summaryrefslogtreecommitdiff
path: root/src/librustc_trans/base.rs
blob: 2685c22d60d45371972b14cadfdf5daa214086af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Translate the completed AST to the LLVM IR.
//!
//! Some functions here, such as trans_block and trans_expr, return a value --
//! the result of the translation to LLVM -- while others, such as trans_fn
//! and trans_item, are called only for the side effect of adding a
//! particular definition to the LLVM IR output we're producing.
//!
//! Hopefully useful general knowledge about trans:
//!
//!   * There's no way to find out the Ty type of a ValueRef.  Doing so
//!     would be "trying to get the eggs out of an omelette" (credit:
//!     pcwalton).  You can, instead, find out its TypeRef by calling val_ty,
//!     but one TypeRef corresponds to many `Ty`s; for instance, tup(int, int,
//!     int) and rec(x=int, y=int, z=int) will have the same TypeRef.

use super::CrateTranslation;
use super::ModuleLlvm;
use super::ModuleSource;
use super::ModuleTranslation;

use assert_module_sources;
use back::link;
use back::linker::LinkerInfo;
use back::symbol_export::{self, ExportedSymbols};
use llvm::{ContextRef, Linkage, ModuleRef, ValueRef, Vector, get_param};
use llvm;
use metadata;
use rustc::hir::def_id::LOCAL_CRATE;
use rustc::middle::lang_items::StartFnLangItem;
use rustc::middle::cstore::EncodedMetadata;
use rustc::ty::{self, Ty, TyCtxt};
use rustc::dep_graph::AssertDepGraphSafe;
use rustc::middle::cstore::LinkMeta;
use rustc::hir::map as hir_map;
use rustc::util::common::time;
use rustc::session::config::{self, NoDebugInfo, OutputFilenames};
use rustc::session::Session;
use rustc_incremental::IncrementalHashesMap;
use abi;
use mir::lvalue::LvalueRef;
use attributes;
use builder::Builder;
use callee;
use common::{C_bool, C_bytes_in_context, C_i32, C_uint};
use collector::{self, TransItemCollectionMode};
use common::{C_struct_in_context, C_u64, C_undef, C_array};
use common::CrateContext;
use common::{type_is_zero_size, val_ty};
use common;
use consts;
use context::{self, LocalCrateContext, SharedCrateContext, Stats};
use debuginfo;
use declare;
use machine;
use meth;
use mir;
use monomorphize::{self, Instance};
use partitioning::{self, PartitioningStrategy, CodegenUnit};
use symbol_names_test;
use trans_item::{TransItem, DefPathBasedNames};
use type_::Type;
use type_of;
use value::Value;
use rustc::util::nodemap::{NodeSet, FxHashMap, FxHashSet};

use libc::c_uint;
use std::ffi::{CStr, CString};
use std::str;
use std::i32;
use syntax_pos::Span;
use syntax::attr;
use rustc::hir;
use syntax::ast;

use mir::lvalue::Alignment;

pub struct StatRecorder<'a, 'tcx: 'a> {
    ccx: &'a CrateContext<'a, 'tcx>,
    name: Option<String>,
    istart: usize,
}

impl<'a, 'tcx> StatRecorder<'a, 'tcx> {
    pub fn new(ccx: &'a CrateContext<'a, 'tcx>, name: String) -> StatRecorder<'a, 'tcx> {
        let istart = ccx.stats().n_llvm_insns.get();
        StatRecorder {
            ccx: ccx,
            name: Some(name),
            istart: istart,
        }
    }
}

impl<'a, 'tcx> Drop for StatRecorder<'a, 'tcx> {
    fn drop(&mut self) {
        if self.ccx.sess().trans_stats() {
            let iend = self.ccx.stats().n_llvm_insns.get();
            self.ccx.stats().fn_stats.borrow_mut()
                .push((self.name.take().unwrap(), iend - self.istart));
            self.ccx.stats().n_fns.set(self.ccx.stats().n_fns.get() + 1);
            // Reset LLVM insn count to avoid compound costs.
            self.ccx.stats().n_llvm_insns.set(self.istart);
        }
    }
}

pub fn get_meta(bcx: &Builder, fat_ptr: ValueRef) -> ValueRef {
    bcx.struct_gep(fat_ptr, abi::FAT_PTR_EXTRA)
}

pub fn get_dataptr(bcx: &Builder, fat_ptr: ValueRef) -> ValueRef {
    bcx.struct_gep(fat_ptr, abi::FAT_PTR_ADDR)
}

pub fn bin_op_to_icmp_predicate(op: hir::BinOp_,
                                signed: bool)
                                -> llvm::IntPredicate {
    match op {
        hir::BiEq => llvm::IntEQ,
        hir::BiNe => llvm::IntNE,
        hir::BiLt => if signed { llvm::IntSLT } else { llvm::IntULT },
        hir::BiLe => if signed { llvm::IntSLE } else { llvm::IntULE },
        hir::BiGt => if signed { llvm::IntSGT } else { llvm::IntUGT },
        hir::BiGe => if signed { llvm::IntSGE } else { llvm::IntUGE },
        op => {
            bug!("comparison_op_to_icmp_predicate: expected comparison operator, \
                  found {:?}",
                 op)
        }
    }
}

pub fn bin_op_to_fcmp_predicate(op: hir::BinOp_) -> llvm::RealPredicate {
    match op {
        hir::BiEq => llvm::RealOEQ,
        hir::BiNe => llvm::RealUNE,
        hir::BiLt => llvm::RealOLT,
        hir::BiLe => llvm::RealOLE,
        hir::BiGt => llvm::RealOGT,
        hir::BiGe => llvm::RealOGE,
        op => {
            bug!("comparison_op_to_fcmp_predicate: expected comparison operator, \
                  found {:?}",
                 op);
        }
    }
}

pub fn compare_simd_types<'a, 'tcx>(
    bcx: &Builder<'a, 'tcx>,
    lhs: ValueRef,
    rhs: ValueRef,
    t: Ty<'tcx>,
    ret_ty: Type,
    op: hir::BinOp_
) -> ValueRef {
    let signed = match t.sty {
        ty::TyFloat(_) => {
            let cmp = bin_op_to_fcmp_predicate(op);
            return bcx.sext(bcx.fcmp(cmp, lhs, rhs), ret_ty);
        },
        ty::TyUint(_) => false,
        ty::TyInt(_) => true,
        _ => bug!("compare_simd_types: invalid SIMD type"),
    };

    let cmp = bin_op_to_icmp_predicate(op, signed);
    // LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
    // to get the correctly sized type. This will compile to a single instruction
    // once the IR is converted to assembly if the SIMD instruction is supported
    // by the target architecture.
    bcx.sext(bcx.icmp(cmp, lhs, rhs), ret_ty)
}

/// Retrieve the information we are losing (making dynamic) in an unsizing
/// adjustment.
///
/// The `old_info` argument is a bit funny. It is intended for use
/// in an upcast, where the new vtable for an object will be drived
/// from the old one.
pub fn unsized_info<'ccx, 'tcx>(ccx: &CrateContext<'ccx, 'tcx>,
                                source: Ty<'tcx>,
                                target: Ty<'tcx>,
                                old_info: Option<ValueRef>)
                                -> ValueRef {
    let (source, target) = ccx.tcx().struct_lockstep_tails(source, target);
    match (&source.sty, &target.sty) {
        (&ty::TyArray(_, len), &ty::TySlice(_)) => C_uint(ccx, len),
        (&ty::TyDynamic(..), &ty::TyDynamic(..)) => {
            // For now, upcasts are limited to changes in marker
            // traits, and hence never actually require an actual
            // change to the vtable.
            old_info.expect("unsized_info: missing old info for trait upcast")
        }
        (_, &ty::TyDynamic(ref data, ..)) => {
            consts::ptrcast(meth::get_vtable(ccx, source, data.principal()),
                            Type::vtable_ptr(ccx))
        }
        _ => bug!("unsized_info: invalid unsizing {:?} -> {:?}",
                                     source,
                                     target),
    }
}

/// Coerce `src` to `dst_ty`. `src_ty` must be a thin pointer.
pub fn unsize_thin_ptr<'a, 'tcx>(
    bcx: &Builder<'a, 'tcx>,
    src: ValueRef,
    src_ty: Ty<'tcx>,
    dst_ty: Ty<'tcx>
) -> (ValueRef, ValueRef) {
    debug!("unsize_thin_ptr: {:?} => {:?}", src_ty, dst_ty);
    match (&src_ty.sty, &dst_ty.sty) {
        (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
         &ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
        (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
         &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
        (&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
         &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
            assert!(bcx.ccx.shared().type_is_sized(a));
            let ptr_ty = type_of::in_memory_type_of(bcx.ccx, b).ptr_to();
            (bcx.pointercast(src, ptr_ty), unsized_info(bcx.ccx, a, b, None))
        }
        (&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
            let (a, b) = (src_ty.boxed_ty(), dst_ty.boxed_ty());
            assert!(bcx.ccx.shared().type_is_sized(a));
            let ptr_ty = type_of::in_memory_type_of(bcx.ccx, b).ptr_to();
            (bcx.pointercast(src, ptr_ty), unsized_info(bcx.ccx, a, b, None))
        }
        _ => bug!("unsize_thin_ptr: called on bad types"),
    }
}

/// Coerce `src`, which is a reference to a value of type `src_ty`,
/// to a value of type `dst_ty` and store the result in `dst`
pub fn coerce_unsized_into<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
                                     src: &LvalueRef<'tcx>,
                                     dst: &LvalueRef<'tcx>) {
    let src_ty = src.ty.to_ty(bcx.tcx());
    let dst_ty = dst.ty.to_ty(bcx.tcx());
    let coerce_ptr = || {
        let (base, info) = if common::type_is_fat_ptr(bcx.ccx, src_ty) {
            // fat-ptr to fat-ptr unsize preserves the vtable
            // i.e. &'a fmt::Debug+Send => &'a fmt::Debug
            // So we need to pointercast the base to ensure
            // the types match up.
            let (base, info) = load_fat_ptr(bcx, src.llval, src.alignment, src_ty);
            let llcast_ty = type_of::fat_ptr_base_ty(bcx.ccx, dst_ty);
            let base = bcx.pointercast(base, llcast_ty);
            (base, info)
        } else {
            let base = load_ty(bcx, src.llval, src.alignment, src_ty);
            unsize_thin_ptr(bcx, base, src_ty, dst_ty)
        };
        store_fat_ptr(bcx, base, info, dst.llval, dst.alignment, dst_ty);
    };
    match (&src_ty.sty, &dst_ty.sty) {
        (&ty::TyRef(..), &ty::TyRef(..)) |
        (&ty::TyRef(..), &ty::TyRawPtr(..)) |
        (&ty::TyRawPtr(..), &ty::TyRawPtr(..)) => {
            coerce_ptr()
        }
        (&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
            coerce_ptr()
        }

        (&ty::TyAdt(def_a, substs_a), &ty::TyAdt(def_b, substs_b)) => {
            assert_eq!(def_a, def_b);

            let src_fields = def_a.variants[0].fields.iter().map(|f| {
                monomorphize::field_ty(bcx.tcx(), substs_a, f)
            });
            let dst_fields = def_b.variants[0].fields.iter().map(|f| {
                monomorphize::field_ty(bcx.tcx(), substs_b, f)
            });

            let iter = src_fields.zip(dst_fields).enumerate();
            for (i, (src_fty, dst_fty)) in iter {
                if type_is_zero_size(bcx.ccx, dst_fty) {
                    continue;
                }

                let (src_f, src_f_align) = src.trans_field_ptr(bcx, i);
                let (dst_f, dst_f_align) = dst.trans_field_ptr(bcx, i);
                if src_fty == dst_fty {
                    memcpy_ty(bcx, dst_f, src_f, src_fty, None);
                } else {
                    coerce_unsized_into(
                        bcx,
                        &LvalueRef::new_sized_ty(src_f, src_fty, src_f_align),
                        &LvalueRef::new_sized_ty(dst_f, dst_fty, dst_f_align)
                    );
                }
            }
        }
        _ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}",
                  src_ty,
                  dst_ty),
    }
}

pub fn cast_shift_expr_rhs(
    cx: &Builder, op: hir::BinOp_, lhs: ValueRef, rhs: ValueRef
) -> ValueRef {
    cast_shift_rhs(op, lhs, rhs, |a, b| cx.trunc(a, b), |a, b| cx.zext(a, b))
}

pub fn cast_shift_const_rhs(op: hir::BinOp_, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
    cast_shift_rhs(op,
                   lhs,
                   rhs,
                   |a, b| unsafe { llvm::LLVMConstTrunc(a, b.to_ref()) },
                   |a, b| unsafe { llvm::LLVMConstZExt(a, b.to_ref()) })
}

fn cast_shift_rhs<F, G>(op: hir::BinOp_,
                        lhs: ValueRef,
                        rhs: ValueRef,
                        trunc: F,
                        zext: G)
                        -> ValueRef
    where F: FnOnce(ValueRef, Type) -> ValueRef,
          G: FnOnce(ValueRef, Type) -> ValueRef
{
    // Shifts may have any size int on the rhs
    if op.is_shift() {
        let mut rhs_llty = val_ty(rhs);
        let mut lhs_llty = val_ty(lhs);
        if rhs_llty.kind() == Vector {
            rhs_llty = rhs_llty.element_type()
        }
        if lhs_llty.kind() == Vector {
            lhs_llty = lhs_llty.element_type()
        }
        let rhs_sz = rhs_llty.int_width();
        let lhs_sz = lhs_llty.int_width();
        if lhs_sz < rhs_sz {
            trunc(rhs, lhs_llty)
        } else if lhs_sz > rhs_sz {
            // FIXME (#1877: If shifting by negative
            // values becomes not undefined then this is wrong.
            zext(rhs, lhs_llty)
        } else {
            rhs
        }
    } else {
        rhs
    }
}

/// Returns whether this session's target will use SEH-based unwinding.
///
/// This is only true for MSVC targets, and even then the 64-bit MSVC target
/// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
/// 64-bit MinGW) instead of "full SEH".
pub fn wants_msvc_seh(sess: &Session) -> bool {
    sess.target.target.options.is_like_msvc
}

pub fn call_assume<'a, 'tcx>(b: &Builder<'a, 'tcx>, val: ValueRef) {
    let assume_intrinsic = b.ccx.get_intrinsic("llvm.assume");
    b.call(assume_intrinsic, &[val], None);
}

/// Helper for loading values from memory. Does the necessary conversion if the in-memory type
/// differs from the type used for SSA values. Also handles various special cases where the type
/// gives us better information about what we are loading.
pub fn load_ty<'a, 'tcx>(b: &Builder<'a, 'tcx>, ptr: ValueRef,
                         alignment: Alignment, t: Ty<'tcx>) -> ValueRef {
    let ccx = b.ccx;
    if type_is_zero_size(ccx, t) {
        return C_undef(type_of::type_of(ccx, t));
    }

    unsafe {
        let global = llvm::LLVMIsAGlobalVariable(ptr);
        if !global.is_null() && llvm::LLVMIsGlobalConstant(global) == llvm::True {
            let val = llvm::LLVMGetInitializer(global);
            if !val.is_null() {
                if t.is_bool() {
                    return llvm::LLVMConstTrunc(val, Type::i1(ccx).to_ref());
                }
                return val;
            }
        }
    }

    if t.is_bool() {
        b.trunc(b.load_range_assert(ptr, 0, 2, llvm::False, alignment.to_align()),
                Type::i1(ccx))
    } else if t.is_char() {
        // a char is a Unicode codepoint, and so takes values from 0
        // to 0x10FFFF inclusive only.
        b.load_range_assert(ptr, 0, 0x10FFFF + 1, llvm::False, alignment.to_align())
    } else if (t.is_region_ptr() || t.is_box() || t.is_fn())
        && !common::type_is_fat_ptr(ccx, t)
    {
        b.load_nonnull(ptr, alignment.to_align())
    } else {
        b.load(ptr, alignment.to_align())
    }
}

/// Helper for storing values in memory. Does the necessary conversion if the in-memory type
/// differs from the type used for SSA values.
pub fn store_ty<'a, 'tcx>(cx: &Builder<'a, 'tcx>, v: ValueRef, dst: ValueRef,
                          dst_align: Alignment, t: Ty<'tcx>) {
    debug!("store_ty: {:?} : {:?} <- {:?}", Value(dst), t, Value(v));

    if common::type_is_fat_ptr(cx.ccx, t) {
        let lladdr = cx.extract_value(v, abi::FAT_PTR_ADDR);
        let llextra = cx.extract_value(v, abi::FAT_PTR_EXTRA);
        store_fat_ptr(cx, lladdr, llextra, dst, dst_align, t);
    } else {
        cx.store(from_immediate(cx, v), dst, dst_align.to_align());
    }
}

pub fn store_fat_ptr<'a, 'tcx>(cx: &Builder<'a, 'tcx>,
                               data: ValueRef,
                               extra: ValueRef,
                               dst: ValueRef,
                               dst_align: Alignment,
                               _ty: Ty<'tcx>) {
    // FIXME: emit metadata
    cx.store(data, get_dataptr(cx, dst), dst_align.to_align());
    cx.store(extra, get_meta(cx, dst), dst_align.to_align());
}

pub fn load_fat_ptr<'a, 'tcx>(
    b: &Builder<'a, 'tcx>, src: ValueRef, alignment: Alignment, t: Ty<'tcx>
) -> (ValueRef, ValueRef) {
    let ptr = get_dataptr(b, src);
    let ptr = if t.is_region_ptr() || t.is_box() {
        b.load_nonnull(ptr, alignment.to_align())
    } else {
        b.load(ptr, alignment.to_align())
    };

    let meta = get_meta(b, src);
    let meta_ty = val_ty(meta);
    // If the 'meta' field is a pointer, it's a vtable, so use load_nonnull
    // instead
    let meta = if meta_ty.element_type().kind() == llvm::TypeKind::Pointer {
        b.load_nonnull(meta, None)
    } else {
        b.load(meta, None)
    };

    (ptr, meta)
}

pub fn from_immediate(bcx: &Builder, val: ValueRef) -> ValueRef {
    if val_ty(val) == Type::i1(bcx.ccx) {
        bcx.zext(val, Type::i8(bcx.ccx))
    } else {
        val
    }
}

pub fn to_immediate(bcx: &Builder, val: ValueRef, ty: Ty) -> ValueRef {
    if ty.is_bool() {
        bcx.trunc(val, Type::i1(bcx.ccx))
    } else {
        val
    }
}

pub enum Lifetime { Start, End }

impl Lifetime {
    // If LLVM lifetime intrinsic support is enabled (i.e. optimizations
    // on), and `ptr` is nonzero-sized, then extracts the size of `ptr`
    // and the intrinsic for `lt` and passes them to `emit`, which is in
    // charge of generating code to call the passed intrinsic on whatever
    // block of generated code is targetted for the intrinsic.
    //
    // If LLVM lifetime intrinsic support is disabled (i.e.  optimizations
    // off) or `ptr` is zero-sized, then no-op (does not call `emit`).
    pub fn call(self, b: &Builder, ptr: ValueRef) {
        if b.ccx.sess().opts.optimize == config::OptLevel::No {
            return;
        }

        let size = machine::llsize_of_alloc(b.ccx, val_ty(ptr).element_type());
        if size == 0 {
            return;
        }

        let lifetime_intrinsic = b.ccx.get_intrinsic(match self {
            Lifetime::Start => "llvm.lifetime.start",
            Lifetime::End => "llvm.lifetime.end"
        });

        let ptr = b.pointercast(ptr, Type::i8p(b.ccx));
        b.call(lifetime_intrinsic, &[C_u64(b.ccx, size), ptr], None);
    }
}

pub fn call_memcpy<'a, 'tcx>(b: &Builder<'a, 'tcx>,
                               dst: ValueRef,
                               src: ValueRef,
                               n_bytes: ValueRef,
                               align: u32) {
    let ccx = b.ccx;
    let ptr_width = &ccx.sess().target.target.target_pointer_width;
    let key = format!("llvm.memcpy.p0i8.p0i8.i{}", ptr_width);
    let memcpy = ccx.get_intrinsic(&key);
    let src_ptr = b.pointercast(src, Type::i8p(ccx));
    let dst_ptr = b.pointercast(dst, Type::i8p(ccx));
    let size = b.intcast(n_bytes, ccx.int_type(), false);
    let align = C_i32(ccx, align as i32);
    let volatile = C_bool(ccx, false);
    b.call(memcpy, &[dst_ptr, src_ptr, size, align, volatile], None);
}

pub fn memcpy_ty<'a, 'tcx>(
    bcx: &Builder<'a, 'tcx>,
    dst: ValueRef,
    src: ValueRef,
    t: Ty<'tcx>,
    align: Option<u32>,
) {
    let ccx = bcx.ccx;

    let size = ccx.size_of(t);
    if size == 0 {
        return;
    }

    let align = align.unwrap_or_else(|| ccx.align_of(t));
    call_memcpy(bcx, dst, src, C_uint(ccx, size), align);
}

pub fn call_memset<'a, 'tcx>(b: &Builder<'a, 'tcx>,
                             ptr: ValueRef,
                             fill_byte: ValueRef,
                             size: ValueRef,
                             align: ValueRef,
                             volatile: bool) -> ValueRef {
    let ptr_width = &b.ccx.sess().target.target.target_pointer_width;
    let intrinsic_key = format!("llvm.memset.p0i8.i{}", ptr_width);
    let llintrinsicfn = b.ccx.get_intrinsic(&intrinsic_key);
    let volatile = C_bool(b.ccx, volatile);
    b.call(llintrinsicfn, &[ptr, fill_byte, size, align, volatile], None)
}

pub fn trans_instance<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, instance: Instance<'tcx>) {
    let _s = if ccx.sess().trans_stats() {
        let mut instance_name = String::new();
        DefPathBasedNames::new(ccx.tcx(), true, true)
            .push_def_path(instance.def_id(), &mut instance_name);
        Some(StatRecorder::new(ccx, instance_name))
    } else {
        None
    };

    // this is an info! to allow collecting monomorphization statistics
    // and to allow finding the last function before LLVM aborts from
    // release builds.
    info!("trans_instance({})", instance);

    let fn_ty = common::instance_ty(ccx.shared(), &instance);
    let sig = common::ty_fn_sig(ccx, fn_ty);
    let sig = ccx.tcx().erase_late_bound_regions_and_normalize(&sig);

    let lldecl = match ccx.instances().borrow().get(&instance) {
        Some(&val) => val,
        None => bug!("Instance `{:?}` not already declared", instance)
    };

    ccx.stats().n_closures.set(ccx.stats().n_closures.get() + 1);

    // The `uwtable` attribute according to LLVM is:
    //
    //     This attribute indicates that the ABI being targeted requires that an
    //     unwind table entry be produced for this function even if we can show
    //     that no exceptions passes by it. This is normally the case for the
    //     ELF x86-64 abi, but it can be disabled for some compilation units.
    //
    // Typically when we're compiling with `-C panic=abort` (which implies this
    // `no_landing_pads` check) we don't need `uwtable` because we can't
    // generate any exceptions! On Windows, however, exceptions include other
    // events such as illegal instructions, segfaults, etc. This means that on
    // Windows we end up still needing the `uwtable` attribute even if the `-C
    // panic=abort` flag is passed.
    //
    // You can also find more info on why Windows is whitelisted here in:
    //      https://bugzilla.mozilla.org/show_bug.cgi?id=1302078
    if !ccx.sess().no_landing_pads() ||
       ccx.sess().target.target.options.is_like_windows {
        attributes::emit_uwtable(lldecl, true);
    }

    let mir = ccx.tcx().instance_mir(instance.def);
    mir::trans_mir(ccx, lldecl, &mir, instance, sig);
}

pub fn llvm_linkage_by_name(name: &str) -> Option<Linkage> {
    // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
    // applicable to variable declarations and may not really make sense for
    // Rust code in the first place but whitelist them anyway and trust that
    // the user knows what s/he's doing. Who knows, unanticipated use cases
    // may pop up in the future.
    //
    // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
    // and don't have to be, LLVM treats them as no-ops.
    match name {
        "appending" => Some(llvm::Linkage::AppendingLinkage),
        "available_externally" => Some(llvm::Linkage::AvailableExternallyLinkage),
        "common" => Some(llvm::Linkage::CommonLinkage),
        "extern_weak" => Some(llvm::Linkage::ExternalWeakLinkage),
        "external" => Some(llvm::Linkage::ExternalLinkage),
        "internal" => Some(llvm::Linkage::InternalLinkage),
        "linkonce" => Some(llvm::Linkage::LinkOnceAnyLinkage),
        "linkonce_odr" => Some(llvm::Linkage::LinkOnceODRLinkage),
        "private" => Some(llvm::Linkage::PrivateLinkage),
        "weak" => Some(llvm::Linkage::WeakAnyLinkage),
        "weak_odr" => Some(llvm::Linkage::WeakODRLinkage),
        _ => None,
    }
}

pub fn set_link_section(ccx: &CrateContext,
                        llval: ValueRef,
                        attrs: &[ast::Attribute]) {
    if let Some(sect) = attr::first_attr_value_str_by_name(attrs, "link_section") {
        if contains_null(&sect.as_str()) {
            ccx.sess().fatal(&format!("Illegal null byte in link_section value: `{}`", &sect));
        }
        unsafe {
            let buf = CString::new(sect.as_str().as_bytes()).unwrap();
            llvm::LLVMSetSection(llval, buf.as_ptr());
        }
    }
}

/// Create the `main` function which will initialise the rust runtime and call
/// users main function.
pub fn maybe_create_entry_wrapper(ccx: &CrateContext) {
    let (main_def_id, span) = match *ccx.sess().entry_fn.borrow() {
        Some((id, span)) => {
            (ccx.tcx().hir.local_def_id(id), span)
        }
        None => return,
    };

    // check for the #[rustc_error] annotation, which forces an
    // error in trans. This is used to write compile-fail tests
    // that actually test that compilation succeeds without
    // reporting an error.
    if ccx.tcx().has_attr(main_def_id, "rustc_error") {
        ccx.tcx().sess.span_fatal(span, "compilation successful");
    }

    let instance = Instance::mono(ccx.tcx(), main_def_id);

    if !ccx.codegen_unit().contains_item(&TransItem::Fn(instance)) {
        // We want to create the wrapper in the same codegen unit as Rust's main
        // function.
        return;
    }

    let main_llfn = callee::get_fn(ccx, instance);

    let et = ccx.sess().entry_type.get().unwrap();
    match et {
        config::EntryMain => create_entry_fn(ccx, span, main_llfn, true),
        config::EntryStart => create_entry_fn(ccx, span, main_llfn, false),
        config::EntryNone => {}    // Do nothing.
    }

    fn create_entry_fn(ccx: &CrateContext,
                       sp: Span,
                       rust_main: ValueRef,
                       use_start_lang_item: bool) {
        let llfty = Type::func(&[ccx.int_type(), Type::i8p(ccx).ptr_to()], &ccx.int_type());

        if declare::get_defined_value(ccx, "main").is_some() {
            // FIXME: We should be smart and show a better diagnostic here.
            ccx.sess().struct_span_err(sp, "entry symbol `main` defined multiple times")
                      .help("did you use #[no_mangle] on `fn main`? Use #[start] instead")
                      .emit();
            ccx.sess().abort_if_errors();
            bug!();
        }
        let llfn = declare::declare_cfn(ccx, "main", llfty);

        // `main` should respect same config for frame pointer elimination as rest of code
        attributes::set_frame_pointer_elimination(ccx, llfn);

        let bld = Builder::new_block(ccx, llfn, "top");

        debuginfo::gdb::insert_reference_to_gdb_debug_scripts_section_global(ccx, &bld);

        let (start_fn, args) = if use_start_lang_item {
            let start_def_id = ccx.tcx().require_lang_item(StartFnLangItem);
            let start_instance = Instance::mono(ccx.tcx(), start_def_id);
            let start_fn = callee::get_fn(ccx, start_instance);
            (start_fn, vec![bld.pointercast(rust_main, Type::i8p(ccx).ptr_to()), get_param(llfn, 0),
                get_param(llfn, 1)])
        } else {
            debug!("using user-defined start fn");
            (rust_main, vec![get_param(llfn, 0 as c_uint), get_param(llfn, 1 as c_uint)])
        };

        let result = bld.call(start_fn, &args, None);
        bld.ret(result);
    }
}

fn contains_null(s: &str) -> bool {
    s.bytes().any(|b| b == 0)
}

fn write_metadata<'a, 'gcx>(tcx: TyCtxt<'a, 'gcx, 'gcx>,
                            link_meta: &LinkMeta,
                            exported_symbols: &NodeSet)
                            -> (ContextRef, ModuleRef, EncodedMetadata) {
    use flate;

    let (metadata_llcx, metadata_llmod) = unsafe {
        context::create_context_and_module(tcx.sess, "metadata")
    };

    #[derive(PartialEq, Eq, PartialOrd, Ord)]
    enum MetadataKind {
        None,
        Uncompressed,
        Compressed
    }

    let kind = tcx.sess.crate_types.borrow().iter().map(|ty| {
        match *ty {
            config::CrateTypeExecutable |
            config::CrateTypeStaticlib |
            config::CrateTypeCdylib => MetadataKind::None,

            config::CrateTypeRlib => MetadataKind::Uncompressed,

            config::CrateTypeDylib |
            config::CrateTypeProcMacro => MetadataKind::Compressed,
        }
    }).max().unwrap();

    if kind == MetadataKind::None {
        return (metadata_llcx, metadata_llmod, EncodedMetadata::new());
    }

    let cstore = &tcx.sess.cstore;
    let metadata = cstore.encode_metadata(tcx,
                                          &link_meta,
                                          exported_symbols);
    if kind == MetadataKind::Uncompressed {
        return (metadata_llcx, metadata_llmod, metadata);
    }

    assert!(kind == MetadataKind::Compressed);
    let mut compressed = cstore.metadata_encoding_version().to_vec();
    compressed.extend_from_slice(&flate::deflate_bytes(&metadata.raw_data));

    let llmeta = C_bytes_in_context(metadata_llcx, &compressed);
    let llconst = C_struct_in_context(metadata_llcx, &[llmeta], false);
    let name = symbol_export::metadata_symbol_name(tcx);
    let buf = CString::new(name).unwrap();
    let llglobal = unsafe {
        llvm::LLVMAddGlobal(metadata_llmod, val_ty(llconst).to_ref(), buf.as_ptr())
    };
    unsafe {
        llvm::LLVMSetInitializer(llglobal, llconst);
        let section_name = metadata::metadata_section_name(&tcx.sess.target.target);
        let name = CString::new(section_name).unwrap();
        llvm::LLVMSetSection(llglobal, name.as_ptr());

        // Also generate a .section directive to force no
        // flags, at least for ELF outputs, so that the
        // metadata doesn't get loaded into memory.
        let directive = format!(".section {}", section_name);
        let directive = CString::new(directive).unwrap();
        llvm::LLVMSetModuleInlineAsm(metadata_llmod, directive.as_ptr())
    }
    return (metadata_llcx, metadata_llmod, metadata);
}

/// Find any symbols that are defined in one compilation unit, but not declared
/// in any other compilation unit.  Give these symbols internal linkage.
fn internalize_symbols<'a, 'tcx>(sess: &Session,
                                 scx: &SharedCrateContext<'a, 'tcx>,
                                 translation_items: &FxHashSet<TransItem<'tcx>>,
                                 llvm_modules: &[ModuleLlvm],
                                 exported_symbols: &ExportedSymbols) {
    let export_threshold =
        symbol_export::crates_export_threshold(&sess.crate_types.borrow());

    let exported_symbols = exported_symbols
        .exported_symbols(LOCAL_CRATE)
        .iter()
        .filter(|&&(_, export_level)| {
            symbol_export::is_below_threshold(export_level, export_threshold)
        })
        .map(|&(ref name, _)| &name[..])
        .collect::<FxHashSet<&str>>();

    let tcx = scx.tcx();

    let incr_comp = sess.opts.debugging_opts.incremental.is_some();

    // 'unsafe' because we are holding on to CStr's from the LLVM module within
    // this block.
    unsafe {
        let mut referenced_somewhere = FxHashSet();

        // Collect all symbols that need to stay externally visible because they
        // are referenced via a declaration in some other codegen unit. In
        // incremental compilation, we don't need to collect. See below for more
        // information.
        if !incr_comp {
            for ll in llvm_modules {
                for val in iter_globals(ll.llmod).chain(iter_functions(ll.llmod)) {
                    let linkage = llvm::LLVMRustGetLinkage(val);
                    // We only care about external declarations (not definitions)
                    // and available_externally definitions.
                    let is_available_externally =
                        linkage == llvm::Linkage::AvailableExternallyLinkage;
                    let is_decl = llvm::LLVMIsDeclaration(val) == llvm::True;

                    if is_decl || is_available_externally {
                        let symbol_name = CStr::from_ptr(llvm::LLVMGetValueName(val));
                        referenced_somewhere.insert(symbol_name);
                    }
                }
            }
        }

        // Also collect all symbols for which we cannot adjust linkage, because
        // it is fixed by some directive in the source code.
        let (locally_defined_symbols, linkage_fixed_explicitly) = {
            let mut locally_defined_symbols = FxHashSet();
            let mut linkage_fixed_explicitly = FxHashSet();

            for trans_item in translation_items {
                let symbol_name = str::to_owned(&trans_item.symbol_name(tcx));
                if trans_item.explicit_linkage(tcx).is_some() {
                    linkage_fixed_explicitly.insert(symbol_name.clone());
                }
                locally_defined_symbols.insert(symbol_name);
            }

            (locally_defined_symbols, linkage_fixed_explicitly)
        };

        // Examine each external definition.  If the definition is not used in
        // any other compilation unit, and is not reachable from other crates,
        // then give it internal linkage.
        for ll in llvm_modules {
            for val in iter_globals(ll.llmod).chain(iter_functions(ll.llmod)) {
                let linkage = llvm::LLVMRustGetLinkage(val);

                let is_externally_visible = (linkage == llvm::Linkage::ExternalLinkage) ||
                                            (linkage == llvm::Linkage::LinkOnceODRLinkage) ||
                                            (linkage == llvm::Linkage::WeakODRLinkage);

                if !is_externally_visible {
                    // This symbol is not visible outside of its codegen unit,
                    // so there is nothing to do for it.
                    continue;
                }

                let name_cstr = CStr::from_ptr(llvm::LLVMGetValueName(val));
                let name_str = name_cstr.to_str().unwrap();

                if exported_symbols.contains(&name_str) {
                    // This symbol is explicitly exported, so we can't
                    // mark it as internal or hidden.
                    continue;
                }

                let is_declaration = llvm::LLVMIsDeclaration(val) == llvm::True;

                if is_declaration {
                    if locally_defined_symbols.contains(name_str) {
                        // Only mark declarations from the current crate as hidden.
                        // Otherwise we would mark things as hidden that are
                        // imported from other crates or native libraries.
                        llvm::LLVMRustSetVisibility(val, llvm::Visibility::Hidden);
                    }
                } else {
                    let has_fixed_linkage = linkage_fixed_explicitly.contains(name_str);

                    if !has_fixed_linkage {
                        // In incremental compilation mode, we can't be sure that
                        // we saw all references because we don't know what's in
                        // cached compilation units, so we always assume that the
                        // given item has been referenced.
                        if incr_comp || referenced_somewhere.contains(&name_cstr) {
                            llvm::LLVMRustSetVisibility(val, llvm::Visibility::Hidden);
                        } else {
                            llvm::LLVMRustSetLinkage(val, llvm::Linkage::InternalLinkage);
                        }

                        llvm::LLVMSetDLLStorageClass(val, llvm::DLLStorageClass::Default);
                        llvm::UnsetComdat(val);
                    }
                }
            }
        }
    }
}

// Create a `__imp_<symbol> = &symbol` global for every public static `symbol`.
// This is required to satisfy `dllimport` references to static data in .rlibs
// when using MSVC linker.  We do this only for data, as linker can fix up
// code references on its own.
// See #26591, #27438
fn create_imps(sess: &Session,
               llvm_modules: &[ModuleLlvm]) {
    // The x86 ABI seems to require that leading underscores are added to symbol
    // names, so we need an extra underscore on 32-bit. There's also a leading
    // '\x01' here which disables LLVM's symbol mangling (e.g. no extra
    // underscores added in front).
    let prefix = if sess.target.target.target_pointer_width == "32" {
        "\x01__imp__"
    } else {
        "\x01__imp_"
    };
    unsafe {
        for ll in llvm_modules {
            let exported: Vec<_> = iter_globals(ll.llmod)
                                       .filter(|&val| {
                                           llvm::LLVMRustGetLinkage(val) ==
                                           llvm::Linkage::ExternalLinkage &&
                                           llvm::LLVMIsDeclaration(val) == 0
                                       })
                                       .collect();

            let i8p_ty = Type::i8p_llcx(ll.llcx);
            for val in exported {
                let name = CStr::from_ptr(llvm::LLVMGetValueName(val));
                let mut imp_name = prefix.as_bytes().to_vec();
                imp_name.extend(name.to_bytes());
                let imp_name = CString::new(imp_name).unwrap();
                let imp = llvm::LLVMAddGlobal(ll.llmod,
                                              i8p_ty.to_ref(),
                                              imp_name.as_ptr() as *const _);
                let init = llvm::LLVMConstBitCast(val, i8p_ty.to_ref());
                llvm::LLVMSetInitializer(imp, init);
                llvm::LLVMRustSetLinkage(imp, llvm::Linkage::ExternalLinkage);
            }
        }
    }
}

struct ValueIter {
    cur: ValueRef,
    step: unsafe extern "C" fn(ValueRef) -> ValueRef,
}

impl Iterator for ValueIter {
    type Item = ValueRef;

    fn next(&mut self) -> Option<ValueRef> {
        let old = self.cur;
        if !old.is_null() {
            self.cur = unsafe { (self.step)(old) };
            Some(old)
        } else {
            None
        }
    }
}

fn iter_globals(llmod: llvm::ModuleRef) -> ValueIter {
    unsafe {
        ValueIter {
            cur: llvm::LLVMGetFirstGlobal(llmod),
            step: llvm::LLVMGetNextGlobal,
        }
    }
}

fn iter_functions(llmod: llvm::ModuleRef) -> ValueIter {
    unsafe {
        ValueIter {
            cur: llvm::LLVMGetFirstFunction(llmod),
            step: llvm::LLVMGetNextFunction,
        }
    }
}

/// The context provided lists a set of reachable ids as calculated by
/// middle::reachable, but this contains far more ids and symbols than we're
/// actually exposing from the object file. This function will filter the set in
/// the context to the set of ids which correspond to symbols that are exposed
/// from the object file being generated.
///
/// This list is later used by linkers to determine the set of symbols needed to
/// be exposed from a dynamic library and it's also encoded into the metadata.
pub fn find_exported_symbols(tcx: TyCtxt, reachable: &NodeSet) -> NodeSet {
    reachable.iter().cloned().filter(|&id| {
        // Next, we want to ignore some FFI functions that are not exposed from
        // this crate. Reachable FFI functions can be lumped into two
        // categories:
        //
        // 1. Those that are included statically via a static library
        // 2. Those included otherwise (e.g. dynamically or via a framework)
        //
        // Although our LLVM module is not literally emitting code for the
        // statically included symbols, it's an export of our library which
        // needs to be passed on to the linker and encoded in the metadata.
        //
        // As a result, if this id is an FFI item (foreign item) then we only
        // let it through if it's included statically.
        match tcx.hir.get(id) {
            hir_map::NodeForeignItem(..) => {
                let def_id = tcx.hir.local_def_id(id);
                tcx.sess.cstore.is_statically_included_foreign_item(def_id)
            }

            // Only consider nodes that actually have exported symbols.
            hir_map::NodeItem(&hir::Item {
                node: hir::ItemStatic(..), .. }) |
            hir_map::NodeItem(&hir::Item {
                node: hir::ItemFn(..), .. }) |
            hir_map::NodeImplItem(&hir::ImplItem {
                node: hir::ImplItemKind::Method(..), .. }) => {
                let def_id = tcx.hir.local_def_id(id);
                let generics = tcx.generics_of(def_id);
                let attributes = tcx.get_attrs(def_id);
                (generics.parent_types == 0 && generics.types.is_empty()) &&
                // Functions marked with #[inline] are only ever translated
                // with "internal" linkage and are never exported.
                !attr::requests_inline(&attributes)
            }

            _ => false
        }
    }).collect()
}

pub fn trans_crate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                             analysis: ty::CrateAnalysis,
                             incremental_hashes_map: &IncrementalHashesMap,
                             output_filenames: &OutputFilenames)
                             -> CrateTranslation {
    // Be careful with this krate: obviously it gives access to the
    // entire contents of the krate. So if you push any subtasks of
    // `TransCrate`, you need to be careful to register "reads" of the
    // particular items that will be processed.
    let krate = tcx.hir.krate();

    let ty::CrateAnalysis { reachable, .. } = analysis;
    let exported_symbols = find_exported_symbols(tcx, &reachable);

    let check_overflow = tcx.sess.overflow_checks();

    let link_meta = link::build_link_meta(incremental_hashes_map);

    let shared_ccx = SharedCrateContext::new(tcx,
                                             exported_symbols,
                                             check_overflow,
                                             output_filenames);
    // Translate the metadata.
    let (metadata_llcx, metadata_llmod, metadata) =
        time(tcx.sess.time_passes(), "write metadata", || {
            write_metadata(tcx, &link_meta, shared_ccx.exported_symbols())
        });

    let metadata_module = ModuleTranslation {
        name: link::METADATA_MODULE_NAME.to_string(),
        symbol_name_hash: 0, // we always rebuild metadata, at least for now
        source: ModuleSource::Translated(ModuleLlvm {
            llcx: metadata_llcx,
            llmod: metadata_llmod,
        }),
    };
    let no_builtins = attr::contains_name(&krate.attrs, "no_builtins");

    // Skip crate items and just output metadata in -Z no-trans mode.
    if tcx.sess.opts.debugging_opts.no_trans ||
       !tcx.sess.opts.output_types.should_trans() {
        let empty_exported_symbols = ExportedSymbols::empty();
        let linker_info = LinkerInfo::new(&shared_ccx, &empty_exported_symbols);
        return CrateTranslation {
            crate_name: tcx.crate_name(LOCAL_CRATE),
            modules: vec![],
            metadata_module: metadata_module,
            link: link_meta,
            metadata: metadata,
            exported_symbols: empty_exported_symbols,
            no_builtins: no_builtins,
            linker_info: linker_info,
            windows_subsystem: None,
        };
    }

    // Run the translation item collector and partition the collected items into
    // codegen units.
    let (translation_items, codegen_units) =
        collect_and_partition_translation_items(&shared_ccx);

    let mut all_stats = Stats::default();
    let modules: Vec<ModuleTranslation> = codegen_units
        .into_iter()
        .map(|cgu| {
            let dep_node = cgu.work_product_dep_node();
            let (stats, module) =
                tcx.dep_graph.with_task(dep_node,
                                        AssertDepGraphSafe(&shared_ccx),
                                        AssertDepGraphSafe(cgu),
                                        module_translation);
            all_stats.extend(stats);
            module
        })
        .collect();

    fn module_translation<'a, 'tcx>(
        scx: AssertDepGraphSafe<&SharedCrateContext<'a, 'tcx>>,
        args: AssertDepGraphSafe<CodegenUnit<'tcx>>)
        -> (Stats, ModuleTranslation)
    {
        // FIXME(#40304): We ought to be using the id as a key and some queries, I think.
        let AssertDepGraphSafe(scx) = scx;
        let AssertDepGraphSafe(cgu) = args;

        let cgu_name = String::from(cgu.name());
        let cgu_id = cgu.work_product_id();
        let symbol_name_hash = cgu.compute_symbol_name_hash(scx);

        // Check whether there is a previous work-product we can
        // re-use.  Not only must the file exist, and the inputs not
        // be dirty, but the hash of the symbols we will generate must
        // be the same.
        let previous_work_product =
            scx.dep_graph().previous_work_product(&cgu_id).and_then(|work_product| {
                if work_product.input_hash == symbol_name_hash {
                    debug!("trans_reuse_previous_work_products: reusing {:?}", work_product);
                    Some(work_product)
                } else {
                    if scx.sess().opts.debugging_opts.incremental_info {
                        println!("incremental: CGU `{}` invalidated because of \
                                  changed partitioning hash.",
                                 cgu.name());
                    }
                    debug!("trans_reuse_previous_work_products: \
                            not reusing {:?} because hash changed to {:?}",
                           work_product, symbol_name_hash);
                    None
                }
            });

        if let Some(buf) = previous_work_product {
            // Don't need to translate this module.
            let module = ModuleTranslation {
                name: cgu_name,
                symbol_name_hash,
                source: ModuleSource::Preexisting(buf.clone())
            };
            return (Stats::default(), module);
        }

        // Instantiate translation items without filling out definitions yet...
        let lcx = LocalCrateContext::new(scx, cgu);
        let module = {
            let ccx = CrateContext::new(scx, &lcx);
            let trans_items = ccx.codegen_unit()
                                 .items_in_deterministic_order(ccx.tcx());
            for &(trans_item, linkage) in &trans_items {
                trans_item.predefine(&ccx, linkage);
            }

            // ... and now that we have everything pre-defined, fill out those definitions.
            for &(trans_item, _) in &trans_items {
                trans_item.define(&ccx);
            }

            // If this codegen unit contains the main function, also create the
            // wrapper here
            maybe_create_entry_wrapper(&ccx);

            // Run replace-all-uses-with for statics that need it
            for &(old_g, new_g) in ccx.statics_to_rauw().borrow().iter() {
                unsafe {
                    let bitcast = llvm::LLVMConstPointerCast(new_g, llvm::LLVMTypeOf(old_g));
                    llvm::LLVMReplaceAllUsesWith(old_g, bitcast);
                    llvm::LLVMDeleteGlobal(old_g);
                }
            }

            // Create the llvm.used variable
            // This variable has type [N x i8*] and is stored in the llvm.metadata section
            if !ccx.used_statics().borrow().is_empty() {
                let name = CString::new("llvm.used").unwrap();
                let section = CString::new("llvm.metadata").unwrap();
                let array = C_array(Type::i8(&ccx).ptr_to(), &*ccx.used_statics().borrow());

                unsafe {
                    let g = llvm::LLVMAddGlobal(ccx.llmod(),
                                                val_ty(array).to_ref(),
                                                name.as_ptr());
                    llvm::LLVMSetInitializer(g, array);
                    llvm::LLVMRustSetLinkage(g, llvm::Linkage::AppendingLinkage);
                    llvm::LLVMSetSection(g, section.as_ptr());
                }
            }

            // Finalize debuginfo
            if ccx.sess().opts.debuginfo != NoDebugInfo {
                debuginfo::finalize(&ccx);
            }

            ModuleTranslation {
                name: cgu_name,
                symbol_name_hash,
                source: ModuleSource::Translated(ModuleLlvm {
                    llcx: ccx.llcx(),
                    llmod: ccx.llmod(),
                })
            }
        };

        (lcx.into_stats(), module)
    }

    assert_module_sources::assert_module_sources(tcx, &modules);

    symbol_names_test::report_symbol_names(tcx);

    if shared_ccx.sess().trans_stats() {
        println!("--- trans stats ---");
        println!("n_glues_created: {}", all_stats.n_glues_created.get());
        println!("n_null_glues: {}", all_stats.n_null_glues.get());
        println!("n_real_glues: {}", all_stats.n_real_glues.get());

        println!("n_fns: {}", all_stats.n_fns.get());
        println!("n_inlines: {}", all_stats.n_inlines.get());
        println!("n_closures: {}", all_stats.n_closures.get());
        println!("fn stats:");
        all_stats.fn_stats.borrow_mut().sort_by(|&(_, insns_a), &(_, insns_b)| {
            insns_b.cmp(&insns_a)
        });
        for tuple in all_stats.fn_stats.borrow().iter() {
            match *tuple {
                (ref name, insns) => {
                    println!("{} insns, {}", insns, *name);
                }
            }
        }
    }

    if shared_ccx.sess().count_llvm_insns() {
        for (k, v) in all_stats.llvm_insns.borrow().iter() {
            println!("{:7} {}", *v, *k);
        }
    }

    let sess = shared_ccx.sess();

    let exported_symbols = ExportedSymbols::compute(&shared_ccx);

    // Get the list of llvm modules we created. We'll do a few wacky
    // transforms on them now.

    let llvm_modules: Vec<_> =
        modules.iter()
               .filter_map(|module| match module.source {
                   ModuleSource::Translated(llvm) => Some(llvm),
                   _ => None,
               })
               .collect();

    // Now that we have all symbols that are exported from the CGUs of this
    // crate, we can run the `internalize_symbols` pass.
    time(shared_ccx.sess().time_passes(), "internalize symbols", || {
        internalize_symbols(sess,
                            &shared_ccx,
                            &translation_items,
                            &llvm_modules,
                            &exported_symbols);
    });

    if sess.target.target.options.is_like_msvc &&
       sess.crate_types.borrow().iter().any(|ct| *ct == config::CrateTypeRlib) {
        create_imps(sess, &llvm_modules);
    }

    let linker_info = LinkerInfo::new(&shared_ccx, &exported_symbols);

    let subsystem = attr::first_attr_value_str_by_name(&krate.attrs,
                                                       "windows_subsystem");
    let windows_subsystem = subsystem.map(|subsystem| {
        if subsystem != "windows" && subsystem != "console" {
            tcx.sess.fatal(&format!("invalid windows subsystem `{}`, only \
                                     `windows` and `console` are allowed",
                                    subsystem));
        }
        subsystem.to_string()
    });

    CrateTranslation {
        crate_name: tcx.crate_name(LOCAL_CRATE),
        modules: modules,
        metadata_module: metadata_module,
        link: link_meta,
        metadata: metadata,
        exported_symbols: exported_symbols,
        no_builtins: no_builtins,
        linker_info: linker_info,
        windows_subsystem: windows_subsystem,
    }
}

#[inline(never)] // give this a place in the profiler
fn assert_symbols_are_distinct<'a, 'tcx, I>(tcx: TyCtxt<'a, 'tcx, 'tcx>, trans_items: I)
    where I: Iterator<Item=&'a TransItem<'tcx>>
{
    let mut symbols: Vec<_> = trans_items.map(|trans_item| {
        (trans_item, trans_item.symbol_name(tcx))
    }).collect();

    (&mut symbols[..]).sort_by(|&(_, ref sym1), &(_, ref sym2)|{
        sym1.cmp(sym2)
    });

    for pair in (&symbols[..]).windows(2) {
        let sym1 = &pair[0].1;
        let sym2 = &pair[1].1;

        if *sym1 == *sym2 {
            let trans_item1 = pair[0].0;
            let trans_item2 = pair[1].0;

            let span1 = trans_item1.local_span(tcx);
            let span2 = trans_item2.local_span(tcx);

            // Deterministically select one of the spans for error reporting
            let span = match (span1, span2) {
                (Some(span1), Some(span2)) => {
                    Some(if span1.lo.0 > span2.lo.0 {
                        span1
                    } else {
                        span2
                    })
                }
                (Some(span), None) |
                (None, Some(span)) => Some(span),
                _ => None
            };

            let error_message = format!("symbol `{}` is already defined", sym1);

            if let Some(span) = span {
                tcx.sess.span_fatal(span, &error_message)
            } else {
                tcx.sess.fatal(&error_message)
            }
        }
    }
}

fn collect_and_partition_translation_items<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>)
                                                     -> (FxHashSet<TransItem<'tcx>>,
                                                         Vec<CodegenUnit<'tcx>>) {
    let time_passes = scx.sess().time_passes();

    let collection_mode = match scx.sess().opts.debugging_opts.print_trans_items {
        Some(ref s) => {
            let mode_string = s.to_lowercase();
            let mode_string = mode_string.trim();
            if mode_string == "eager" {
                TransItemCollectionMode::Eager
            } else {
                if mode_string != "lazy" {
                    let message = format!("Unknown codegen-item collection mode '{}'. \
                                           Falling back to 'lazy' mode.",
                                           mode_string);
                    scx.sess().warn(&message);
                }

                TransItemCollectionMode::Lazy
            }
        }
        None => TransItemCollectionMode::Lazy
    };

    let (items, inlining_map) =
        time(time_passes, "translation item collection", || {
            collector::collect_crate_translation_items(&scx, collection_mode)
    });

    assert_symbols_are_distinct(scx.tcx(), items.iter());

    let strategy = if scx.sess().opts.debugging_opts.incremental.is_some() {
        PartitioningStrategy::PerModule
    } else {
        PartitioningStrategy::FixedUnitCount(scx.sess().opts.cg.codegen_units)
    };

    let codegen_units = time(time_passes, "codegen unit partitioning", || {
        partitioning::partition(scx,
                                items.iter().cloned(),
                                strategy,
                                &inlining_map)
    });

    assert!(scx.tcx().sess.opts.cg.codegen_units == codegen_units.len() ||
            scx.tcx().sess.opts.debugging_opts.incremental.is_some());

    let translation_items: FxHashSet<TransItem<'tcx>> = items.iter().cloned().collect();

    if scx.sess().opts.debugging_opts.print_trans_items.is_some() {
        let mut item_to_cgus = FxHashMap();

        for cgu in &codegen_units {
            for (&trans_item, &linkage) in cgu.items() {
                item_to_cgus.entry(trans_item)
                            .or_insert(Vec::new())
                            .push((cgu.name().clone(), linkage));
            }
        }

        let mut item_keys: Vec<_> = items
            .iter()
            .map(|i| {
                let mut output = i.to_string(scx.tcx());
                output.push_str(" @@");
                let mut empty = Vec::new();
                let mut cgus = item_to_cgus.get_mut(i).unwrap_or(&mut empty);
                cgus.as_mut_slice().sort_by_key(|&(ref name, _)| name.clone());
                cgus.dedup();
                for &(ref cgu_name, linkage) in cgus.iter() {
                    output.push_str(" ");
                    output.push_str(&cgu_name);

                    let linkage_abbrev = match linkage {
                        llvm::Linkage::ExternalLinkage => "External",
                        llvm::Linkage::AvailableExternallyLinkage => "Available",
                        llvm::Linkage::LinkOnceAnyLinkage => "OnceAny",
                        llvm::Linkage::LinkOnceODRLinkage => "OnceODR",
                        llvm::Linkage::WeakAnyLinkage => "WeakAny",
                        llvm::Linkage::WeakODRLinkage => "WeakODR",
                        llvm::Linkage::AppendingLinkage => "Appending",
                        llvm::Linkage::InternalLinkage => "Internal",
                        llvm::Linkage::PrivateLinkage => "Private",
                        llvm::Linkage::ExternalWeakLinkage => "ExternalWeak",
                        llvm::Linkage::CommonLinkage => "Common",
                    };

                    output.push_str("[");
                    output.push_str(linkage_abbrev);
                    output.push_str("]");
                }
                output
            })
            .collect();

        item_keys.sort();

        for item in item_keys {
            println!("TRANS_ITEM {}", item);
        }
    }

    (translation_items, codegen_units)
}