summaryrefslogtreecommitdiff
path: root/src/librustc_mir/monomorphize/partitioning.rs
blob: a53325172901d1c440e5e6d1148e0e8e3f1f9065 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Partitioning Codegen Units for Incremental Compilation
//! ======================================================
//!
//! The task of this module is to take the complete set of translation items of
//! a crate and produce a set of codegen units from it, where a codegen unit
//! is a named set of (translation-item, linkage) pairs. That is, this module
//! decides which translation item appears in which codegen units with which
//! linkage. The following paragraphs describe some of the background on the
//! partitioning scheme.
//!
//! The most important opportunity for saving on compilation time with
//! incremental compilation is to avoid re-translating and re-optimizing code.
//! Since the unit of translation and optimization for LLVM is "modules" or, how
//! we call them "codegen units", the particulars of how much time can be saved
//! by incremental compilation are tightly linked to how the output program is
//! partitioned into these codegen units prior to passing it to LLVM --
//! especially because we have to treat codegen units as opaque entities once
//! they are created: There is no way for us to incrementally update an existing
//! LLVM module and so we have to build any such module from scratch if it was
//! affected by some change in the source code.
//!
//! From that point of view it would make sense to maximize the number of
//! codegen units by, for example, putting each function into its own module.
//! That way only those modules would have to be re-compiled that were actually
//! affected by some change, minimizing the number of functions that could have
//! been re-used but just happened to be located in a module that is
//! re-compiled.
//!
//! However, since LLVM optimization does not work across module boundaries,
//! using such a highly granular partitioning would lead to very slow runtime
//! code since it would effectively prohibit inlining and other inter-procedure
//! optimizations. We want to avoid that as much as possible.
//!
//! Thus we end up with a trade-off: The bigger the codegen units, the better
//! LLVM's optimizer can do its work, but also the smaller the compilation time
//! reduction we get from incremental compilation.
//!
//! Ideally, we would create a partitioning such that there are few big codegen
//! units with few interdependencies between them. For now though, we use the
//! following heuristic to determine the partitioning:
//!
//! - There are two codegen units for every source-level module:
//! - One for "stable", that is non-generic, code
//! - One for more "volatile" code, i.e. monomorphized instances of functions
//!   defined in that module
//!
//! In order to see why this heuristic makes sense, let's take a look at when a
//! codegen unit can get invalidated:
//!
//! 1. The most straightforward case is when the BODY of a function or global
//! changes. Then any codegen unit containing the code for that item has to be
//! re-compiled. Note that this includes all codegen units where the function
//! has been inlined.
//!
//! 2. The next case is when the SIGNATURE of a function or global changes. In
//! this case, all codegen units containing a REFERENCE to that item have to be
//! re-compiled. This is a superset of case 1.
//!
//! 3. The final and most subtle case is when a REFERENCE to a generic function
//! is added or removed somewhere. Even though the definition of the function
//! might be unchanged, a new REFERENCE might introduce a new monomorphized
//! instance of this function which has to be placed and compiled somewhere.
//! Conversely, when removing a REFERENCE, it might have been the last one with
//! that particular set of generic arguments and thus we have to remove it.
//!
//! From the above we see that just using one codegen unit per source-level
//! module is not such a good idea, since just adding a REFERENCE to some
//! generic item somewhere else would invalidate everything within the module
//! containing the generic item. The heuristic above reduces this detrimental
//! side-effect of references a little by at least not touching the non-generic
//! code of the module.
//!
//! A Note on Inlining
//! ------------------
//! As briefly mentioned above, in order for LLVM to be able to inline a
//! function call, the body of the function has to be available in the LLVM
//! module where the call is made. This has a few consequences for partitioning:
//!
//! - The partitioning algorithm has to take care of placing functions into all
//!   codegen units where they should be available for inlining. It also has to
//!   decide on the correct linkage for these functions.
//!
//! - The partitioning algorithm has to know which functions are likely to get
//!   inlined, so it can distribute function instantiations accordingly. Since
//!   there is no way of knowing for sure which functions LLVM will decide to
//!   inline in the end, we apply a heuristic here: Only functions marked with
//!   `#[inline]` are considered for inlining by the partitioner. The current
//!   implementation will not try to determine if a function is likely to be
//!   inlined by looking at the functions definition.
//!
//! Note though that as a side-effect of creating a codegen units per
//! source-level module, functions from the same module will be available for
//! inlining, even when they are not marked #[inline].

use monomorphize::collector::InliningMap;
use rustc::dep_graph::WorkProductId;
use rustc::hir::def_id::DefId;
use rustc::hir::map::DefPathData;
use rustc::mir::mono::{Linkage, Visibility};
use rustc::middle::exported_symbols::SymbolExportLevel;
use rustc::ty::{self, TyCtxt, InstanceDef};
use rustc::ty::item_path::characteristic_def_id_of_type;
use rustc::util::nodemap::{FxHashMap, FxHashSet};
use std::collections::hash_map::Entry;
use syntax::ast::NodeId;
use syntax::symbol::{Symbol, InternedString};
use rustc::mir::mono::MonoItem;
use monomorphize::item::{MonoItemExt, InstantiationMode};
use core::usize;

pub use rustc::mir::mono::CodegenUnit;

pub enum PartitioningStrategy {
    /// Generate one codegen unit per source-level module.
    PerModule,

    /// Partition the whole crate into a fixed number of codegen units.
    FixedUnitCount(usize)
}

pub trait CodegenUnitExt<'tcx> {
    fn as_codegen_unit(&self) -> &CodegenUnit<'tcx>;

    fn contains_item(&self, item: &MonoItem<'tcx>) -> bool {
        self.items().contains_key(item)
    }

    fn name<'a>(&'a self) -> &'a InternedString
        where 'tcx: 'a,
    {
        &self.as_codegen_unit().name()
    }

    fn items(&self) -> &FxHashMap<MonoItem<'tcx>, (Linkage, Visibility)> {
        &self.as_codegen_unit().items()
    }

    fn work_product_id(&self) -> WorkProductId {
        WorkProductId::from_cgu_name(self.name())
    }

    fn items_in_deterministic_order<'a>(&self,
                                        tcx: TyCtxt<'a, 'tcx, 'tcx>)
                                        -> Vec<(MonoItem<'tcx>,
                                                (Linkage, Visibility))> {
        // The codegen tests rely on items being process in the same order as
        // they appear in the file, so for local items, we sort by node_id first
        #[derive(PartialEq, Eq, PartialOrd, Ord)]
        pub struct ItemSortKey(Option<NodeId>, ty::SymbolName);

        fn item_sort_key<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                   item: MonoItem<'tcx>) -> ItemSortKey {
            ItemSortKey(match item {
                MonoItem::Fn(ref instance) => {
                    match instance.def {
                        // We only want to take NodeIds of user-defined
                        // instances into account. The others don't matter for
                        // the codegen tests and can even make item order
                        // unstable.
                        InstanceDef::Item(def_id) => {
                            tcx.hir.as_local_node_id(def_id)
                        }
                        InstanceDef::Intrinsic(..) |
                        InstanceDef::FnPtrShim(..) |
                        InstanceDef::Virtual(..) |
                        InstanceDef::ClosureOnceShim { .. } |
                        InstanceDef::DropGlue(..) |
                        InstanceDef::CloneCopyShim(..) |
                        InstanceDef::CloneStructuralShim(..) |
                        InstanceDef::CloneNominalShim { .. } => {
                            None
                        }
                    }
                }
                MonoItem::Static(node_id) |
                MonoItem::GlobalAsm(node_id) => {
                    Some(node_id)
                }
            }, item.symbol_name(tcx))
        }

        let items: Vec<_> = self.items().iter().map(|(&i, &l)| (i, l)).collect();
        let mut items : Vec<_> = items.iter()
            .map(|il| (il, item_sort_key(tcx, il.0))).collect();
        items.sort_by(|&(_, ref key1), &(_, ref key2)| key1.cmp(key2));
        items.into_iter().map(|(&item_linkage, _)| item_linkage).collect()
    }
}

impl<'tcx> CodegenUnitExt<'tcx> for CodegenUnit<'tcx> {
    fn as_codegen_unit(&self) -> &CodegenUnit<'tcx> {
        self
    }
}

// Anything we can't find a proper codegen unit for goes into this.
fn fallback_cgu_name(tcx: TyCtxt) -> InternedString {
    const FALLBACK_CODEGEN_UNIT: &'static str = "__rustc_fallback_codegen_unit";

    if tcx.sess.opts.debugging_opts.human_readable_cgu_names {
        Symbol::intern(FALLBACK_CODEGEN_UNIT).as_str()
    } else {
        Symbol::intern(&CodegenUnit::mangle_name(FALLBACK_CODEGEN_UNIT)).as_str()
    }
}


pub fn partition<'a, 'tcx, I>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                              trans_items: I,
                              strategy: PartitioningStrategy,
                              inlining_map: &InliningMap<'tcx>)
                              -> Vec<CodegenUnit<'tcx>>
    where I: Iterator<Item = MonoItem<'tcx>>
{
    // In the first step, we place all regular translation items into their
    // respective 'home' codegen unit. Regular translation items are all
    // functions and statics defined in the local crate.
    let mut initial_partitioning = place_root_translation_items(tcx,
                                                                trans_items);

    initial_partitioning.codegen_units.iter_mut().for_each(|cgu| cgu.estimate_size(&tcx));

    debug_dump(tcx, "INITIAL PARTITIONING:", initial_partitioning.codegen_units.iter());

    // If the partitioning should produce a fixed count of codegen units, merge
    // until that count is reached.
    if let PartitioningStrategy::FixedUnitCount(count) = strategy {
        merge_codegen_units(&mut initial_partitioning, count, &tcx.crate_name.as_str());

        debug_dump(tcx, "POST MERGING:", initial_partitioning.codegen_units.iter());
    }

    // In the next step, we use the inlining map to determine which additional
    // translation items have to go into each codegen unit. These additional
    // translation items can be drop-glue, functions from external crates, and
    // local functions the definition of which is marked with #[inline].
    let mut post_inlining = place_inlined_translation_items(initial_partitioning,
                                                            inlining_map);

    post_inlining.codegen_units.iter_mut().for_each(|cgu| cgu.estimate_size(&tcx));

    debug_dump(tcx, "POST INLINING:", post_inlining.codegen_units.iter());

    // Next we try to make as many symbols "internal" as possible, so LLVM has
    // more freedom to optimize.
    if !tcx.sess.opts.cg.link_dead_code {
        internalize_symbols(tcx, &mut post_inlining, inlining_map);
    }

    // Finally, sort by codegen unit name, so that we get deterministic results
    let PostInliningPartitioning {
        codegen_units: mut result,
        trans_item_placements: _,
        internalization_candidates: _,
    } = post_inlining;

    result.sort_by(|cgu1, cgu2| {
        cgu1.name().cmp(cgu2.name())
    });

    result
}

struct PreInliningPartitioning<'tcx> {
    codegen_units: Vec<CodegenUnit<'tcx>>,
    roots: FxHashSet<MonoItem<'tcx>>,
    internalization_candidates: FxHashSet<MonoItem<'tcx>>,
}

/// For symbol internalization, we need to know whether a symbol/trans-item is
/// accessed from outside the codegen unit it is defined in. This type is used
/// to keep track of that.
#[derive(Clone, PartialEq, Eq, Debug)]
enum TransItemPlacement {
    SingleCgu { cgu_name: InternedString },
    MultipleCgus,
}

struct PostInliningPartitioning<'tcx> {
    codegen_units: Vec<CodegenUnit<'tcx>>,
    trans_item_placements: FxHashMap<MonoItem<'tcx>, TransItemPlacement>,
    internalization_candidates: FxHashSet<MonoItem<'tcx>>,
}

fn place_root_translation_items<'a, 'tcx, I>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                             trans_items: I)
                                             -> PreInliningPartitioning<'tcx>
    where I: Iterator<Item = MonoItem<'tcx>>
{
    let mut roots = FxHashSet();
    let mut codegen_units = FxHashMap();
    let is_incremental_build = tcx.sess.opts.incremental.is_some();
    let mut internalization_candidates = FxHashSet();

    for trans_item in trans_items {
        match trans_item.instantiation_mode(tcx) {
            InstantiationMode::GloballyShared { .. } => {}
            InstantiationMode::LocalCopy => continue,
        }

        let characteristic_def_id = characteristic_def_id_of_trans_item(tcx, trans_item);
        let is_volatile = is_incremental_build &&
                          trans_item.is_generic_fn();

        let codegen_unit_name = match characteristic_def_id {
            Some(def_id) => compute_codegen_unit_name(tcx, def_id, is_volatile),
            None => fallback_cgu_name(tcx),
        };

        let make_codegen_unit = || {
            CodegenUnit::new(codegen_unit_name.clone())
        };

        let codegen_unit = codegen_units.entry(codegen_unit_name.clone())
                                            .or_insert_with(make_codegen_unit);

        let mut can_be_internalized = true;
        let default_visibility = |id: DefId| {
            if tcx.sess.target.target.options.default_hidden_visibility &&
                tcx.symbol_export_level(id) != SymbolExportLevel::C
            {
                Visibility::Hidden
            } else {
                Visibility::Default
            }
        };
        let (linkage, mut visibility) = match trans_item.explicit_linkage(tcx) {
            Some(explicit_linkage) => (explicit_linkage, Visibility::Default),
            None => {
                match trans_item {
                    MonoItem::Fn(ref instance) => {
                        let visibility = match instance.def {
                            InstanceDef::Item(def_id) => {
                                // The `start_fn` lang item is actually a
                                // monomorphized instance of a function in the
                                // standard library, used for the `main`
                                // function. We don't want to export it so we
                                // tag it with `Hidden` visibility but this
                                // symbol is only referenced from the actual
                                // `main` symbol which we unfortunately don't
                                // know anything about during
                                // partitioning/collection. As a result we
                                // forcibly keep this symbol out of the
                                // `internalization_candidates` set.
                                //
                                // FIXME: eventually we don't want to always
                                // force this symbol to have hidden
                                // visibility, it should indeed be a candidate
                                // for internalization, but we have to
                                // understand that it's referenced from the
                                // `main` symbol we'll generate later.
                                if tcx.lang_items().start_fn() == Some(def_id) {
                                    can_be_internalized = false;
                                    Visibility::Hidden
                                } else if def_id.is_local() {
                                    if tcx.is_exported_symbol(def_id) {
                                        can_be_internalized = false;
                                        default_visibility(def_id)
                                    } else {
                                        Visibility::Hidden
                                    }
                                } else {
                                    Visibility::Hidden
                                }
                            }
                            InstanceDef::FnPtrShim(..) |
                            InstanceDef::Virtual(..) |
                            InstanceDef::Intrinsic(..) |
                            InstanceDef::ClosureOnceShim { .. } |
                            InstanceDef::DropGlue(..) |
                            InstanceDef::CloneCopyShim(..) |
                            InstanceDef::CloneStructuralShim(..) |
                            InstanceDef::CloneNominalShim { .. } => {
                                Visibility::Hidden
                            }
                        };
                        (Linkage::External, visibility)
                    }
                    MonoItem::Static(node_id) |
                    MonoItem::GlobalAsm(node_id) => {
                        let def_id = tcx.hir.local_def_id(node_id);
                        let visibility = if tcx.is_exported_symbol(def_id) {
                            can_be_internalized = false;
                            default_visibility(def_id)
                        } else {
                            Visibility::Hidden
                        };
                        (Linkage::External, visibility)
                    }
                }
            }
        };
        if visibility == Visibility::Hidden && can_be_internalized {
            internalization_candidates.insert(trans_item);
        }

        codegen_unit.items_mut().insert(trans_item, (linkage, visibility));
        roots.insert(trans_item);
    }

    // always ensure we have at least one CGU; otherwise, if we have a
    // crate with just types (for example), we could wind up with no CGU
    if codegen_units.is_empty() {
        let codegen_unit_name = fallback_cgu_name(tcx);
        codegen_units.insert(codegen_unit_name.clone(),
                             CodegenUnit::new(codegen_unit_name.clone()));
    }

    PreInliningPartitioning {
        codegen_units: codegen_units.into_iter()
                                    .map(|(_, codegen_unit)| codegen_unit)
                                    .collect(),
        roots,
        internalization_candidates,
    }
}

fn merge_codegen_units<'tcx>(initial_partitioning: &mut PreInliningPartitioning<'tcx>,
                             target_cgu_count: usize,
                             crate_name: &str) {
    assert!(target_cgu_count >= 1);
    let codegen_units = &mut initial_partitioning.codegen_units;

    // Note that at this point in time the `codegen_units` here may not be in a
    // deterministic order (but we know they're deterministically the same set).
    // We want this merging to produce a deterministic ordering of codegen units
    // from the input.
    //
    // Due to basically how we've implemented the merging below (merge the two
    // smallest into each other) we're sure to start off with a deterministic
    // order (sorted by name). This'll mean that if two cgus have the same size
    // the stable sort below will keep everything nice and deterministic.
    codegen_units.sort_by_key(|cgu| cgu.name().clone());

    // Merge the two smallest codegen units until the target size is reached.
    while codegen_units.len() > target_cgu_count {
        // Sort small cgus to the back
        codegen_units.sort_by_key(|cgu| usize::MAX - cgu.size_estimate());
        let mut smallest = codegen_units.pop().unwrap();
        let second_smallest = codegen_units.last_mut().unwrap();

        second_smallest.modify_size_estimate(smallest.size_estimate());
        for (k, v) in smallest.items_mut().drain() {
            second_smallest.items_mut().insert(k, v);
        }
    }

    for (index, cgu) in codegen_units.iter_mut().enumerate() {
        cgu.set_name(numbered_codegen_unit_name(crate_name, index));
    }
}

fn place_inlined_translation_items<'tcx>(initial_partitioning: PreInliningPartitioning<'tcx>,
                                         inlining_map: &InliningMap<'tcx>)
                                         -> PostInliningPartitioning<'tcx> {
    let mut new_partitioning = Vec::new();
    let mut trans_item_placements = FxHashMap();

    let PreInliningPartitioning {
        codegen_units: initial_cgus,
        roots,
        internalization_candidates,
    } = initial_partitioning;

    let single_codegen_unit = initial_cgus.len() == 1;

    for old_codegen_unit in initial_cgus {
        // Collect all items that need to be available in this codegen unit
        let mut reachable = FxHashSet();
        for root in old_codegen_unit.items().keys() {
            follow_inlining(*root, inlining_map, &mut reachable);
        }

        let mut new_codegen_unit = CodegenUnit::new(old_codegen_unit.name().clone());

        // Add all translation items that are not already there
        for trans_item in reachable {
            if let Some(linkage) = old_codegen_unit.items().get(&trans_item) {
                // This is a root, just copy it over
                new_codegen_unit.items_mut().insert(trans_item, *linkage);
            } else {
                if roots.contains(&trans_item) {
                    bug!("GloballyShared trans-item inlined into other CGU: \
                          {:?}", trans_item);
                }

                // This is a cgu-private copy
                new_codegen_unit.items_mut().insert(
                    trans_item,
                    (Linkage::Internal, Visibility::Default),
                );
            }

            if !single_codegen_unit {
                // If there is more than one codegen unit, we need to keep track
                // in which codegen units each translation item is placed:
                match trans_item_placements.entry(trans_item) {
                    Entry::Occupied(e) => {
                        let placement = e.into_mut();
                        debug_assert!(match *placement {
                            TransItemPlacement::SingleCgu { ref cgu_name } => {
                                *cgu_name != *new_codegen_unit.name()
                            }
                            TransItemPlacement::MultipleCgus => true,
                        });
                        *placement = TransItemPlacement::MultipleCgus;
                    }
                    Entry::Vacant(e) => {
                        e.insert(TransItemPlacement::SingleCgu {
                            cgu_name: new_codegen_unit.name().clone()
                        });
                    }
                }
            }
        }

        new_partitioning.push(new_codegen_unit);
    }

    return PostInliningPartitioning {
        codegen_units: new_partitioning,
        trans_item_placements,
        internalization_candidates,
    };

    fn follow_inlining<'tcx>(trans_item: MonoItem<'tcx>,
                             inlining_map: &InliningMap<'tcx>,
                             visited: &mut FxHashSet<MonoItem<'tcx>>) {
        if !visited.insert(trans_item) {
            return;
        }

        inlining_map.with_inlining_candidates(trans_item, |target| {
            follow_inlining(target, inlining_map, visited);
        });
    }
}

fn internalize_symbols<'a, 'tcx>(_tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 partitioning: &mut PostInliningPartitioning<'tcx>,
                                 inlining_map: &InliningMap<'tcx>) {
    if partitioning.codegen_units.len() == 1 {
        // Fast path for when there is only one codegen unit. In this case we
        // can internalize all candidates, since there is nowhere else they
        // could be accessed from.
        for cgu in &mut partitioning.codegen_units {
            for candidate in &partitioning.internalization_candidates {
                cgu.items_mut().insert(*candidate,
                                       (Linkage::Internal, Visibility::Default));
            }
        }

        return;
    }

    // Build a map from every translation item to all the translation items that
    // reference it.
    let mut accessor_map: FxHashMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>> = FxHashMap();
    inlining_map.iter_accesses(|accessor, accessees| {
        for accessee in accessees {
            accessor_map.entry(*accessee)
                        .or_insert(Vec::new())
                        .push(accessor);
        }
    });

    let trans_item_placements = &partitioning.trans_item_placements;

    // For each internalization candidates in each codegen unit, check if it is
    // accessed from outside its defining codegen unit.
    for cgu in &mut partitioning.codegen_units {
        let home_cgu = TransItemPlacement::SingleCgu {
            cgu_name: cgu.name().clone()
        };

        for (accessee, linkage_and_visibility) in cgu.items_mut() {
            if !partitioning.internalization_candidates.contains(accessee) {
                // This item is no candidate for internalizing, so skip it.
                continue
            }
            debug_assert_eq!(trans_item_placements[accessee], home_cgu);

            if let Some(accessors) = accessor_map.get(accessee) {
                if accessors.iter()
                            .filter_map(|accessor| {
                                // Some accessors might not have been
                                // instantiated. We can safely ignore those.
                                trans_item_placements.get(accessor)
                            })
                            .any(|placement| *placement != home_cgu) {
                    // Found an accessor from another CGU, so skip to the next
                    // item without marking this one as internal.
                    continue
                }
            }

            // If we got here, we did not find any accesses from other CGUs,
            // so it's fine to make this translation item internal.
            *linkage_and_visibility = (Linkage::Internal, Visibility::Default);
        }
    }
}

fn characteristic_def_id_of_trans_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                                 trans_item: MonoItem<'tcx>)
                                                 -> Option<DefId> {
    match trans_item {
        MonoItem::Fn(instance) => {
            let def_id = match instance.def {
                ty::InstanceDef::Item(def_id) => def_id,
                ty::InstanceDef::FnPtrShim(..) |
                ty::InstanceDef::ClosureOnceShim { .. } |
                ty::InstanceDef::Intrinsic(..) |
                ty::InstanceDef::DropGlue(..) |
                ty::InstanceDef::Virtual(..) |
                ty::InstanceDef::CloneCopyShim(..) |
                ty::InstanceDef::CloneStructuralShim(..) |
                ty::InstanceDef::CloneNominalShim { .. } => return None
            };

            // If this is a method, we want to put it into the same module as
            // its self-type. If the self-type does not provide a characteristic
            // DefId, we use the location of the impl after all.

            if tcx.trait_of_item(def_id).is_some() {
                let self_ty = instance.substs.type_at(0);
                // This is an implementation of a trait method.
                return characteristic_def_id_of_type(self_ty).or(Some(def_id));
            }

            if let Some(impl_def_id) = tcx.impl_of_method(def_id) {
                // This is a method within an inherent impl, find out what the
                // self-type is:
                let impl_self_ty = tcx.trans_impl_self_ty(impl_def_id, instance.substs);
                if let Some(def_id) = characteristic_def_id_of_type(impl_self_ty) {
                    return Some(def_id);
                }
            }

            Some(def_id)
        }
        MonoItem::Static(node_id) |
        MonoItem::GlobalAsm(node_id) => Some(tcx.hir.local_def_id(node_id)),
    }
}

fn compute_codegen_unit_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                       def_id: DefId,
                                       volatile: bool)
                                       -> InternedString {
    // Unfortunately we cannot just use the `ty::item_path` infrastructure here
    // because we need paths to modules and the DefIds of those are not
    // available anymore for external items.
    let mut cgu_name = String::with_capacity(64);

    let def_path = tcx.def_path(def_id);
    cgu_name.push_str(&tcx.crate_name(def_path.krate).as_str());

    for part in tcx.def_path(def_id)
                   .data
                   .iter()
                   .take_while(|part| {
                        match part.data {
                            DefPathData::Module(..) => true,
                            _ => false,
                        }
                    }) {
        cgu_name.push_str("-");
        cgu_name.push_str(&part.data.as_interned_str());
    }

    if volatile {
        cgu_name.push_str(".volatile");
    }

    let cgu_name = if tcx.sess.opts.debugging_opts.human_readable_cgu_names {
        cgu_name
    } else {
        CodegenUnit::mangle_name(&cgu_name)
    };

    Symbol::intern(&cgu_name[..]).as_str()
}

fn numbered_codegen_unit_name(crate_name: &str, index: usize) -> InternedString {
    Symbol::intern(&format!("{}{}", crate_name, index)).as_str()
}

fn debug_dump<'a, 'b, 'tcx, I>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               label: &str,
                               cgus: I)
    where I: Iterator<Item=&'b CodegenUnit<'tcx>>,
          'tcx: 'a + 'b
{
    if cfg!(debug_assertions) {
        debug!("{}", label);
        for cgu in cgus {
            debug!("CodegenUnit {}:", cgu.name());

            for (trans_item, linkage) in cgu.items() {
                let symbol_name = trans_item.symbol_name(tcx);
                let symbol_hash_start = symbol_name.rfind('h');
                let symbol_hash = symbol_hash_start.map(|i| &symbol_name[i ..])
                                                   .unwrap_or("<no hash>");

                debug!(" - {} [{:?}] [{}]",
                       trans_item.to_string(tcx),
                       linkage,
                       symbol_hash);
            }

            debug!("");
        }
    }
}