summaryrefslogtreecommitdiff
path: root/src/librustc_trans/trans/_match.rs
blob: f5fbec0b1879e65653e4e9e4660e73f7d4781aca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! # Compilation of match statements
//!
//! I will endeavor to explain the code as best I can.  I have only a loose
//! understanding of some parts of it.
//!
//! ## Matching
//!
//! The basic state of the code is maintained in an array `m` of `Match`
//! objects.  Each `Match` describes some list of patterns, all of which must
//! match against the current list of values.  If those patterns match, then
//! the arm listed in the match is the correct arm.  A given arm may have
//! multiple corresponding match entries, one for each alternative that
//! remains.  As we proceed these sets of matches are adjusted by the various
//! `enter_XXX()` functions, each of which adjusts the set of options given
//! some information about the value which has been matched.
//!
//! So, initially, there is one value and N matches, each of which have one
//! constituent pattern.  N here is usually the number of arms but may be
//! greater, if some arms have multiple alternatives.  For example, here:
//!
//!     enum Foo { A, B(int), C(usize, usize) }
//!     match foo {
//!         A => ...,
//!         B(x) => ...,
//!         C(1, 2) => ...,
//!         C(_) => ...
//!     }
//!
//! The value would be `foo`.  There would be four matches, each of which
//! contains one pattern (and, in one case, a guard).  We could collect the
//! various options and then compile the code for the case where `foo` is an
//! `A`, a `B`, and a `C`.  When we generate the code for `C`, we would (1)
//! drop the two matches that do not match a `C` and (2) expand the other two
//! into two patterns each.  In the first case, the two patterns would be `1`
//! and `2`, and the in the second case the _ pattern would be expanded into
//! `_` and `_`.  The two values are of course the arguments to `C`.
//!
//! Here is a quick guide to the various functions:
//!
//! - `compile_submatch()`: The main workhouse.  It takes a list of values and
//!   a list of matches and finds the various possibilities that could occur.
//!
//! - `enter_XXX()`: modifies the list of matches based on some information
//!   about the value that has been matched.  For example,
//!   `enter_rec_or_struct()` adjusts the values given that a record or struct
//!   has been matched.  This is an infallible pattern, so *all* of the matches
//!   must be either wildcards or record/struct patterns.  `enter_opt()`
//!   handles the fallible cases, and it is correspondingly more complex.
//!
//! ## Bindings
//!
//! We store information about the bound variables for each arm as part of the
//! per-arm `ArmData` struct.  There is a mapping from identifiers to
//! `BindingInfo` structs.  These structs contain the mode/id/type of the
//! binding, but they also contain an LLVM value which points at an alloca
//! called `llmatch`. For by value bindings that are Copy, we also create
//! an extra alloca that we copy the matched value to so that any changes
//! we do to our copy is not reflected in the original and vice-versa.
//! We don't do this if it's a move since the original value can't be used
//! and thus allowing us to cheat in not creating an extra alloca.
//!
//! The `llmatch` binding always stores a pointer into the value being matched
//! which points at the data for the binding.  If the value being matched has
//! type `T`, then, `llmatch` will point at an alloca of type `T*` (and hence
//! `llmatch` has type `T**`).  So, if you have a pattern like:
//!
//!    let a: A = ...;
//!    let b: B = ...;
//!    match (a, b) { (ref c, d) => { ... } }
//!
//! For `c` and `d`, we would generate allocas of type `C*` and `D*`
//! respectively.  These are called the `llmatch`.  As we match, when we come
//! up against an identifier, we store the current pointer into the
//! corresponding alloca.
//!
//! Once a pattern is completely matched, and assuming that there is no guard
//! pattern, we will branch to a block that leads to the body itself.  For any
//! by-value bindings, this block will first load the ptr from `llmatch` (the
//! one of type `D*`) and then load a second time to get the actual value (the
//! one of type `D`). For by ref bindings, the value of the local variable is
//! simply the first alloca.
//!
//! So, for the example above, we would generate a setup kind of like this:
//!
//!        +-------+
//!        | Entry |
//!        +-------+
//!            |
//!        +--------------------------------------------+
//!        | llmatch_c = (addr of first half of tuple)  |
//!        | llmatch_d = (addr of second half of tuple) |
//!        +--------------------------------------------+
//!            |
//!        +--------------------------------------+
//!        | *llbinding_d = **llmatch_d           |
//!        +--------------------------------------+
//!
//! If there is a guard, the situation is slightly different, because we must
//! execute the guard code.  Moreover, we need to do so once for each of the
//! alternatives that lead to the arm, because if the guard fails, they may
//! have different points from which to continue the search. Therefore, in that
//! case, we generate code that looks more like:
//!
//!        +-------+
//!        | Entry |
//!        +-------+
//!            |
//!        +-------------------------------------------+
//!        | llmatch_c = (addr of first half of tuple) |
//!        | llmatch_d = (addr of first half of tuple) |
//!        +-------------------------------------------+
//!            |
//!        +-------------------------------------------------+
//!        | *llbinding_d = **llmatch_d                      |
//!        | check condition                                 |
//!        | if false { goto next case }                     |
//!        | if true { goto body }                           |
//!        +-------------------------------------------------+
//!
//! The handling for the cleanups is a bit... sensitive.  Basically, the body
//! is the one that invokes `add_clean()` for each binding.  During the guard
//! evaluation, we add temporary cleanups and revoke them after the guard is
//! evaluated (it could fail, after all). Note that guards and moves are
//! just plain incompatible.
//!
//! Some relevant helper functions that manage bindings:
//! - `create_bindings_map()`
//! - `insert_lllocals()`
//!
//!
//! ## Notes on vector pattern matching.
//!
//! Vector pattern matching is surprisingly tricky. The problem is that
//! the structure of the vector isn't fully known, and slice matches
//! can be done on subparts of it.
//!
//! The way that vector pattern matches are dealt with, then, is as
//! follows. First, we make the actual condition associated with a
//! vector pattern simply a vector length comparison. So the pattern
//! [1, .. x] gets the condition "vec len >= 1", and the pattern
//! [.. x] gets the condition "vec len >= 0". The problem here is that
//! having the condition "vec len >= 1" hold clearly does not mean that
//! only a pattern that has exactly that condition will match. This
//! means that it may well be the case that a condition holds, but none
//! of the patterns matching that condition match; to deal with this,
//! when doing vector length matches, we have match failures proceed to
//! the next condition to check.
//!
//! There are a couple more subtleties to deal with. While the "actual"
//! condition associated with vector length tests is simply a test on
//! the vector length, the actual vec_len Opt entry contains more
//! information used to restrict which matches are associated with it.
//! So that all matches in a submatch are matching against the same
//! values from inside the vector, they are split up by how many
//! elements they match at the front and at the back of the vector. In
//! order to make sure that arms are properly checked in order, even
//! with the overmatching conditions, each vec_len Opt entry is
//! associated with a range of matches.
//! Consider the following:
//!
//!   match &[1, 2, 3] {
//!       [1, 1, .. _] => 0,
//!       [1, 2, 2, .. _] => 1,
//!       [1, 2, 3, .. _] => 2,
//!       [1, 2, .. _] => 3,
//!       _ => 4
//!   }
//! The proper arm to match is arm 2, but arms 0 and 3 both have the
//! condition "len >= 2". If arm 3 was lumped in with arm 0, then the
//! wrong branch would be taken. Instead, vec_len Opts are associated
//! with a contiguous range of matches that have the same "shape".
//! This is sort of ugly and requires a bunch of special handling of
//! vec_len options.

pub use self::BranchKind::*;
pub use self::OptResult::*;
pub use self::TransBindingMode::*;
use self::Opt::*;
use self::FailureHandler::*;

use llvm::{ValueRef, BasicBlockRef};
use middle::check_match::StaticInliner;
use middle::check_match;
use middle::const_eval;
use middle::def::{Def, DefMap};
use middle::def_id::DefId;
use middle::expr_use_visitor as euv;
use middle::infer;
use middle::lang_items::StrEqFnLangItem;
use middle::mem_categorization as mc;
use middle::mem_categorization::Categorization;
use middle::pat_util::*;
use trans::adt;
use trans::base::*;
use trans::build::{AddCase, And, Br, CondBr, GEPi, InBoundsGEP, Load, PointerCast};
use trans::build::{Not, Store, Sub, add_comment};
use trans::build;
use trans::callee;
use trans::cleanup::{self, CleanupMethods, DropHintMethods};
use trans::common::*;
use trans::consts;
use trans::datum::*;
use trans::debuginfo::{self, DebugLoc, ToDebugLoc};
use trans::expr::{self, Dest};
use trans::monomorphize;
use trans::tvec;
use trans::type_of;
use trans::Disr;
use middle::ty::{self, Ty, TyCtxt};
use middle::traits::ProjectionMode;
use session::config::NoDebugInfo;
use util::common::indenter;
use util::nodemap::FnvHashMap;
use util::ppaux;

use std;
use std::cell::RefCell;
use std::cmp::Ordering;
use std::fmt;
use std::rc::Rc;
use rustc_front::hir::{self, PatKind};
use syntax::ast::{self, DUMMY_NODE_ID, NodeId};
use syntax::codemap::Span;
use rustc_front::fold::Folder;
use syntax::ptr::P;

#[derive(Copy, Clone, Debug)]
struct ConstantExpr<'a>(&'a hir::Expr);

impl<'a> ConstantExpr<'a> {
    fn eq(self, other: ConstantExpr<'a>, tcx: &TyCtxt) -> bool {
        match const_eval::compare_lit_exprs(tcx, self.0, other.0) {
            Some(result) => result == Ordering::Equal,
            None => panic!("compare_list_exprs: type mismatch"),
        }
    }
}

// An option identifying a branch (either a literal, an enum variant or a range)
#[derive(Debug)]
enum Opt<'a, 'tcx> {
    ConstantValue(ConstantExpr<'a>, DebugLoc),
    ConstantRange(ConstantExpr<'a>, ConstantExpr<'a>, DebugLoc),
    Variant(Disr, Rc<adt::Repr<'tcx>>, DefId, DebugLoc),
    SliceLengthEqual(usize, DebugLoc),
    SliceLengthGreaterOrEqual(/* prefix length */ usize,
                              /* suffix length */ usize,
                              DebugLoc),
}

impl<'a, 'tcx> Opt<'a, 'tcx> {
    fn eq(&self, other: &Opt<'a, 'tcx>, tcx: &TyCtxt<'tcx>) -> bool {
        match (self, other) {
            (&ConstantValue(a, _), &ConstantValue(b, _)) => a.eq(b, tcx),
            (&ConstantRange(a1, a2, _), &ConstantRange(b1, b2, _)) => {
                a1.eq(b1, tcx) && a2.eq(b2, tcx)
            }
            (&Variant(a_disr, ref a_repr, a_def, _),
             &Variant(b_disr, ref b_repr, b_def, _)) => {
                a_disr == b_disr && *a_repr == *b_repr && a_def == b_def
            }
            (&SliceLengthEqual(a, _), &SliceLengthEqual(b, _)) => a == b,
            (&SliceLengthGreaterOrEqual(a1, a2, _),
             &SliceLengthGreaterOrEqual(b1, b2, _)) => {
                a1 == b1 && a2 == b2
            }
            _ => false
        }
    }

    fn trans<'blk>(&self, mut bcx: Block<'blk, 'tcx>) -> OptResult<'blk, 'tcx> {
        use trans::consts::TrueConst::Yes;
        let _icx = push_ctxt("match::trans_opt");
        let ccx = bcx.ccx();
        match *self {
            ConstantValue(ConstantExpr(lit_expr), _) => {
                let lit_ty = bcx.tcx().node_id_to_type(lit_expr.id);
                let expr = consts::const_expr(ccx, &lit_expr, bcx.fcx.param_substs, None, Yes);
                let llval = match expr {
                    Ok((llval, _)) => llval,
                    Err(err) => bcx.ccx().sess().span_fatal(lit_expr.span, &err.description()),
                };
                let lit_datum = immediate_rvalue(llval, lit_ty);
                let lit_datum = unpack_datum!(bcx, lit_datum.to_appropriate_datum(bcx));
                SingleResult(Result::new(bcx, lit_datum.val))
            }
            ConstantRange(ConstantExpr(ref l1), ConstantExpr(ref l2), _) => {
                let l1 = match consts::const_expr(ccx, &l1, bcx.fcx.param_substs, None, Yes) {
                    Ok((l1, _)) => l1,
                    Err(err) => bcx.ccx().sess().span_fatal(l1.span, &err.description()),
                };
                let l2 = match consts::const_expr(ccx, &l2, bcx.fcx.param_substs, None, Yes) {
                    Ok((l2, _)) => l2,
                    Err(err) => bcx.ccx().sess().span_fatal(l2.span, &err.description()),
                };
                RangeResult(Result::new(bcx, l1), Result::new(bcx, l2))
            }
            Variant(disr_val, ref repr, _, _) => {
                SingleResult(Result::new(bcx, adt::trans_case(bcx, &repr, disr_val)))
            }
            SliceLengthEqual(length, _) => {
                SingleResult(Result::new(bcx, C_uint(ccx, length)))
            }
            SliceLengthGreaterOrEqual(prefix, suffix, _) => {
                LowerBound(Result::new(bcx, C_uint(ccx, prefix + suffix)))
            }
        }
    }

    fn debug_loc(&self) -> DebugLoc {
        match *self {
            ConstantValue(_,debug_loc)                 |
            ConstantRange(_, _, debug_loc)             |
            Variant(_, _, _, debug_loc)                |
            SliceLengthEqual(_, debug_loc)             |
            SliceLengthGreaterOrEqual(_, _, debug_loc) => debug_loc
        }
    }
}

#[derive(Copy, Clone, PartialEq)]
pub enum BranchKind {
    NoBranch,
    Single,
    Switch,
    Compare,
    CompareSliceLength
}

pub enum OptResult<'blk, 'tcx: 'blk> {
    SingleResult(Result<'blk, 'tcx>),
    RangeResult(Result<'blk, 'tcx>, Result<'blk, 'tcx>),
    LowerBound(Result<'blk, 'tcx>)
}

#[derive(Clone, Copy, PartialEq)]
pub enum TransBindingMode {
    /// By-value binding for a copy type: copies from matched data
    /// into a fresh LLVM alloca.
    TrByCopy(/* llbinding */ ValueRef),

    /// By-value binding for a non-copy type where we copy into a
    /// fresh LLVM alloca; this most accurately reflects the language
    /// semantics (e.g. it properly handles overwrites of the matched
    /// input), but potentially injects an unwanted copy.
    TrByMoveIntoCopy(/* llbinding */ ValueRef),

    /// Binding a non-copy type by reference under the hood; this is
    /// a codegen optimization to avoid unnecessary memory traffic.
    TrByMoveRef,

    /// By-ref binding exposed in the original source input.
    TrByRef,
}

impl TransBindingMode {
    /// if binding by making a fresh copy; returns the alloca that it
    /// will copy into; otherwise None.
    fn alloca_if_copy(&self) -> Option<ValueRef> {
        match *self {
            TrByCopy(llbinding) | TrByMoveIntoCopy(llbinding) => Some(llbinding),
            TrByMoveRef | TrByRef => None,
        }
    }
}

/// Information about a pattern binding:
/// - `llmatch` is a pointer to a stack slot.  The stack slot contains a
///   pointer into the value being matched.  Hence, llmatch has type `T**`
///   where `T` is the value being matched.
/// - `trmode` is the trans binding mode
/// - `id` is the node id of the binding
/// - `ty` is the Rust type of the binding
#[derive(Clone, Copy)]
pub struct BindingInfo<'tcx> {
    pub llmatch: ValueRef,
    pub trmode: TransBindingMode,
    pub id: ast::NodeId,
    pub span: Span,
    pub ty: Ty<'tcx>,
}

type BindingsMap<'tcx> = FnvHashMap<ast::Name, BindingInfo<'tcx>>;

struct ArmData<'p, 'blk, 'tcx: 'blk> {
    bodycx: Block<'blk, 'tcx>,
    arm: &'p hir::Arm,
    bindings_map: BindingsMap<'tcx>
}

/// Info about Match.
/// If all `pats` are matched then arm `data` will be executed.
/// As we proceed `bound_ptrs` are filled with pointers to values to be bound,
/// these pointers are stored in llmatch variables just before executing `data` arm.
struct Match<'a, 'p: 'a, 'blk: 'a, 'tcx: 'blk> {
    pats: Vec<&'p hir::Pat>,
    data: &'a ArmData<'p, 'blk, 'tcx>,
    bound_ptrs: Vec<(ast::Name, ValueRef)>,
    // Thread along renamings done by the check_match::StaticInliner, so we can
    // map back to original NodeIds
    pat_renaming_map: Option<&'a FnvHashMap<(NodeId, Span), NodeId>>
}

impl<'a, 'p, 'blk, 'tcx> fmt::Debug for Match<'a, 'p, 'blk, 'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if ppaux::verbose() {
            // for many programs, this just take too long to serialize
            write!(f, "{:?}", self.pats)
        } else {
            write!(f, "{} pats", self.pats.len())
        }
    }
}

fn has_nested_bindings(m: &[Match], col: usize) -> bool {
    for br in m {
        match br.pats[col].node {
            PatKind::Ident(_, _, Some(_)) => return true,
            _ => ()
        }
    }
    return false;
}

// As noted in `fn match_datum`, we should eventually pass around a
// `Datum<Lvalue>` for the `val`; but until we get to that point, this
// `MatchInput` struct will serve -- it has everything `Datum<Lvalue>`
// does except for the type field.
#[derive(Copy, Clone)]
pub struct MatchInput { val: ValueRef, lval: Lvalue }

impl<'tcx> Datum<'tcx, Lvalue> {
    pub fn match_input(&self) -> MatchInput {
        MatchInput {
            val: self.val,
            lval: self.kind,
        }
    }
}

impl MatchInput {
    fn from_val(val: ValueRef) -> MatchInput {
        MatchInput {
            val: val,
            lval: Lvalue::new("MatchInput::from_val"),
        }
    }

    fn to_datum<'tcx>(self, ty: Ty<'tcx>) -> Datum<'tcx, Lvalue> {
        Datum::new(self.val, ty, self.lval)
    }
}

fn expand_nested_bindings<'a, 'p, 'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                                              m: &[Match<'a, 'p, 'blk, 'tcx>],
                                              col: usize,
                                              val: MatchInput)
                                              -> Vec<Match<'a, 'p, 'blk, 'tcx>> {
    debug!("expand_nested_bindings(bcx={}, m={:?}, col={}, val={})",
           bcx.to_str(),
           m,
           col,
           bcx.val_to_string(val.val));
    let _indenter = indenter();

    m.iter().map(|br| {
        let mut bound_ptrs = br.bound_ptrs.clone();
        let mut pat = br.pats[col];
        loop {
            pat = match pat.node {
                PatKind::Ident(_, ref path, Some(ref inner)) => {
                    bound_ptrs.push((path.node.name, val.val));
                    &inner
                },
                _ => break
            }
        }

        let mut pats = br.pats.clone();
        pats[col] = pat;
        Match {
            pats: pats,
            data: &br.data,
            bound_ptrs: bound_ptrs,
            pat_renaming_map: br.pat_renaming_map,
        }
    }).collect()
}

fn enter_match<'a, 'b, 'p, 'blk, 'tcx, F>(bcx: Block<'blk, 'tcx>,
                                          dm: &RefCell<DefMap>,
                                          m: &[Match<'a, 'p, 'blk, 'tcx>],
                                          col: usize,
                                          val: MatchInput,
                                          mut e: F)
                                          -> Vec<Match<'a, 'p, 'blk, 'tcx>> where
    F: FnMut(&[&'p hir::Pat]) -> Option<Vec<&'p hir::Pat>>,
{
    debug!("enter_match(bcx={}, m={:?}, col={}, val={})",
           bcx.to_str(),
           m,
           col,
           bcx.val_to_string(val.val));
    let _indenter = indenter();

    m.iter().filter_map(|br| {
        e(&br.pats).map(|pats| {
            let this = br.pats[col];
            let mut bound_ptrs = br.bound_ptrs.clone();
            match this.node {
                PatKind::Ident(_, ref path, None) => {
                    if pat_is_binding(&dm.borrow(), &this) {
                        bound_ptrs.push((path.node.name, val.val));
                    }
                }
                PatKind::Vec(ref before, Some(ref slice), ref after) => {
                    if let PatKind::Ident(_, ref path, None) = slice.node {
                        let subslice_val = bind_subslice_pat(
                            bcx, this.id, val,
                            before.len(), after.len());
                        bound_ptrs.push((path.node.name, subslice_val));
                    }
                }
                _ => {}
            }
            Match {
                pats: pats,
                data: br.data,
                bound_ptrs: bound_ptrs,
                pat_renaming_map: br.pat_renaming_map,
            }
        })
    }).collect()
}

fn enter_default<'a, 'p, 'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                                     dm: &RefCell<DefMap>,
                                     m: &[Match<'a, 'p, 'blk, 'tcx>],
                                     col: usize,
                                     val: MatchInput)
                                     -> Vec<Match<'a, 'p, 'blk, 'tcx>> {
    debug!("enter_default(bcx={}, m={:?}, col={}, val={})",
           bcx.to_str(),
           m,
           col,
           bcx.val_to_string(val.val));
    let _indenter = indenter();

    // Collect all of the matches that can match against anything.
    enter_match(bcx, dm, m, col, val, |pats| {
        if pat_is_binding_or_wild(&dm.borrow(), &pats[col]) {
            let mut r = pats[..col].to_vec();
            r.extend_from_slice(&pats[col + 1..]);
            Some(r)
        } else {
            None
        }
    })
}

// <pcwalton> nmatsakis: what does enter_opt do?
// <pcwalton> in trans/match
// <pcwalton> trans/match.rs is like stumbling around in a dark cave
// <nmatsakis> pcwalton: the enter family of functions adjust the set of
//             patterns as needed
// <nmatsakis> yeah, at some point I kind of achieved some level of
//             understanding
// <nmatsakis> anyhow, they adjust the patterns given that something of that
//             kind has been found
// <nmatsakis> pcwalton: ok, right, so enter_XXX() adjusts the patterns, as I
//             said
// <nmatsakis> enter_match() kind of embodies the generic code
// <nmatsakis> it is provided with a function that tests each pattern to see
//             if it might possibly apply and so forth
// <nmatsakis> so, if you have a pattern like {a: _, b: _, _} and one like _
// <nmatsakis> then _ would be expanded to (_, _)
// <nmatsakis> one spot for each of the sub-patterns
// <nmatsakis> enter_opt() is one of the more complex; it covers the fallible
//             cases
// <nmatsakis> enter_rec_or_struct() or enter_tuple() are simpler, since they
//             are infallible patterns
// <nmatsakis> so all patterns must either be records (resp. tuples) or
//             wildcards

/// The above is now outdated in that enter_match() now takes a function that
/// takes the complete row of patterns rather than just the first one.
/// Also, most of the enter_() family functions have been unified with
/// the check_match specialization step.
fn enter_opt<'a, 'p, 'blk, 'tcx>(
             bcx: Block<'blk, 'tcx>,
             _: ast::NodeId,
             dm: &RefCell<DefMap>,
             m: &[Match<'a, 'p, 'blk, 'tcx>],
             opt: &Opt,
             col: usize,
             variant_size: usize,
             val: MatchInput)
             -> Vec<Match<'a, 'p, 'blk, 'tcx>> {
    debug!("enter_opt(bcx={}, m={:?}, opt={:?}, col={}, val={})",
           bcx.to_str(),
           m,
           *opt,
           col,
           bcx.val_to_string(val.val));
    let _indenter = indenter();

    let ctor = match opt {
        &ConstantValue(ConstantExpr(expr), _) => check_match::ConstantValue(
            const_eval::eval_const_expr(bcx.tcx(), &expr)
        ),
        &ConstantRange(ConstantExpr(lo), ConstantExpr(hi), _) => check_match::ConstantRange(
            const_eval::eval_const_expr(bcx.tcx(), &lo),
            const_eval::eval_const_expr(bcx.tcx(), &hi)
        ),
        &SliceLengthEqual(n, _) =>
            check_match::Slice(n),
        &SliceLengthGreaterOrEqual(before, after, _) =>
            check_match::SliceWithSubslice(before, after),
        &Variant(_, _, def_id, _) =>
            check_match::Constructor::Variant(def_id)
    };

    let param_env = bcx.tcx().empty_parameter_environment();
    let mcx = check_match::MatchCheckCtxt {
        tcx: bcx.tcx(),
        param_env: param_env,
    };
    enter_match(bcx, dm, m, col, val, |pats|
        check_match::specialize(&mcx, &pats[..], &ctor, col, variant_size)
    )
}

// Returns the options in one column of matches. An option is something that
// needs to be conditionally matched at runtime; for example, the discriminant
// on a set of enum variants or a literal.
fn get_branches<'a, 'p, 'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                                    m: &[Match<'a, 'p, 'blk, 'tcx>],
                                    col: usize)
                                    -> Vec<Opt<'p, 'tcx>> {
    let tcx = bcx.tcx();

    let mut found: Vec<Opt> = vec![];
    for br in m {
        let cur = br.pats[col];
        let debug_loc = match br.pat_renaming_map {
            Some(pat_renaming_map) => {
                match pat_renaming_map.get(&(cur.id, cur.span)) {
                    Some(&id) => DebugLoc::At(id, cur.span),
                    None => DebugLoc::At(cur.id, cur.span),
                }
            }
            None => DebugLoc::None
        };

        let opt = match cur.node {
            PatKind::Lit(ref l) => {
                ConstantValue(ConstantExpr(&l), debug_loc)
            }
            PatKind::Ident(..) | PatKind::Path(..) |
            PatKind::TupleStruct(..) | PatKind::Struct(..) => {
                // This is either an enum variant or a variable binding.
                let opt_def = tcx.def_map.borrow().get(&cur.id).map(|d| d.full_def());
                match opt_def {
                    Some(Def::Variant(enum_id, var_id)) => {
                        let variant = tcx.lookup_adt_def(enum_id).variant_with_id(var_id);
                        Variant(Disr::from(variant.disr_val),
                                adt::represent_node(bcx, cur.id),
                                var_id,
                                debug_loc)
                    }
                    _ => continue
                }
            }
            PatKind::Range(ref l1, ref l2) => {
                ConstantRange(ConstantExpr(&l1), ConstantExpr(&l2), debug_loc)
            }
            PatKind::Vec(ref before, None, ref after) => {
                SliceLengthEqual(before.len() + after.len(), debug_loc)
            }
            PatKind::Vec(ref before, Some(_), ref after) => {
                SliceLengthGreaterOrEqual(before.len(), after.len(), debug_loc)
            }
            _ => continue
        };

        if !found.iter().any(|x| x.eq(&opt, tcx)) {
            found.push(opt);
        }
    }
    found
}

struct ExtractedBlock<'blk, 'tcx: 'blk> {
    vals: Vec<ValueRef>,
    bcx: Block<'blk, 'tcx>,
}

fn extract_variant_args<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                                    repr: &adt::Repr<'tcx>,
                                    disr_val: Disr,
                                    val: MatchInput)
                                    -> ExtractedBlock<'blk, 'tcx> {
    let _icx = push_ctxt("match::extract_variant_args");
    // Assume enums are always sized for now.
    let val = adt::MaybeSizedValue::sized(val.val);
    let args = (0..adt::num_args(repr, disr_val)).map(|i| {
        adt::trans_field_ptr(bcx, repr, val, disr_val, i)
    }).collect();

    ExtractedBlock { vals: args, bcx: bcx }
}

/// Helper for converting from the ValueRef that we pass around in the match code, which is always
/// an lvalue, into a Datum. Eventually we should just pass around a Datum and be done with it.
fn match_datum<'tcx>(val: MatchInput, left_ty: Ty<'tcx>) -> Datum<'tcx, Lvalue> {
    val.to_datum(left_ty)
}

fn bind_subslice_pat(bcx: Block,
                     pat_id: ast::NodeId,
                     val: MatchInput,
                     offset_left: usize,
                     offset_right: usize) -> ValueRef {
    let _icx = push_ctxt("match::bind_subslice_pat");
    let vec_ty = node_id_type(bcx, pat_id);
    let vec_ty_contents = match vec_ty.sty {
        ty::TyBox(ty) => ty,
        ty::TyRef(_, mt) | ty::TyRawPtr(mt) => mt.ty,
        _ => vec_ty
    };
    let unit_ty = vec_ty_contents.sequence_element_type(bcx.tcx());
    let vec_datum = match_datum(val, vec_ty);
    let (base, len) = vec_datum.get_vec_base_and_len(bcx);

    let slice_begin = InBoundsGEP(bcx, base, &[C_uint(bcx.ccx(), offset_left)]);
    let slice_len_offset = C_uint(bcx.ccx(), offset_left + offset_right);
    let slice_len = Sub(bcx, len, slice_len_offset, DebugLoc::None);
    let slice_ty = bcx.tcx().mk_imm_ref(bcx.tcx().mk_region(ty::ReStatic),
                                         bcx.tcx().mk_slice(unit_ty));
    let scratch = rvalue_scratch_datum(bcx, slice_ty, "");
    Store(bcx, slice_begin, expr::get_dataptr(bcx, scratch.val));
    Store(bcx, slice_len, expr::get_meta(bcx, scratch.val));
    scratch.val
}

fn extract_vec_elems<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                                 left_ty: Ty<'tcx>,
                                 before: usize,
                                 after: usize,
                                 val: MatchInput)
                                 -> ExtractedBlock<'blk, 'tcx> {
    let _icx = push_ctxt("match::extract_vec_elems");
    let vec_datum = match_datum(val, left_ty);
    let (base, len) = vec_datum.get_vec_base_and_len(bcx);
    let mut elems = vec![];
    elems.extend((0..before).map(|i| GEPi(bcx, base, &[i])));
    elems.extend((0..after).rev().map(|i| {
        InBoundsGEP(bcx, base, &[
            Sub(bcx, len, C_uint(bcx.ccx(), i + 1), DebugLoc::None)
        ])
    }));
    ExtractedBlock { vals: elems, bcx: bcx }
}

// Macro for deciding whether any of the remaining matches fit a given kind of
// pattern.  Note that, because the macro is well-typed, either ALL of the
// matches should fit that sort of pattern or NONE (however, some of the
// matches may be wildcards like _ or identifiers).
macro_rules! any_pat {
    ($m:expr, $col:expr, $pattern:pat) => (
        ($m).iter().any(|br| {
            match br.pats[$col].node {
                $pattern => true,
                _ => false
            }
        })
    )
}

fn any_uniq_pat(m: &[Match], col: usize) -> bool {
    any_pat!(m, col, PatKind::Box(_))
}

fn any_region_pat(m: &[Match], col: usize) -> bool {
    any_pat!(m, col, PatKind::Ref(..))
}

fn any_irrefutable_adt_pat(tcx: &TyCtxt, m: &[Match], col: usize) -> bool {
    m.iter().any(|br| {
        let pat = br.pats[col];
        match pat.node {
            PatKind::Tup(_) => true,
            PatKind::Struct(..) | PatKind::TupleStruct(..) |
            PatKind::Path(..) | PatKind::Ident(_, _, None) => {
                match tcx.def_map.borrow().get(&pat.id).unwrap().full_def() {
                    Def::Struct(..) | Def::TyAlias(..) => true,
                    _ => false,
                }
            }
            _ => false
        }
    })
}

/// What to do when the pattern match fails.
enum FailureHandler {
    Infallible,
    JumpToBasicBlock(BasicBlockRef),
    Unreachable
}

impl FailureHandler {
    fn is_fallible(&self) -> bool {
        match *self {
            Infallible => false,
            _ => true
        }
    }

    fn is_infallible(&self) -> bool {
        !self.is_fallible()
    }

    fn handle_fail(&self, bcx: Block) {
        match *self {
            Infallible =>
                panic!("attempted to panic in a non-panicking panic handler!"),
            JumpToBasicBlock(basic_block) =>
                Br(bcx, basic_block, DebugLoc::None),
            Unreachable =>
                build::Unreachable(bcx)
        }
    }
}

fn pick_column_to_specialize(def_map: &RefCell<DefMap>, m: &[Match]) -> Option<usize> {
    fn pat_score(def_map: &RefCell<DefMap>, pat: &hir::Pat) -> usize {
        match pat.node {
            PatKind::Ident(_, _, Some(ref inner)) => pat_score(def_map, &inner),
            _ if pat_is_refutable(&def_map.borrow(), pat) => 1,
            _ => 0
        }
    }

    let column_score = |m: &[Match], col: usize| -> usize {
        let total_score = m.iter()
            .map(|row| row.pats[col])
            .map(|pat| pat_score(def_map, pat))
            .sum();

        // Irrefutable columns always go first, they'd only be duplicated in the branches.
        if total_score == 0 {
            std::usize::MAX
        } else {
            total_score
        }
    };

    let column_contains_any_nonwild_patterns = |&col: &usize| -> bool {
        m.iter().any(|row| match row.pats[col].node {
            PatKind::Wild => false,
            _ => true
        })
    };

    (0..m[0].pats.len())
        .filter(column_contains_any_nonwild_patterns)
        .map(|col| (col, column_score(m, col)))
        .max_by_key(|&(_, score)| score)
        .map(|(col, _)| col)
}

// Compiles a comparison between two things.
fn compare_values<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
                              lhs: ValueRef,
                              rhs: ValueRef,
                              rhs_t: Ty<'tcx>,
                              debug_loc: DebugLoc)
                              -> Result<'blk, 'tcx> {
    fn compare_str<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
                               lhs_data: ValueRef,
                               lhs_len: ValueRef,
                               rhs_data: ValueRef,
                               rhs_len: ValueRef,
                               rhs_t: Ty<'tcx>,
                               debug_loc: DebugLoc)
                               -> Result<'blk, 'tcx> {
        let did = langcall(cx,
                           None,
                           &format!("comparison of `{}`", rhs_t),
                           StrEqFnLangItem);
        callee::trans_lang_call(cx, did, &[lhs_data, lhs_len, rhs_data, rhs_len], None, debug_loc)
    }

    let _icx = push_ctxt("compare_values");
    if rhs_t.is_scalar() {
        let cmp = compare_scalar_types(cx, lhs, rhs, rhs_t, hir::BiEq, debug_loc);
        return Result::new(cx, cmp);
    }

    match rhs_t.sty {
        ty::TyRef(_, mt) => match mt.ty.sty {
            ty::TyStr => {
                let lhs_data = Load(cx, expr::get_dataptr(cx, lhs));
                let lhs_len = Load(cx, expr::get_meta(cx, lhs));
                let rhs_data = Load(cx, expr::get_dataptr(cx, rhs));
                let rhs_len = Load(cx, expr::get_meta(cx, rhs));
                compare_str(cx, lhs_data, lhs_len, rhs_data, rhs_len, rhs_t, debug_loc)
            }
            ty::TyArray(ty, _) | ty::TySlice(ty) => match ty.sty {
                ty::TyUint(ast::UintTy::U8) => {
                    // NOTE: cast &[u8] and &[u8; N] to &str and abuse the str_eq lang item,
                    // which calls memcmp().
                    let pat_len = val_ty(rhs).element_type().array_length();
                    let ty_str_slice = cx.tcx().mk_static_str();

                    let rhs_data = GEPi(cx, rhs, &[0, 0]);
                    let rhs_len = C_uint(cx.ccx(), pat_len);

                    let lhs_data;
                    let lhs_len;
                    if val_ty(lhs) == val_ty(rhs) {
                        // Both the discriminant and the pattern are thin pointers
                        lhs_data = GEPi(cx, lhs, &[0, 0]);
                        lhs_len = C_uint(cx.ccx(), pat_len);
                    } else {
                        // The discriminant is a fat pointer
                        let llty_str_slice = type_of::type_of(cx.ccx(), ty_str_slice).ptr_to();
                        let lhs_str = PointerCast(cx, lhs, llty_str_slice);
                        lhs_data = Load(cx, expr::get_dataptr(cx, lhs_str));
                        lhs_len = Load(cx, expr::get_meta(cx, lhs_str));
                    }

                    compare_str(cx, lhs_data, lhs_len, rhs_data, rhs_len, rhs_t, debug_loc)
                },
                _ => cx.sess().bug("only byte strings supported in compare_values"),
            },
            _ => cx.sess().bug("only string and byte strings supported in compare_values"),
        },
        _ => cx.sess().bug("only scalars, byte strings, and strings supported in compare_values"),
    }
}

/// For each binding in `data.bindings_map`, adds an appropriate entry into the `fcx.lllocals` map
fn insert_lllocals<'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>,
                               bindings_map: &BindingsMap<'tcx>,
                               cs: Option<cleanup::ScopeId>)
                               -> Block<'blk, 'tcx> {
    for (&name, &binding_info) in bindings_map {
        let (llval, aliases_other_state) = match binding_info.trmode {
            // By value mut binding for a copy type: load from the ptr
            // into the matched value and copy to our alloca
            TrByCopy(llbinding) |
            TrByMoveIntoCopy(llbinding) => {
                let llval = Load(bcx, binding_info.llmatch);
                let lvalue = match binding_info.trmode {
                    TrByCopy(..) =>
                        Lvalue::new("_match::insert_lllocals"),
                    TrByMoveIntoCopy(..) => {
                        // match_input moves from the input into a
                        // separate stack slot.
                        //
                        // E.g. consider moving the value `D(A)` out
                        // of the tuple `(D(A), D(B))` and into the
                        // local variable `x` via the pattern `(x,_)`,
                        // leaving the remainder of the tuple `(_,
                        // D(B))` still to be dropped in the future.
                        //
                        // Thus, here we must zero the place that we
                        // are moving *from*, because we do not yet
                        // track drop flags for a fragmented parent
                        // match input expression.
                        //
                        // Longer term we will be able to map the move
                        // into `(x, _)` up to the parent path that
                        // owns the whole tuple, and mark the
                        // corresponding stack-local drop-flag
                        // tracking the first component of the tuple.
                        let hint_kind = HintKind::ZeroAndMaintain;
                        Lvalue::new_with_hint("_match::insert_lllocals (match_input)",
                                              bcx, binding_info.id, hint_kind)
                    }
                    _ => unreachable!(),
                };
                let datum = Datum::new(llval, binding_info.ty, lvalue);
                call_lifetime_start(bcx, llbinding);
                bcx = datum.store_to(bcx, llbinding);
                if let Some(cs) = cs {
                    bcx.fcx.schedule_lifetime_end(cs, llbinding);
                }

                (llbinding, false)
            },

            // By value move bindings: load from the ptr into the matched value
            TrByMoveRef => (Load(bcx, binding_info.llmatch), true),

            // By ref binding: use the ptr into the matched value
            TrByRef => (binding_info.llmatch, true),
        };


        // A local that aliases some other state must be zeroed, since
        // the other state (e.g. some parent data that we matched
        // into) will still have its subcomponents (such as this
        // local) destructed at the end of the parent's scope. Longer
        // term, we will properly map such parents to the set of
        // unique drop flags for its fragments.
        let hint_kind = if aliases_other_state {
            HintKind::ZeroAndMaintain
        } else {
            HintKind::DontZeroJustUse
        };
        let lvalue = Lvalue::new_with_hint("_match::insert_lllocals (local)",
                                           bcx,
                                           binding_info.id,
                                           hint_kind);
        let datum = Datum::new(llval, binding_info.ty, lvalue);
        if let Some(cs) = cs {
            let opt_datum = lvalue.dropflag_hint(bcx);
            bcx.fcx.schedule_lifetime_end(cs, binding_info.llmatch);
            bcx.fcx.schedule_drop_and_fill_mem(cs, llval, binding_info.ty, opt_datum);
        }

        debug!("binding {} to {}", binding_info.id, bcx.val_to_string(llval));
        bcx.fcx.lllocals.borrow_mut().insert(binding_info.id, datum);
        debuginfo::create_match_binding_metadata(bcx, name, binding_info);
    }
    bcx
}

fn compile_guard<'a, 'p, 'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                                     guard_expr: &hir::Expr,
                                     data: &ArmData<'p, 'blk, 'tcx>,
                                     m: &[Match<'a, 'p, 'blk, 'tcx>],
                                     vals: &[MatchInput],
                                     chk: &FailureHandler,
                                     has_genuine_default: bool)
                                     -> Block<'blk, 'tcx> {
    debug!("compile_guard(bcx={}, guard_expr={:?}, m={:?}, vals=[{}])",
           bcx.to_str(),
           guard_expr,
           m,
           vals.iter().map(|v| bcx.val_to_string(v.val)).collect::<Vec<_>>().join(", "));
    let _indenter = indenter();

    let mut bcx = insert_lllocals(bcx, &data.bindings_map, None);

    let val = unpack_datum!(bcx, expr::trans(bcx, guard_expr));
    let val = val.to_llbool(bcx);

    for (_, &binding_info) in &data.bindings_map {
        if let Some(llbinding) = binding_info.trmode.alloca_if_copy() {
            call_lifetime_end(bcx, llbinding)
        }
    }

    for (_, &binding_info) in &data.bindings_map {
        bcx.fcx.lllocals.borrow_mut().remove(&binding_info.id);
    }

    with_cond(bcx, Not(bcx, val, guard_expr.debug_loc()), |bcx| {
        for (_, &binding_info) in &data.bindings_map {
            call_lifetime_end(bcx, binding_info.llmatch);
        }
        match chk {
            // If the default arm is the only one left, move on to the next
            // condition explicitly rather than (possibly) falling back to
            // the default arm.
            &JumpToBasicBlock(_) if m.len() == 1 && has_genuine_default => {
                chk.handle_fail(bcx);
            }
            _ => {
                compile_submatch(bcx, m, vals, chk, has_genuine_default);
            }
        };
        bcx
    })
}

fn compile_submatch<'a, 'p, 'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                                        m: &[Match<'a, 'p, 'blk, 'tcx>],
                                        vals: &[MatchInput],
                                        chk: &FailureHandler,
                                        has_genuine_default: bool) {
    debug!("compile_submatch(bcx={}, m={:?}, vals=[{}])",
           bcx.to_str(),
           m,
           vals.iter().map(|v| bcx.val_to_string(v.val)).collect::<Vec<_>>().join(", "));
    let _indenter = indenter();
    let _icx = push_ctxt("match::compile_submatch");
    let mut bcx = bcx;
    if m.is_empty() {
        if chk.is_fallible() {
            chk.handle_fail(bcx);
        }
        return;
    }

    let tcx = bcx.tcx();
    let def_map = &tcx.def_map;
    match pick_column_to_specialize(def_map, m) {
        Some(col) => {
            let val = vals[col];
            if has_nested_bindings(m, col) {
                let expanded = expand_nested_bindings(bcx, m, col, val);
                compile_submatch_continue(bcx,
                                          &expanded[..],
                                          vals,
                                          chk,
                                          col,
                                          val,
                                          has_genuine_default)
            } else {
                compile_submatch_continue(bcx, m, vals, chk, col, val, has_genuine_default)
            }
        }
        None => {
            let data = &m[0].data;
            for &(ref name, ref value_ptr) in &m[0].bound_ptrs {
                let binfo = *data.bindings_map.get(name).unwrap();
                call_lifetime_start(bcx, binfo.llmatch);
                if binfo.trmode == TrByRef && type_is_fat_ptr(bcx.tcx(), binfo.ty) {
                    expr::copy_fat_ptr(bcx, *value_ptr, binfo.llmatch);
                }
                else {
                    Store(bcx, *value_ptr, binfo.llmatch);
                }
            }
            match data.arm.guard {
                Some(ref guard_expr) => {
                    bcx = compile_guard(bcx,
                                        &guard_expr,
                                        m[0].data,
                                        &m[1..m.len()],
                                        vals,
                                        chk,
                                        has_genuine_default);
                }
                _ => ()
            }
            Br(bcx, data.bodycx.llbb, DebugLoc::None);
        }
    }
}

fn compile_submatch_continue<'a, 'p, 'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>,
                                                 m: &[Match<'a, 'p, 'blk, 'tcx>],
                                                 vals: &[MatchInput],
                                                 chk: &FailureHandler,
                                                 col: usize,
                                                 val: MatchInput,
                                                 has_genuine_default: bool) {
    let fcx = bcx.fcx;
    let tcx = bcx.tcx();
    let dm = &tcx.def_map;

    let mut vals_left = vals[0..col].to_vec();
    vals_left.extend_from_slice(&vals[col + 1..]);
    let ccx = bcx.fcx.ccx;

    // Find a real id (we're adding placeholder wildcard patterns, but
    // each column is guaranteed to have at least one real pattern)
    let pat_id = m.iter().map(|br| br.pats[col].id)
                         .find(|&id| id != DUMMY_NODE_ID)
                         .unwrap_or(DUMMY_NODE_ID);

    let left_ty = if pat_id == DUMMY_NODE_ID {
        tcx.mk_nil()
    } else {
        node_id_type(bcx, pat_id)
    };

    let mcx = check_match::MatchCheckCtxt {
        tcx: bcx.tcx(),
        param_env: bcx.tcx().empty_parameter_environment(),
    };
    let adt_vals = if any_irrefutable_adt_pat(bcx.tcx(), m, col) {
        let repr = adt::represent_type(bcx.ccx(), left_ty);
        let arg_count = adt::num_args(&repr, Disr(0));
        let (arg_count, struct_val) = if type_is_sized(bcx.tcx(), left_ty) {
            (arg_count, val.val)
        } else {
            // For an unsized ADT (i.e. DST struct), we need to treat
            // the last field specially: instead of simply passing a
            // ValueRef pointing to that field, as with all the others,
            // we skip it and instead construct a 'fat ptr' below.
            (arg_count - 1, Load(bcx, expr::get_dataptr(bcx, val.val)))
        };
        let mut field_vals: Vec<ValueRef> = (0..arg_count).map(|ix|
            // By definition, these are all sized
            adt::trans_field_ptr(bcx, &repr, adt::MaybeSizedValue::sized(struct_val), Disr(0), ix)
        ).collect();

        match left_ty.sty {
            ty::TyStruct(def, substs) if !type_is_sized(bcx.tcx(), left_ty) => {
                // The last field is technically unsized but
                // since we can only ever match that field behind
                // a reference we construct a fat ptr here.
                let unsized_ty = def.struct_variant().fields.last().map(|field| {
                    monomorphize::field_ty(bcx.tcx(), substs, field)
                }).unwrap();
                let scratch = alloc_ty(bcx, unsized_ty, "__struct_field_fat_ptr");

                let meta = Load(bcx, expr::get_meta(bcx, val.val));
                let struct_val = adt::MaybeSizedValue::unsized_(struct_val, meta);

                let data = adt::trans_field_ptr(bcx, &repr, struct_val, Disr(0), arg_count);
                Store(bcx, data, expr::get_dataptr(bcx, scratch));
                Store(bcx, meta, expr::get_meta(bcx, scratch));
                field_vals.push(scratch);
            }
            _ => {}
        }
        Some(field_vals)
    } else if any_uniq_pat(m, col) || any_region_pat(m, col) {
        Some(vec!(Load(bcx, val.val)))
    } else {
        match left_ty.sty {
            ty::TyArray(_, n) => {
                let args = extract_vec_elems(bcx, left_ty, n, 0, val);
                Some(args.vals)
            }
            _ => None
        }
    };
    match adt_vals {
        Some(field_vals) => {
            let pats = enter_match(bcx, dm, m, col, val, |pats|
                check_match::specialize(&mcx, pats,
                                        &check_match::Single, col,
                                        field_vals.len())
            );
            let mut vals: Vec<_> = field_vals.into_iter()
                .map(|v|MatchInput::from_val(v))
                .collect();
            vals.extend_from_slice(&vals_left);
            compile_submatch(bcx, &pats, &vals, chk, has_genuine_default);
            return;
        }
        _ => ()
    }

    // Decide what kind of branch we need
    let opts = get_branches(bcx, m, col);
    debug!("options={:?}", opts);
    let mut kind = NoBranch;
    let mut test_val = val.val;
    debug!("test_val={}", bcx.val_to_string(test_val));
    if !opts.is_empty() {
        match opts[0] {
            ConstantValue(..) | ConstantRange(..) => {
                test_val = load_if_immediate(bcx, val.val, left_ty);
                kind = if left_ty.is_integral() {
                    Switch
                } else {
                    Compare
                };
            }
            Variant(_, ref repr, _, _) => {
                let (the_kind, val_opt) = adt::trans_switch(bcx, &repr,
                                                            val.val, true);
                kind = the_kind;
                if let Some(tval) = val_opt { test_val = tval; }
            }
            SliceLengthEqual(..) | SliceLengthGreaterOrEqual(..) => {
                let (_, len) = tvec::get_base_and_len(bcx, val.val, left_ty);
                test_val = len;
                kind = Switch;
            }
        }
    }
    for o in &opts {
        match *o {
            ConstantRange(..) => { kind = Compare; break },
            SliceLengthGreaterOrEqual(..) => { kind = CompareSliceLength; break },
            _ => ()
        }
    }
    let else_cx = match kind {
        NoBranch | Single => bcx,
        _ => bcx.fcx.new_temp_block("match_else")
    };
    let sw = if kind == Switch {
        build::Switch(bcx, test_val, else_cx.llbb, opts.len())
    } else {
        C_int(ccx, 0) // Placeholder for when not using a switch
    };

    let defaults = enter_default(else_cx, dm, m, col, val);
    let exhaustive = chk.is_infallible() && defaults.is_empty();
    let len = opts.len();

    if exhaustive && kind == Switch {
        build::Unreachable(else_cx);
    }

    // Compile subtrees for each option
    for (i, opt) in opts.iter().enumerate() {
        // In some cases of range and vector pattern matching, we need to
        // override the failure case so that instead of failing, it proceeds
        // to try more matching. branch_chk, then, is the proper failure case
        // for the current conditional branch.
        let mut branch_chk = None;
        let mut opt_cx = else_cx;
        let debug_loc = opt.debug_loc();

        if kind == Switch || !exhaustive || i + 1 < len {
            opt_cx = bcx.fcx.new_temp_block("match_case");
            match kind {
                Single => Br(bcx, opt_cx.llbb, debug_loc),
                Switch => {
                    match opt.trans(bcx) {
                        SingleResult(r) => {
                            AddCase(sw, r.val, opt_cx.llbb);
                            bcx = r.bcx;
                        }
                        _ => {
                            bcx.sess().bug(
                                "in compile_submatch, expected \
                                 opt.trans() to return a SingleResult")
                        }
                    }
                }
                Compare | CompareSliceLength => {
                    let t = if kind == Compare {
                        left_ty
                    } else {
                        tcx.types.usize // vector length
                    };
                    let Result { bcx: after_cx, val: matches } = {
                        match opt.trans(bcx) {
                            SingleResult(Result { bcx, val }) => {
                                compare_values(bcx, test_val, val, t, debug_loc)
                            }
                            RangeResult(Result { val: vbegin, .. },
                                        Result { bcx, val: vend }) => {
                                let llge = compare_scalar_types(bcx, test_val, vbegin,
                                                                t, hir::BiGe, debug_loc);
                                let llle = compare_scalar_types(bcx, test_val, vend,
                                                                t, hir::BiLe, debug_loc);
                                Result::new(bcx, And(bcx, llge, llle, DebugLoc::None))
                            }
                            LowerBound(Result { bcx, val }) => {
                                Result::new(bcx, compare_scalar_types(bcx, test_val,
                                                                      val, t, hir::BiGe,
                                                                      debug_loc))
                            }
                        }
                    };
                    bcx = fcx.new_temp_block("compare_next");

                    // If none of the sub-cases match, and the current condition
                    // is guarded or has multiple patterns, move on to the next
                    // condition, if there is any, rather than falling back to
                    // the default.
                    let guarded = m[i].data.arm.guard.is_some();
                    let multi_pats = m[i].pats.len() > 1;
                    if i + 1 < len && (guarded || multi_pats || kind == CompareSliceLength) {
                        branch_chk = Some(JumpToBasicBlock(bcx.llbb));
                    }
                    CondBr(after_cx, matches, opt_cx.llbb, bcx.llbb, debug_loc);
                }
                _ => ()
            }
        } else if kind == Compare || kind == CompareSliceLength {
            Br(bcx, else_cx.llbb, debug_loc);
        }

        let mut size = 0;
        let mut unpacked = Vec::new();
        match *opt {
            Variant(disr_val, ref repr, _, _) => {
                let ExtractedBlock {vals: argvals, bcx: new_bcx} =
                    extract_variant_args(opt_cx, &repr, disr_val, val);
                size = argvals.len();
                unpacked = argvals;
                opt_cx = new_bcx;
            }
            SliceLengthEqual(len, _) => {
                let args = extract_vec_elems(opt_cx, left_ty, len, 0, val);
                size = args.vals.len();
                unpacked = args.vals.clone();
                opt_cx = args.bcx;
            }
            SliceLengthGreaterOrEqual(before, after, _) => {
                let args = extract_vec_elems(opt_cx, left_ty, before, after, val);
                size = args.vals.len();
                unpacked = args.vals.clone();
                opt_cx = args.bcx;
            }
            ConstantValue(..) | ConstantRange(..) => ()
        }
        let opt_ms = enter_opt(opt_cx, pat_id, dm, m, opt, col, size, val);
        let mut opt_vals: Vec<_> = unpacked.into_iter()
            .map(|v|MatchInput::from_val(v))
            .collect();
        opt_vals.extend_from_slice(&vals_left[..]);
        compile_submatch(opt_cx,
                         &opt_ms[..],
                         &opt_vals[..],
                         branch_chk.as_ref().unwrap_or(chk),
                         has_genuine_default);
    }

    // Compile the fall-through case, if any
    if !exhaustive && kind != Single {
        if kind == Compare || kind == CompareSliceLength {
            Br(bcx, else_cx.llbb, DebugLoc::None);
        }
        match chk {
            // If there is only one default arm left, move on to the next
            // condition explicitly rather than (eventually) falling back to
            // the last default arm.
            &JumpToBasicBlock(_) if defaults.len() == 1 && has_genuine_default => {
                chk.handle_fail(else_cx);
            }
            _ => {
                compile_submatch(else_cx,
                                 &defaults[..],
                                 &vals_left[..],
                                 chk,
                                 has_genuine_default);
            }
        }
    }
}

pub fn trans_match<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                               match_expr: &hir::Expr,
                               discr_expr: &hir::Expr,
                               arms: &[hir::Arm],
                               dest: Dest)
                               -> Block<'blk, 'tcx> {
    let _icx = push_ctxt("match::trans_match");
    trans_match_inner(bcx, match_expr.id, discr_expr, arms, dest)
}

/// Checks whether the binding in `discr` is assigned to anywhere in the expression `body`
fn is_discr_reassigned(bcx: Block, discr: &hir::Expr, body: &hir::Expr) -> bool {
    let (vid, field) = match discr.node {
        hir::ExprPath(..) => match bcx.def(discr.id) {
            Def::Local(_, vid) | Def::Upvar(_, vid, _, _) => (vid, None),
            _ => return false
        },
        hir::ExprField(ref base, field) => {
            let vid = match bcx.tcx().def_map.borrow().get(&base.id).map(|d| d.full_def()) {
                Some(Def::Local(_, vid)) | Some(Def::Upvar(_, vid, _, _)) => vid,
                _ => return false
            };
            (vid, Some(mc::NamedField(field.node)))
        },
        hir::ExprTupField(ref base, field) => {
            let vid = match bcx.tcx().def_map.borrow().get(&base.id).map(|d| d.full_def()) {
                Some(Def::Local(_, vid)) | Some(Def::Upvar(_, vid, _, _)) => vid,
                _ => return false
            };
            (vid, Some(mc::PositionalField(field.node)))
        },
        _ => return false
    };

    let mut rc = ReassignmentChecker {
        node: vid,
        field: field,
        reassigned: false
    };
    {
        let infcx = infer::normalizing_infer_ctxt(bcx.tcx(),
                                                  &bcx.tcx().tables,
                                                  ProjectionMode::Any);
        let mut visitor = euv::ExprUseVisitor::new(&mut rc, &infcx);
        visitor.walk_expr(body);
    }
    rc.reassigned
}

struct ReassignmentChecker {
    node: ast::NodeId,
    field: Option<mc::FieldName>,
    reassigned: bool
}

// Determine if the expression we're matching on is reassigned to within
// the body of the match's arm.
// We only care for the `mutate` callback since this check only matters
// for cases where the matched value is moved.
impl<'tcx> euv::Delegate<'tcx> for ReassignmentChecker {
    fn consume(&mut self, _: ast::NodeId, _: Span, _: mc::cmt, _: euv::ConsumeMode) {}
    fn matched_pat(&mut self, _: &hir::Pat, _: mc::cmt, _: euv::MatchMode) {}
    fn consume_pat(&mut self, _: &hir::Pat, _: mc::cmt, _: euv::ConsumeMode) {}
    fn borrow(&mut self, _: ast::NodeId, _: Span, _: mc::cmt, _: ty::Region,
              _: ty::BorrowKind, _: euv::LoanCause) {}
    fn decl_without_init(&mut self, _: ast::NodeId, _: Span) {}

    fn mutate(&mut self, _: ast::NodeId, _: Span, cmt: mc::cmt, _: euv::MutateMode) {
        match cmt.cat {
            Categorization::Upvar(mc::Upvar { id: ty::UpvarId { var_id: vid, .. }, .. }) |
            Categorization::Local(vid) => self.reassigned |= self.node == vid,
            Categorization::Interior(ref base_cmt, mc::InteriorField(field)) => {
                match base_cmt.cat {
                    Categorization::Upvar(mc::Upvar { id: ty::UpvarId { var_id: vid, .. }, .. }) |
                    Categorization::Local(vid) => {
                        self.reassigned |= self.node == vid &&
                            (self.field.is_none() || Some(field) == self.field)
                    },
                    _ => {}
                }
            },
            _ => {}
        }
    }
}

fn create_bindings_map<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, pat: &hir::Pat,
                                   discr: &hir::Expr, body: &hir::Expr)
                                   -> BindingsMap<'tcx> {
    // Create the bindings map, which is a mapping from each binding name
    // to an alloca() that will be the value for that local variable.
    // Note that we use the names because each binding will have many ids
    // from the various alternatives.
    let ccx = bcx.ccx();
    let tcx = bcx.tcx();
    let reassigned = is_discr_reassigned(bcx, discr, body);
    let mut bindings_map = FnvHashMap();
    pat_bindings(&tcx.def_map, &pat, |bm, p_id, span, path1| {
        let name = path1.node;
        let variable_ty = node_id_type(bcx, p_id);
        let llvariable_ty = type_of::type_of(ccx, variable_ty);
        let tcx = bcx.tcx();
        let param_env = tcx.empty_parameter_environment();

        let llmatch;
        let trmode;
        let moves_by_default = variable_ty.moves_by_default(&param_env, span);
        match bm {
            hir::BindByValue(_) if !moves_by_default || reassigned =>
            {
                llmatch = alloca(bcx, llvariable_ty.ptr_to(), "__llmatch");
                let llcopy = alloca(bcx, llvariable_ty, &bcx.name(name));
                trmode = if moves_by_default {
                    TrByMoveIntoCopy(llcopy)
                } else {
                    TrByCopy(llcopy)
                };
            }
            hir::BindByValue(_) => {
                // in this case, the final type of the variable will be T,
                // but during matching we need to store a *T as explained
                // above
                llmatch = alloca(bcx, llvariable_ty.ptr_to(), &bcx.name(name));
                trmode = TrByMoveRef;
            }
            hir::BindByRef(_) => {
                llmatch = alloca(bcx, llvariable_ty, &bcx.name(name));
                trmode = TrByRef;
            }
        };
        bindings_map.insert(name, BindingInfo {
            llmatch: llmatch,
            trmode: trmode,
            id: p_id,
            span: span,
            ty: variable_ty
        });
    });
    return bindings_map;
}

fn trans_match_inner<'blk, 'tcx>(scope_cx: Block<'blk, 'tcx>,
                                 match_id: ast::NodeId,
                                 discr_expr: &hir::Expr,
                                 arms: &[hir::Arm],
                                 dest: Dest) -> Block<'blk, 'tcx> {
    let _icx = push_ctxt("match::trans_match_inner");
    let fcx = scope_cx.fcx;
    let mut bcx = scope_cx;
    let tcx = bcx.tcx();

    let discr_datum = unpack_datum!(bcx, expr::trans_to_lvalue(bcx, discr_expr,
                                                               "match"));
    if bcx.unreachable.get() {
        return bcx;
    }

    let t = node_id_type(bcx, discr_expr.id);
    let chk = if t.is_empty(tcx) {
        Unreachable
    } else {
        Infallible
    };

    let arm_datas: Vec<ArmData> = arms.iter().map(|arm| ArmData {
        bodycx: fcx.new_id_block("case_body", arm.body.id),
        arm: arm,
        bindings_map: create_bindings_map(bcx, &arm.pats[0], discr_expr, &arm.body)
    }).collect();

    let mut pat_renaming_map = if scope_cx.sess().opts.debuginfo != NoDebugInfo {
        Some(FnvHashMap())
    } else {
        None
    };

    let arm_pats: Vec<Vec<P<hir::Pat>>> = {
        let mut static_inliner = StaticInliner::new(scope_cx.tcx(),
                                                    pat_renaming_map.as_mut());
        arm_datas.iter().map(|arm_data| {
            arm_data.arm.pats.iter().map(|p| static_inliner.fold_pat((*p).clone())).collect()
        }).collect()
    };

    let mut matches = Vec::new();
    for (arm_data, pats) in arm_datas.iter().zip(&arm_pats) {
        matches.extend(pats.iter().map(|p| Match {
            pats: vec![&p],
            data: arm_data,
            bound_ptrs: Vec::new(),
            pat_renaming_map: pat_renaming_map.as_ref()
        }));
    }

    // `compile_submatch` works one column of arm patterns a time and
    // then peels that column off. So as we progress, it may become
    // impossible to tell whether we have a genuine default arm, i.e.
    // `_ => foo` or not. Sometimes it is important to know that in order
    // to decide whether moving on to the next condition or falling back
    // to the default arm.
    let has_default = arms.last().map_or(false, |arm| {
        arm.pats.len() == 1
        && arm.pats.last().unwrap().node == PatKind::Wild
    });

    compile_submatch(bcx, &matches[..], &[discr_datum.match_input()], &chk, has_default);

    let mut arm_cxs = Vec::new();
    for arm_data in &arm_datas {
        let mut bcx = arm_data.bodycx;

        // insert bindings into the lllocals map and add cleanups
        let cs = fcx.push_custom_cleanup_scope();
        bcx = insert_lllocals(bcx, &arm_data.bindings_map, Some(cleanup::CustomScope(cs)));
        bcx = expr::trans_into(bcx, &arm_data.arm.body, dest);
        bcx = fcx.pop_and_trans_custom_cleanup_scope(bcx, cs);
        arm_cxs.push(bcx);
    }

    bcx = scope_cx.fcx.join_blocks(match_id, &arm_cxs[..]);
    return bcx;
}

/// Generates code for a local variable declaration like `let <pat>;` or `let <pat> =
/// <opt_init_expr>`.
pub fn store_local<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                               local: &hir::Local)
                               -> Block<'blk, 'tcx> {
    let _icx = push_ctxt("match::store_local");
    let mut bcx = bcx;
    let tcx = bcx.tcx();
    let pat = &local.pat;

    fn create_dummy_locals<'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>,
                                       pat: &hir::Pat)
                                       -> Block<'blk, 'tcx> {
        let _icx = push_ctxt("create_dummy_locals");
        // create dummy memory for the variables if we have no
        // value to store into them immediately
        let tcx = bcx.tcx();
        pat_bindings(&tcx.def_map, pat, |_, p_id, _, path1| {
            let scope = cleanup::var_scope(tcx, p_id);
            bcx = mk_binding_alloca(
                bcx, p_id, path1.node, scope, (),
                "_match::store_local::create_dummy_locals",
                |(), bcx, Datum { val: llval, ty, kind }| {
                    // Dummy-locals start out uninitialized, so set their
                    // drop-flag hints (if any) to "moved."
                    if let Some(hint) = kind.dropflag_hint(bcx) {
                        let moved_hint = adt::DTOR_MOVED_HINT;
                        debug!("store moved_hint={} for hint={:?}, uninitialized dummy",
                               moved_hint, hint);
                        Store(bcx, C_u8(bcx.fcx.ccx, moved_hint), hint.to_value().value());
                    }

                    if kind.drop_flag_info.must_zero() {
                        // if no drop-flag hint, or the hint requires
                        // we maintain the embedded drop-flag, then
                        // mark embedded drop-flag(s) as moved
                        // (i.e. "already dropped").
                        drop_done_fill_mem(bcx, llval, ty);
                    }
                    bcx
                });
        });
        bcx
    }

    match local.init {
        Some(ref init_expr) => {
            // Optimize the "let x = expr" case. This just writes
            // the result of evaluating `expr` directly into the alloca
            // for `x`. Often the general path results in similar or the
            // same code post-optimization, but not always. In particular,
            // in unsafe code, you can have expressions like
            //
            //    let x = intrinsics::uninit();
            //
            // In such cases, the more general path is unsafe, because
            // it assumes it is matching against a valid value.
            match simple_name(pat) {
                Some(name) => {
                    let var_scope = cleanup::var_scope(tcx, local.id);
                    return mk_binding_alloca(
                        bcx, pat.id, name, var_scope, (),
                        "_match::store_local",
                        |(), bcx, Datum { val: v, .. }| expr::trans_into(bcx, &init_expr,
                                                                         expr::SaveIn(v)));
                }

                None => {}
            }

            // General path.
            let init_datum =
                unpack_datum!(bcx, expr::trans_to_lvalue(bcx, &init_expr, "let"));
            if bcx.sess().asm_comments() {
                add_comment(bcx, "creating zeroable ref llval");
            }
            let var_scope = cleanup::var_scope(tcx, local.id);
            bind_irrefutable_pat(bcx, pat, init_datum.match_input(), var_scope)
        }
        None => {
            create_dummy_locals(bcx, pat)
        }
    }
}

fn mk_binding_alloca<'blk, 'tcx, A, F>(bcx: Block<'blk, 'tcx>,
                                       p_id: ast::NodeId,
                                       name: ast::Name,
                                       cleanup_scope: cleanup::ScopeId,
                                       arg: A,
                                       caller_name: &'static str,
                                       populate: F)
                                       -> Block<'blk, 'tcx> where
    F: FnOnce(A, Block<'blk, 'tcx>, Datum<'tcx, Lvalue>) -> Block<'blk, 'tcx>,
{
    let var_ty = node_id_type(bcx, p_id);

    // Allocate memory on stack for the binding.
    let llval = alloc_ty(bcx, var_ty, &bcx.name(name));
    let lvalue = Lvalue::new_with_hint(caller_name, bcx, p_id, HintKind::DontZeroJustUse);
    let datum = Datum::new(llval, var_ty, lvalue);

    debug!("mk_binding_alloca cleanup_scope={:?} llval={} var_ty={:?}",
           cleanup_scope, bcx.ccx().tn().val_to_string(llval), var_ty);

    // Subtle: be sure that we *populate* the memory *before*
    // we schedule the cleanup.
    call_lifetime_start(bcx, llval);
    let bcx = populate(arg, bcx, datum);
    bcx.fcx.schedule_lifetime_end(cleanup_scope, llval);
    bcx.fcx.schedule_drop_mem(cleanup_scope, llval, var_ty, lvalue.dropflag_hint(bcx));

    // Now that memory is initialized and has cleanup scheduled,
    // insert datum into the local variable map.
    bcx.fcx.lllocals.borrow_mut().insert(p_id, datum);
    bcx
}

/// A simple version of the pattern matching code that only handles
/// irrefutable patterns. This is used in let/argument patterns,
/// not in match statements. Unifying this code with the code above
/// sounds nice, but in practice it produces very inefficient code,
/// since the match code is so much more general. In most cases,
/// LLVM is able to optimize the code, but it causes longer compile
/// times and makes the generated code nigh impossible to read.
///
/// # Arguments
/// - bcx: starting basic block context
/// - pat: the irrefutable pattern being matched.
/// - val: the value being matched -- must be an lvalue (by ref, with cleanup)
pub fn bind_irrefutable_pat<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                                    pat: &hir::Pat,
                                    val: MatchInput,
                                    cleanup_scope: cleanup::ScopeId)
                                    -> Block<'blk, 'tcx> {
    debug!("bind_irrefutable_pat(bcx={}, pat={:?}, val={})",
           bcx.to_str(),
           pat,
           bcx.val_to_string(val.val));

    if bcx.sess().asm_comments() {
        add_comment(bcx, &format!("bind_irrefutable_pat(pat={:?})",
                                 pat));
    }

    let _indenter = indenter();

    let _icx = push_ctxt("match::bind_irrefutable_pat");
    let mut bcx = bcx;
    let tcx = bcx.tcx();
    let ccx = bcx.ccx();
    match pat.node {
        PatKind::Ident(pat_binding_mode, ref path1, ref inner) => {
            if pat_is_binding(&tcx.def_map.borrow(), &pat) {
                // Allocate the stack slot where the value of this
                // binding will live and place it into the appropriate
                // map.
                bcx = mk_binding_alloca(
                    bcx, pat.id, path1.node.name, cleanup_scope, (),
                    "_match::bind_irrefutable_pat",
                    |(), bcx, Datum { val: llval, ty, kind: _ }| {
                        match pat_binding_mode {
                            hir::BindByValue(_) => {
                                // By value binding: move the value that `val`
                                // points at into the binding's stack slot.
                                let d = val.to_datum(ty);
                                d.store_to(bcx, llval)
                            }

                            hir::BindByRef(_) => {
                                // By ref binding: the value of the variable
                                // is the pointer `val` itself or fat pointer referenced by `val`
                                if type_is_fat_ptr(bcx.tcx(), ty) {
                                    expr::copy_fat_ptr(bcx, val.val, llval);
                                }
                                else {
                                    Store(bcx, val.val, llval);
                                }

                                bcx
                            }
                        }
                    });
            }

            if let Some(ref inner_pat) = *inner {
                bcx = bind_irrefutable_pat(bcx, &inner_pat, val, cleanup_scope);
            }
        }
        PatKind::TupleStruct(_, ref sub_pats) => {
            let opt_def = bcx.tcx().def_map.borrow().get(&pat.id).map(|d| d.full_def());
            match opt_def {
                Some(Def::Variant(enum_id, var_id)) => {
                    let repr = adt::represent_node(bcx, pat.id);
                    let vinfo = ccx.tcx().lookup_adt_def(enum_id).variant_with_id(var_id);
                    let args = extract_variant_args(bcx,
                                                    &repr,
                                                    Disr::from(vinfo.disr_val),
                                                    val);
                    if let Some(ref sub_pat) = *sub_pats {
                        for (i, &argval) in args.vals.iter().enumerate() {
                            bcx = bind_irrefutable_pat(
                                bcx,
                                &sub_pat[i],
                                MatchInput::from_val(argval),
                                cleanup_scope);
                        }
                    }
                }
                Some(Def::Struct(..)) => {
                    match *sub_pats {
                        None => {
                            // This is a unit-like struct. Nothing to do here.
                        }
                        Some(ref elems) => {
                            // This is the tuple struct case.
                            let repr = adt::represent_node(bcx, pat.id);
                            let val = adt::MaybeSizedValue::sized(val.val);
                            for (i, elem) in elems.iter().enumerate() {
                                let fldptr = adt::trans_field_ptr(bcx, &repr,
                                                                  val, Disr(0), i);
                                bcx = bind_irrefutable_pat(
                                    bcx,
                                    &elem,
                                    MatchInput::from_val(fldptr),
                                    cleanup_scope);
                            }
                        }
                    }
                }
                _ => {
                    // Nothing to do here.
                }
            }
        }
        PatKind::Struct(_, ref fields, _) => {
            let tcx = bcx.tcx();
            let pat_ty = node_id_type(bcx, pat.id);
            let pat_repr = adt::represent_type(bcx.ccx(), pat_ty);
            let pat_v = VariantInfo::of_node(tcx, pat_ty, pat.id);

            let val = if type_is_sized(tcx, pat_ty) {
                adt::MaybeSizedValue::sized(val.val)
            } else {
                let data = Load(bcx, expr::get_dataptr(bcx, val.val));
                let meta = Load(bcx, expr::get_meta(bcx, val.val));
                adt::MaybeSizedValue::unsized_(data, meta)
            };

            for f in fields {
                let name = f.node.name;
                let field_idx = pat_v.field_index(name);
                let mut fldptr = adt::trans_field_ptr(
                    bcx,
                    &pat_repr,
                    val,
                    pat_v.discr,
                    field_idx);

                let fty = pat_v.fields[field_idx].1;
                // If it's not sized, then construct a fat pointer instead of
                // a regular one
                if !type_is_sized(tcx, fty) {
                    let scratch = alloc_ty(bcx, fty, "__struct_field_fat_ptr");
                    debug!("Creating fat pointer {}", bcx.val_to_string(scratch));
                    Store(bcx, fldptr, expr::get_dataptr(bcx, scratch));
                    Store(bcx, val.meta, expr::get_meta(bcx, scratch));
                    fldptr = scratch;
                }
                bcx = bind_irrefutable_pat(bcx,
                                           &f.node.pat,
                                           MatchInput::from_val(fldptr),
                                           cleanup_scope);
            }
        }
        PatKind::Tup(ref elems) => {
            let repr = adt::represent_node(bcx, pat.id);
            let val = adt::MaybeSizedValue::sized(val.val);
            for (i, elem) in elems.iter().enumerate() {
                let fldptr = adt::trans_field_ptr(bcx, &repr, val, Disr(0), i);
                bcx = bind_irrefutable_pat(
                    bcx,
                    &elem,
                    MatchInput::from_val(fldptr),
                    cleanup_scope);
            }
        }
        PatKind::Box(ref inner) => {
            let pat_ty = node_id_type(bcx, inner.id);
            // Pass along DSTs as fat pointers.
            let val = if type_is_fat_ptr(tcx, pat_ty) {
                // We need to check for this, as the pattern could be binding
                // a fat pointer by-value.
                if let PatKind::Ident(hir::BindByRef(_),_,_) = inner.node {
                    val.val
                } else {
                    Load(bcx, val.val)
                }
            } else if type_is_sized(tcx, pat_ty) {
                Load(bcx, val.val)
            } else {
                val.val
            };
            bcx = bind_irrefutable_pat(
                bcx, &inner, MatchInput::from_val(val), cleanup_scope);
        }
        PatKind::Ref(ref inner, _) => {
            let pat_ty = node_id_type(bcx, inner.id);
            // Pass along DSTs as fat pointers.
            let val = if type_is_fat_ptr(tcx, pat_ty) {
                // We need to check for this, as the pattern could be binding
                // a fat pointer by-value.
                if let PatKind::Ident(hir::BindByRef(_),_,_) = inner.node {
                    val.val
                } else {
                    Load(bcx, val.val)
                }
            } else if type_is_sized(tcx, pat_ty) {
                Load(bcx, val.val)
            } else {
                val.val
            };
            bcx = bind_irrefutable_pat(
                bcx,
                &inner,
                MatchInput::from_val(val),
                cleanup_scope);
        }
        PatKind::Vec(ref before, ref slice, ref after) => {
            let pat_ty = node_id_type(bcx, pat.id);
            let mut extracted = extract_vec_elems(bcx, pat_ty, before.len(), after.len(), val);
            match slice {
                &Some(_) => {
                    extracted.vals.insert(
                        before.len(),
                        bind_subslice_pat(bcx, pat.id, val, before.len(), after.len())
                    );
                }
                &None => ()
            }
            bcx = before
                .iter()
                .chain(slice.iter())
                .chain(after.iter())
                .zip(extracted.vals)
                .fold(bcx, |bcx, (inner, elem)| {
                    bind_irrefutable_pat(
                        bcx,
                        &inner,
                        MatchInput::from_val(elem),
                        cleanup_scope)
                });
        }
        PatKind::Path(..) | PatKind::QPath(..) | PatKind::Wild | PatKind::Lit(_) |
        PatKind::Range(_, _) => ()
    }
    return bcx;
}