summaryrefslogtreecommitdiff
path: root/src/librustc_trans/trans/attributes.rs
blob: d93d32f8e0d068b327fc411d397372d3cb800403 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Set and unset common attributes on LLVM values.

use libc::{c_uint, c_ulonglong};
use llvm::{self, ValueRef, AttrHelper};
use middle::ty;
use middle::infer;
use middle::traits::ProjectionMode;
use session::config::NoDebugInfo;
use syntax::abi::Abi;
pub use syntax::attr::InlineAttr;
use syntax::ast;
use rustc_front::hir;
use trans::base;
use trans::common;
use trans::context::CrateContext;
use trans::machine;
use trans::type_of;

/// Mark LLVM function to use provided inline heuristic.
#[inline]
pub fn inline(val: ValueRef, inline: InlineAttr) {
    use self::InlineAttr::*;
    match inline {
        Hint   => llvm::SetFunctionAttribute(val, llvm::Attribute::InlineHint),
        Always => llvm::SetFunctionAttribute(val, llvm::Attribute::AlwaysInline),
        Never  => llvm::SetFunctionAttribute(val, llvm::Attribute::NoInline),
        None   => {
            let attr = llvm::Attribute::InlineHint |
                       llvm::Attribute::AlwaysInline |
                       llvm::Attribute::NoInline;
            unsafe {
                llvm::LLVMRemoveFunctionAttr(val, attr.bits() as c_ulonglong)
            }
        },
    };
}

/// Tell LLVM to emit or not emit the information necessary to unwind the stack for the function.
#[inline]
pub fn emit_uwtable(val: ValueRef, emit: bool) {
    if emit {
        llvm::SetFunctionAttribute(val, llvm::Attribute::UWTable);
    } else {
        unsafe {
            llvm::LLVMRemoveFunctionAttr(
                val,
                llvm::Attribute::UWTable.bits() as c_ulonglong,
            );
        }
    }
}

/// Tell LLVM whether the function can or cannot unwind.
#[inline]
pub fn unwind(val: ValueRef, can_unwind: bool) {
    if can_unwind {
        unsafe {
            llvm::LLVMRemoveFunctionAttr(
                val,
                llvm::Attribute::NoUnwind.bits() as c_ulonglong,
            );
        }
    } else {
        llvm::SetFunctionAttribute(val, llvm::Attribute::NoUnwind);
    }
}

/// Tell LLVM whether it should optimise function for size.
#[inline]
#[allow(dead_code)] // possibly useful function
pub fn set_optimize_for_size(val: ValueRef, optimize: bool) {
    if optimize {
        llvm::SetFunctionAttribute(val, llvm::Attribute::OptimizeForSize);
    } else {
        unsafe {
            llvm::LLVMRemoveFunctionAttr(
                val,
                llvm::Attribute::OptimizeForSize.bits() as c_ulonglong,
            );
        }
    }
}

/// Composite function which sets LLVM attributes for function depending on its AST (#[attribute])
/// attributes.
pub fn from_fn_attrs(ccx: &CrateContext, attrs: &[ast::Attribute], llfn: ValueRef) {
    use syntax::attr::*;
    inline(llfn, find_inline_attr(Some(ccx.sess().diagnostic()), attrs));

    // FIXME: #11906: Omitting frame pointers breaks retrieving the value of a
    // parameter.
    let no_fp_elim = (ccx.sess().opts.debuginfo != NoDebugInfo) ||
                     !ccx.sess().target.target.options.eliminate_frame_pointer;
    if no_fp_elim {
        unsafe {
            let attr = "no-frame-pointer-elim\0".as_ptr() as *const _;
            let val = "true\0".as_ptr() as *const _;
            llvm::LLVMAddFunctionAttrStringValue(llfn,
                                                 llvm::FunctionIndex as c_uint,
                                                 attr, val);
        }
    }

    for attr in attrs {
        if attr.check_name("cold") {
            unsafe {
                llvm::LLVMAddFunctionAttribute(llfn,
                                               llvm::FunctionIndex as c_uint,
                                               llvm::ColdAttribute as u64)
            }
        } else if attr.check_name("allocator") {
            llvm::Attribute::NoAlias.apply_llfn(llvm::ReturnIndex as c_uint, llfn);
        } else if attr.check_name("unwind") {
            unwind(llfn, true);
        }
    }
}

/// Composite function which converts function type into LLVM attributes for the function.
pub fn from_fn_type<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fn_type: ty::Ty<'tcx>)
                              -> llvm::AttrBuilder {
    use middle::ty::{BrAnon, ReLateBound};

    let function_type;
    let (fn_sig, abi, env_ty) = match fn_type.sty {
        ty::TyFnDef(_, _, ref f) | ty::TyFnPtr(ref f) => (&f.sig, f.abi, None),
        ty::TyClosure(closure_did, ref substs) => {
            let infcx = infer::normalizing_infer_ctxt(ccx.tcx(),
                                                      &ccx.tcx().tables,
                                                      ProjectionMode::Any);
            function_type = infcx.closure_type(closure_did, substs);
            let self_type = base::self_type_for_closure(ccx, closure_did, fn_type);
            (&function_type.sig, Abi::RustCall, Some(self_type))
        }
        _ => ccx.sess().bug("expected closure or function.")
    };

    let fn_sig = ccx.tcx().erase_late_bound_regions(fn_sig);
    let fn_sig = infer::normalize_associated_type(ccx.tcx(), &fn_sig);

    let mut attrs = llvm::AttrBuilder::new();
    let ret_ty = fn_sig.output;

    // These have an odd calling convention, so we need to manually
    // unpack the input ty's
    let input_tys = match fn_type.sty {
        ty::TyClosure(..) => {
            assert!(abi == Abi::RustCall);

            match fn_sig.inputs[0].sty {
                ty::TyTuple(ref inputs) => {
                    let mut full_inputs = vec![env_ty.expect("Missing closure environment")];
                    full_inputs.extend_from_slice(inputs);
                    full_inputs
                }
                _ => ccx.sess().bug("expected tuple'd inputs")
            }
        },
        ty::TyFnDef(..) | ty::TyFnPtr(_) if abi == Abi::RustCall => {
            let mut inputs = vec![fn_sig.inputs[0]];

            match fn_sig.inputs[1].sty {
                ty::TyTuple(ref t_in) => {
                    inputs.extend_from_slice(&t_in[..]);
                    inputs
                }
                _ => ccx.sess().bug("expected tuple'd inputs")
            }
        }
        _ => fn_sig.inputs.clone()
    };

    // Index 0 is the return value of the llvm func, so we start at 1
    let mut idx = 1;
    if let ty::FnConverging(ret_ty) = ret_ty {
        // A function pointer is called without the declaration
        // available, so we have to apply any attributes with ABI
        // implications directly to the call instruction. Right now,
        // the only attribute we need to worry about is `sret`.
        if type_of::return_uses_outptr(ccx, ret_ty) {
            let llret_sz = machine::llsize_of_real(ccx, type_of::type_of(ccx, ret_ty));

            // The outptr can be noalias and nocapture because it's entirely
            // invisible to the program. We also know it's nonnull as well
            // as how many bytes we can dereference
            attrs.arg(1, llvm::Attribute::StructRet)
                 .arg(1, llvm::Attribute::NoAlias)
                 .arg(1, llvm::Attribute::NoCapture)
                 .arg(1, llvm::DereferenceableAttribute(llret_sz));

            // Add one more since there's an outptr
            idx += 1;
        } else {
            // The `noalias` attribute on the return value is useful to a
            // function ptr caller.
            match ret_ty.sty {
                // `Box` pointer return values never alias because ownership
                // is transferred
                ty::TyBox(it) if common::type_is_sized(ccx.tcx(), it) => {
                    attrs.ret(llvm::Attribute::NoAlias);
                }
                _ => {}
            }

            // We can also mark the return value as `dereferenceable` in certain cases
            match ret_ty.sty {
                // These are not really pointers but pairs, (pointer, len)
                ty::TyRef(_, ty::TypeAndMut { ty: inner, .. })
                | ty::TyBox(inner) if common::type_is_sized(ccx.tcx(), inner) => {
                    let llret_sz = machine::llsize_of_real(ccx, type_of::type_of(ccx, inner));
                    attrs.ret(llvm::DereferenceableAttribute(llret_sz));
                }
                _ => {}
            }

            if let ty::TyBool = ret_ty.sty {
                attrs.ret(llvm::Attribute::ZExt);
            }
        }
    }

    for &t in input_tys.iter() {
        match t.sty {
            _ if type_of::arg_is_indirect(ccx, t) => {
                let llarg_sz = machine::llsize_of_real(ccx, type_of::type_of(ccx, t));

                // For non-immediate arguments the callee gets its own copy of
                // the value on the stack, so there are no aliases. It's also
                // program-invisible so can't possibly capture
                attrs.arg(idx, llvm::Attribute::NoAlias)
                     .arg(idx, llvm::Attribute::NoCapture)
                     .arg(idx, llvm::DereferenceableAttribute(llarg_sz));
            }

            ty::TyBool => {
                attrs.arg(idx, llvm::Attribute::ZExt);
            }

            // `Box` pointer parameters never alias because ownership is transferred
            ty::TyBox(inner) => {
                attrs.arg(idx, llvm::Attribute::NoAlias);

                if common::type_is_sized(ccx.tcx(), inner) {
                    let llsz = machine::llsize_of_real(ccx, type_of::type_of(ccx, inner));
                    attrs.arg(idx, llvm::DereferenceableAttribute(llsz));
                } else {
                    attrs.arg(idx, llvm::NonNullAttribute);
                    if inner.is_trait() {
                        attrs.arg(idx + 1, llvm::NonNullAttribute);
                    }
                }
            }

            ty::TyRef(b, mt) => {
                // `&mut` pointer parameters never alias other parameters, or mutable global data
                //
                // `&T` where `T` contains no `UnsafeCell<U>` is immutable, and can be marked as
                // both `readonly` and `noalias`, as LLVM's definition of `noalias` is based solely
                // on memory dependencies rather than pointer equality
                let interior_unsafe = mt.ty.type_contents(ccx.tcx()).interior_unsafe();

                if mt.mutbl != hir::MutMutable && !interior_unsafe {
                    attrs.arg(idx, llvm::Attribute::NoAlias);
                }

                if mt.mutbl == hir::MutImmutable && !interior_unsafe {
                    attrs.arg(idx, llvm::Attribute::ReadOnly);
                }

                // & pointer parameters are also never null and for sized types we also know
                // exactly how many bytes we can dereference
                if common::type_is_sized(ccx.tcx(), mt.ty) {
                    let llsz = machine::llsize_of_real(ccx, type_of::type_of(ccx, mt.ty));
                    attrs.arg(idx, llvm::DereferenceableAttribute(llsz));
                } else {
                    attrs.arg(idx, llvm::NonNullAttribute);
                    if mt.ty.is_trait() {
                        attrs.arg(idx + 1, llvm::NonNullAttribute);
                    }
                }

                // When a reference in an argument has no named lifetime, it's
                // impossible for that reference to escape this function
                // (returned or stored beyond the call by a closure).
                if let ReLateBound(_, BrAnon(_)) = *b {
                    attrs.arg(idx, llvm::Attribute::NoCapture);
                }
            }

            _ => ()
        }

        if common::type_is_fat_ptr(ccx.tcx(), t) {
            idx += 2;
        } else {
            idx += 1;
        }
    }

    attrs
}