFGIndex,
            index: &'a mut FxHashMap<hir::ItemLocalId, Vec<CFGIndex>>,
        }
        let mut formals = Formals { entry: entry, index: index };
        for arg in &body.arguments {
            formals.visit_pat(&arg.pat);
        }
        impl<'a, 'v> Visitor<'v> for Formals<'a> {
            fn nested_visit_map<'this>(&'this mut self) -> intravisit::NestedVisitorMap<'this, 'v> {
                intravisit::NestedVisitorMap::None
            }

            fn visit_pat(&mut self, p: &hir::Pat) {
                self.index.entry(p.hir_id.local_id).or_default().push(self.entry);
                intravisit::walk_pat(self, p)
            }
        }
    }
}

/// Flag used by `add_kill` to indicate whether the provided kill
/// takes effect only when control flows directly through the node in
/// question, or if the kill's effect is associated with any
/// control-flow directly through or indirectly over the node.
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum KillFrom {
    /// A `ScopeEnd` kill is one that takes effect when any control
    /// flow goes over the node. A kill associated with the end of the
    /// scope of a variable declaration `let x;` is an example of a
    /// `ScopeEnd` kill.
    ScopeEnd,

    /// An `Execution` kill is one that takes effect only when control
    /// flow goes through the node to completion. A kill associated
    /// with an assignment statement `x = expr;` is an example of an
    /// `Execution` kill.
    Execution,
}

impl<'a, 'tcx, O:DataFlowOperator> DataFlowContext<'a, 'tcx, O> {
    pub fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>,
               analysis_name: &'static str,
               body: Option<&hir::Body>,
               cfg: &cfg::CFG,
               oper: O,
               id_range: IdRange,
               bits_per_id: usize) -> DataFlowContext<'a, 'tcx, O> {
        let usize_bits = mem::size_of::<usize>() * 8;
        let words_per_id = (bits_per_id + usize_bits - 1) / usize_bits;
        let num_nodes = cfg.graph.all_nodes().len();

        debug!("DataFlowContext::new(analysis_name: {}, id_range={:?}, \
                                     bits_per_id={}, words_per_id={}) \
                                     num_nodes: {}",
               analysis_name, id_range, bits_per_id, words_per_id,
               num_nodes);

        let entry = if oper.initial_value() { usize::MAX } else {0};

        let zeroes = vec![0; num_nodes * words_per_id];
        let gens = zeroes.clone();
        let kills1 = zeroes.clone();
        let kills2 = zeroes;
        let on_entry = vec![entry; num_nodes * words_per_id];

        let local_id_to_index = build_local_id_to_index(body, cfg);

        DataFlowContext {
            tcx,
            analysis_name,
            words_per_id,
            local_id_to_index,
            bits_per_id,
            oper,
            gens,
            action_kills: kills1,
            scope_kills: kills2,
            on_entry,
        }
    }

    pub fn add_gen(&mut self, id: hir::ItemLocalId, bit: usize) {
        //! Indicates that `id` generates `bit`
        debug!("{} add_gen(id={:?}, bit={})",
               self.analysis_name, id, bit);
        assert!(self.local_id_to_index.contains_key(&id));
        assert!(self.bits_per_id > 0);

        let indices = get_cfg_indices(id, &self.local_id_to_index);
        for &cfgidx in indices {
            let (start, end) = self.compute_id_range(cfgidx);
            let gens = &mut self.gens[start.. end];
            set_bit(gens, bit);
        }
    }

    pub fn add_kill(&mut self, kind: KillFrom, id: hir::ItemLocalId, bit: usize) {
        //! Indicates that `id` kills `bit`
        debug!("{} add_kill(id={:?}, bit={})",
               self.analysis_name, id, bit);
        assert!(self.local_id_to_index.contains_key(&id));
        assert!(self.bits_per_id > 0);

        let indices = get_cfg_indices(id, &self.local_id_to_index);
        for &cfgidx in indices {
            let (start, end) = self.compute_id_range(cfgidx);
            let kills = match kind {
                KillFrom::Execution => &mut self.action_kills[start.. end],
                KillFrom::ScopeEnd =>  &mut self.scope_kills[start.. end],
            };
            set_bit(kills, bit);
        }
    }

    fn apply_gen_kill(&self, cfgidx: CFGIndex, bits: &mut [usize]) {
        //! Applies the gen and kill sets for `cfgidx` to `bits`
        debug!("{} apply_gen_kill(cfgidx={:?}, bits={}) [before]",
               self.analysis_name, cfgidx, mut_bits_to_string(bits));
        assert!(self.bits_per_id > 0);

        let (start, end) = self.compute_id_range(cfgidx);
        let gens = &self.gens[start.. end];
        bitwise(bits, gens, &Union);
        let kills = &self.action_kills[start.. end];
        bitwise(bits, kills, &Subtract);
        let kills = &self.scope_kills[start.. end];
        bitwise(bits, kills, &Subtract);

        debug!("{} apply_gen_kill(cfgidx={:?}, bits={}) [after]",
               self.analysis_name, cfgidx, mut_bits_to_string(bits));
    }

    fn compute_id_range(&self, cfgidx: CFGIndex) -> (usize, usize) {
        let n = cfgidx.node_id();
        let start = n * self.words_per_id;
        let end = start + self.words_per_id;

        assert!(start < self.gens.len());
        assert!(end <= self.gens.len());
        assert!(self.gens.len() == self.action_kills.len());
        assert!(self.gens.len() == self.scope_kills.len());
        assert!(self.gens.len() == self.on_entry.len());

        (start, end)
    }


    pub fn each_bit_on_entry<F>(&self, id: hir::ItemLocalId, mut f: F) -> bool where
        F: FnMut(usize) -> bool,
    {
        //! Iterates through each bit that is set on entry to `id`.
        //! Only useful after `propagate()` has been called.
        if !self.has_bitset_for_local_id(id) {
            return true;
        }
        let indices = get_cfg_indices(id, &self.local_id_to_index);
        for &cfgidx in indices {
            if !self.each_bit_for_node(EntryOrExit::Entry, cfgidx, |i| f(i)) {
                return false;
            }
        }
        return true;
    }

    pub fn each_bit_for_node<F>(&self, e: EntryOrExit, cfgidx: CFGIndex, f: F) -> bool where
        F: FnMut(usize) -> bool,
    {
        //! Iterates through each bit that is set on entry/exit to `cfgidx`.
        //! Only useful after `propagate()` has been called.

        if self.bits_per_id == 0 {
            // Skip the surprisingly common degenerate case.  (Note
            // compute_id_range requires self.words_per_id > 0.)
            return true;
        }

        let (start, end) = self.compute_id_range(cfgidx);
        let on_entry = &self.on_entry[start.. end];
        let temp_bits;
        let slice = match e {
            EntryOrExit::Entry => on_entry,
            EntryOrExit::Exit => {
                let mut t = on_entry.to_vec();
                self.apply_gen_kill(cfgidx, &mut t);
                temp_bits = t;
                &temp_bits[..]
            }
        };
        debug!("{} each_bit_for_node({:?}, cfgidx={:?}) bits={}",
               self.analysis_name, e, cfgidx, bits_to_string(slice));
        self.each_bit(slice, f)
    }

    pub fn each_gen_bit<F>(&self, id: hir::ItemLocalId, mut f: F) -> bool where
        F: FnMut(usize) -> bool,
    {
        //! Iterates through each bit in the gen set for `id`.
        if !self.has_bitset_for_local_id(id) {
            return true;
        }

        if self.bits_per_id == 0 {
            // Skip the surprisingly common degenerate case.  (Note
            // compute_id_range requires self.words_per_id > 0.)
            return true;
        }

        let indices = get_cfg_indices(id, &self.local_id_to_index);
        for &cfgidx in indices {
            let (start, end) = self.compute_id_range(cfgidx);
            let gens = &self.gens[start.. end];
            debug!("{} each_gen_bit(id={:?}, gens={})",
                   self.analysis_name, id, bits_to_string(gens));
            if !self.each_bit(gens, |i| f(i)) {
                return false;
            }
        }
        return true;
    }

    fn each_bit<F>(&self, words: &[usize], mut f: F) -> bool where
        F: FnMut(usize) -> bool,
    {
        //! Helper for iterating over the bits in a bit set.
        //! Returns false on the first call to `f` that returns false;
        //! if all calls to `f` return true, then returns true.

        let usize_bits = mem::size_of::<usize>() * 8;
        for (word_index, &word) in words.iter().enumerate() {
            if word != 0 {
                let base_index = word_index * usize_bits;
                for offset in 0..usize_bits {
                    let bit = 1 << offset;
                    if (word & bit) != 0 {
                        // NB: we round up the total number of bits
                        // that we store in any given bit set so that
                        // it is an even multiple of usize::BITS.  This
                        // means that there may be some stray bits at
                        // the end that do not correspond to any
                        // actual value.  So before we callback, check
                        // whether the bit_index is greater than the
                        // actual value the user specified and stop
                        // iterating if so.
                        let bit_index = base_index + offset as usize;
                        if bit_index >= self.bits_per_id {
                            return true;
                        } else if !f(bit_index) {
                            return false;
                        }
                    }
                }
            }
        }
        return true;
    }

    pub fn add_kills_from_flow_exits(&mut self, cfg: &cfg::CFG) {
        //! Whenever you have a `break` or `continue` statement, flow
        //! exits through any number of enclosing scopes on its way to
        //! the new destination. This function infers the kill bits of
        //! those control operators based on the kill bits associated
        //! with those scopes.
        //!
        //! This is usually called (if it is called at all), after
        //! all add_gen and add_kill calls, but before propagate.

        debug!("{} add_kills_from_flow_exits", self.analysis_name);
        if self.bits_per_id == 0 {
            // Skip the surprisingly common degenerate case.  (Note
            // compute_id_range requires self.words_per_id > 0.)
            return;
        }
        cfg.graph.each_edge(|_edge_index, edge| {
            let flow_exit = edge.source();
            let (start, end) = self.compute_id_range(flow_exit);
            let mut orig_kills = self.scope_kills[start.. end].to_vec();

            let mut changed = false;
            for &id in &edge.data.exiting_scopes {
                let opt_cfg_idx = self.local_id_to_index.get(&id);
                match opt_cfg_idx {
                    Some(indices) => {
                        for &cfg_idx in indices {
                            let (start, end) = self.compute_id_range(cfg_idx);
                            let kills = &self.scope_kills[start.. end];
                            if bitwise(&mut orig_kills, kills, &Union) {
                                debug!("scope exits: scope id={:?} \
                                        (node={:?} of {:?}) added killset: {}",
                                       id, cfg_idx, indices,
                                       bits_to_string(kills));
                                changed = true;
                            }
                        }
                    }
                    None => {
                        debug!("{} add_kills_from_flow_exits flow_exit={:?} \
                                no cfg_idx for exiting_scope={:?}",
                               self.analysis_name, flow_exit, id);
                    }
                }
            }

            if changed {
                let bits = &mut self.scope_kills[start.. end];
                debug!("{} add_kills_from_flow_exits flow_exit={:?} bits={} [before]",
                       self.analysis_name, flow_exit, mut_bits_to_string(bits));
                bits.copy_from_slice(&orig_kills[..]);
                debug!("{} add_kills_from_flow_exits flow_exit={:?} bits={} [after]",
                       self.analysis_name, flow_exit, mut_bits_to_string(bits));
            }
            true
        });
    }
}

impl<'a, 'tcx, O:DataFlowOperator+Clone+'static> DataFlowContext<'a, 'tcx, O> {
//                                ^^^^^^^^^^^^^ only needed for pretty printing
    pub fn propagate(&mut self, cfg: &cfg::CFG, body: &hir::Body) {
        //! Performs the data flow analysis.

        if self.bits_per_id == 0 {
            // Optimize the surprisingly common degenerate case.
            return;
        }

        {
            let words_per_id = self.words_per_id;
            let mut propcx = PropagationContext {
                dfcx: &mut *self,
                changed: true
            };

            let nodes_po = cfg.graph.nodes_in_postorder(OUTGOING, cfg.entry);
            let mut temp = vec![0; words_per_id];
            let mut num_passes = 0;
            while propcx.changed {
                num_passes += 1;
                propcx.changed = false;
                propcx.reset(&mut temp);
                propcx.walk_cfg(cfg, &nodes_po, &mut temp);
            }
            debug!("finished in {} iterations", num_passes);
        }

        debug!("Dataflow result for {}:", self.analysis_name);
        debug!("{}", pprust::to_string(self, |s| {
            s.cbox(pprust::indent_unit)?;
            s.ibox(0)?;
            s.print_expr(&body.value)
        }));
    }
}

impl<'a, 'b, 'tcx, O:DataFlowOperator> PropagationContext<'a, 'b, 'tcx, O> {
    fn walk_cfg(&mut self,
                cfg: &cfg::CFG,
                nodes_po: &[CFGIndex],
                in_out: &mut [usize]) {
        debug!("DataFlowContext::walk_cfg(in_out={}) {}",
               bits_to_string(in_out), self.dfcx.analysis_name);
        assert!(self.dfcx.bits_per_id > 0);

        // Iterate over nodes in reverse postorder
        for &node_index in nodes_po.iter().rev() {
            let node = cfg.graph.node(node_index);
            debug!("DataFlowContext::walk_cfg idx={:?} id={:?} begin in_out={}",
                   node_index, node.data.id(), bits_to_string(in_out));

            let (start, end) = self.dfcx.compute_id_range(node_index);

            // Initialize local bitvector with state on-entry.
            in_out.copy_from_slice(&self.dfcx.on_entry[start.. end]);

            // Compute state on-exit by applying transfer function to
            // state on-entry.
            self.dfcx.apply_gen_kill(node_index, in_out);

            // Propagate state on-exit from node into its successors.
            self.propagate_bits_into_graph_successors_of(in_out, cfg, node_index);
        }
    }

    fn reset(&mut self, bits: &mut [usize]) {
        let e = if self.dfcx.oper.initial_value() {usize::MAX} else {0};
        for b in bits {
            *b = e;
        }
    }

    fn propagate_bits_into_graph_successors_of(&mut self,
                                               pred_bits: &[usize],
                                               cfg: &cfg::CFG,
                                               cfgidx: CFGIndex) {
        for (_, edge) in cfg.graph.outgoing_edges(cfgidx) {
            self.propagate_bits_into_entry_set_for(pred_bits, edge);
        }
    }

    fn propagate_bits_into_entry_set_for(&mut self,
                                         pred_bits: &[usize],
                                         edge: &cfg::CFGEdge) {
        let source = edge.source();
        let cfgidx = edge.target();
        debug!("{} propagate_bits_into_entry_set_for(pred_bits={}, {:?} to {:?})",
               self.dfcx.analysis_name, bits_to_string(pred_bits), source, cfgidx);
        assert!(self.dfcx.bits_per_id > 0);

        let (start, end) = self.dfcx.compute_id_range(cfgidx);
        let changed = {
            // (scoping mutable borrow of self.dfcx.on_entry)
            let on_entry = &mut self.dfcx.on_entry[start.. end];
            bitwise(on_entry, pred_bits, &self.dfcx.oper)
        };
        if changed {
            debug!("{} changed entry set for {:?} to {}",
                   self.dfcx.analysis_name, cfgidx,
                   bits_to_string(&self.dfcx.on_entry[start.. end]));
            self.changed = true;
        }
    }
}

fn mut_bits_to_string(words: &mut [usize]) -> String {
    bits_to_string(words)
}

fn bits_to_string(words: &[usize]) -> String {
    let mut result = String::new();
    let mut sep = '[';

    // Note: this is a little endian printout of bytes.

    for &word in words {
        let mut v = word;
        for _ in 0..mem::size_of::<usize>() {
            result.push(sep);
            result.push_str(&format!("{:02x}", v & 0xFF));
            v >>= 8;
            sep = '-';
        }
    }
    result.push(']');
    return result
}

#[inline]
fn bitwise<Op:BitwiseOperator>(out_vec: &mut [usize],
                               in_vec: &[usize],
                               op: &Op) -> bool {
    assert_eq!(out_vec.len(), in_vec.len());
    let mut changed = false;
    for (out_elt, in_elt) in out_vec.iter_mut().zip(in_vec) {
        let old_val = *out_elt;
        let new_val = op.join(old_val, *in_elt);
        *out_elt = new_val;
        changed |= old_val != new_val;
    }
    changed
}

fn set_bit(words: &mut [usize], bit: usize) -> bool {
    debug!("set_bit: words={} bit={}",
           mut_bits_to_string(words), bit_str(bit));
    let usize_bits = mem::size_of::<usize>() * 8;
    let word = bit / usize_bits;
    let bit_in_word = bit % usize_bits;
    let bit_mask = 1 << bit_in_word;
    debug!("word={} bit_in_word={} bit_mask={}", word, bit_in_word, bit_mask);
    let oldv = words[word];
    let newv = oldv | bit_mask;
    words[word] = newv;
    oldv != newv
}

fn bit_str(bit: usize) -> String {
    let byte = bit >> 3;
    let lobits = 1 << (bit & 0b111);
    format!("[{}:{}-{:02x}]", bit, byte, lobits)
}

struct Union;
impl BitwiseOperator for Union {
    fn join(&self, a: usize, b: usize) -> usize { a | b }
}
struct Subtract;
impl BitwiseOperator for Subtract {
    fn join(&self, a: usize, b: usize) -> usize { a & !b }
}